Seed-Specific Gene MOTHER of FT and TFL1 (MFT) Involved in Embryogenesis, Hormones and Stress Responses in Dimocarpus longan Lour.
Abstract
:1. Introduction
2. Results
2.1. Isolation of DlMFT and Its Phylogenetic Analysis
2.2. Isolation and Functional Analysis of the DlMFT Promoter
2.3. Subcellular Localization of DlMFT
2.4. DlMFT Played a Key Role during Longan SE and ZE, and Seed Germination
2.5. The Effect of Exogenous Hormones on DlMFT Expression
2.6. The Effects of Light and Abiotic Stress on DlMFT Expression
3. Discussion
3.1. DlMFT Played a Key Role in Longan Embryogenesis and Seed Germination
3.2. DlMFT Was Involved in Various Plant Hormone Signaling Pathways during Longan SE
3.3. DlMFT Participated in Responses to Various Abiotic Stresses
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Isolation of DlMFT and Its Promoter
4.3. Subcellular Localization of DlMFT Protein
4.4. Quantitative Real-Time PCR Analysis
4.5. DlMFT Pro:GUS Plasmid Construction and N. Benthamiana Transformation
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Dl | Dimocarpus longan |
MFT | mother of FT and TFL1 |
FT | Flowering locus T |
TFL1 | terminal flowering like 1 |
SE | somatic embryogenesis |
ZE | zygotic embryogenesis |
qRT-PCR | quantitative real-time PCR |
NEC | non-embryogenic callus |
EC | embryogenic callus |
ICpEC | incomplete compact pro-embryogenic cultures |
GE | globular embryos |
TE | torpedo-shaped embryos |
CE | cotyledonary embryos |
2,4-D | 2,4-Dichlorophenoxyacetic acid |
IAA | indoleacetic acid |
ABA | abscisic acid |
GA | gibberellin |
SA | salicylic acid |
MeJa | methyl jasmonate |
BR | brassinosteroids |
NPA | N-1-Naphthylphthalamic acid |
PP333 | Paclobutrazol |
GFP | green fluorescent protein |
35S | CaMV35S |
DAPI | 4′,6-diamidino-2-phenylindol |
References
- Lai, Z.; Chen, C.; Zeng, L.; Chen, Z. Somatic embryogenesis in longan [Dimocarpus longan Lour.]. In Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Springer: Dordrecht, The Netherlands, 2000; Volume 6, pp. 415–431. ISBN 978-94-017-3030-3. [Google Scholar]
- Lai, Z.; Chen, C. Changes of endogenous phytohormones in the process of somatic embryogenesis in longan (Dimocarpus longan Lour.). Chin. J. Trop Crops 2002, 23, 41–47. [Google Scholar]
- Lai, Z.; Pan, L.Z.; Chen, Z.G. Establishment and maintenance of longan embryogenic cell lines. J. Fujian Agric. Univ. 1997, 26, 160–167. [Google Scholar]
- Lai, Z.X.; Chen, Z.G. Somatic embryogenesis of high frequency from longan embryogenic calli. J. Fujian Agric. Univ. 1997, 26, 271–276. [Google Scholar]
- Lai, Z.; Lin, Y. Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing. BMC Genom. 2013, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.X.; He, Y.; Chen, Y.T.; Cai, Y.Q.; Lai, C.C.; Lin, Y.L.; Lin, X.L.; Fang, Z.Z. Molecular Biology and Proteomics during Somatic Embryogenesis in Dimocarpus longan Lour; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2010; pp. 95–102. [Google Scholar]
- Zimmerman, J.L. Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell 1993, 5, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, C.; Liu, Q.; Zhang, Z.; Zheng, B.; Bao, M. De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.). BMC Genom. 2016, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Dodeman, V.L.; Ducreux, G.; Kreis, M. Review Article: Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 1997, 48, 1493–1509. [Google Scholar] [CrossRef]
- Willemsen, V.; Scheres, B. Mechanisms of pattern formation in plant embryogenesis. Annu. Rev. Genet. 2004, 38, 587–614. [Google Scholar] [CrossRef] [PubMed]
- Chardon, F.; Damerval, C. Phylogenomic Analysis of the PEBP Gene Family in Cereals. J. Mol. Evol. 2005, 61, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Miller, D.; Winter, V.J.; Banfield, M.J.; Lee, J.H.; Yoo, S.Y.; Henz, S.R.; Brady, R.L.; Weigel, D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 2006, 25, 605–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmona, M.J.; Calonje, M.; Martínez-Zapater, J.M. The FT/TFL1 gene family in grapevine. PLANT Mol. Biol. 2007, 63, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Igasaki, T.; Watanabe, Y.; Nishiguchi, M.; Kotoda, N. The Flowering Locus T/Terminal Flower 1 Family in Lombardy poplar. Plant Cell Physiol. 2008, 49, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Hedman, H.; Källman, T.; Lagercrantz, U. Early evolution of the MFT-like gene family in plants. Plant Mol. Biol. 2009, 70, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Karlgren, A.; Gyllenstrand, N.; Källman, T.; Sundström, J.F.; Moore, D.; Lascoux, M.; Lagercrantz, U. Evolution of the PEBP gene family in plants: Functional diversification in seed plant evolution. Plant Physiol. 2011, 156, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Bradley, D.; Ratcliffe, O.; Vincent, C.; Carpenter, R.; Coen, E. Inflorescence commitment and architecture in Arabidopsis. Science 1997, 275, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kaya, H.; Goto, K.; Iwabuchi, M.; Araki, T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 1999, 286, 1960–1962. [Google Scholar] [CrossRef] [PubMed]
- Kardailsky, I.; Shukla, V.K.; Ahn, J.H.; Dagenais, N.; Christensen, S.K.; Nguyen, J.T.; Chory, J.; Harrison, M.J.; Weigel, D. Activation tagging of the floral inducer FT. Science 1999, 286, 1962–1965. [Google Scholar] [CrossRef] [PubMed]
- Hanzawa, Y.; Money, T.; Bradley, D. A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. USA 2005, 102, 7748–7753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.Y.; Kardailsky, I.; Lee, J.S.; Weigel, D.; Ahn, J.H. Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol. Cells 2004, 17, 95–101. [Google Scholar] [PubMed]
- Mohamed, R.; Wang, C.T.; Ma, C.; Shevchenko, O.; Dye, S.J.; Puzey, J.R.; Etherington, E.; Sheng, X.; Meilan, R.; Strauss, S.H.; et al. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J. Cell Mol. Biol. 2010, 62, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.K.; Samanta Roy, D.; Chatterjee, I.; Bone, C.R.; Springer, C.J.; Kelly, J.K. Identification of a major QTL that alters flowering time at elevated [CO2] in Arabidopsis thaliana. PLoS ONE 2012, 7, e49028. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Liu, C.; Hou, X.; Yu, H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 2010, 22, 1733–1748. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, F.; Endo, T.; Shimada, T.; Fujii, H.; Shimizu, T.; Omura, M. Isolation and Characterization of a Citrus FT/TFL1 Homologue (CuMFT1), Which Shows Quantitatively Preferential Expression in Citrus Seeds. J. Jpn. Soc. Hortic. Sci. 2008, 77, 285–292. [Google Scholar] [CrossRef]
- Danilevskaya, O.N.; Meng, X.; Hou, Z.; Ananiev, E.V.; Simmons, C.R. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 2008, 146, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Abe, F.; Kawahigashi, H.; Nakazono, K.; Tagiri, A.; Matsumoto, T.; Utsugi, S.; Ogawa, T.; Handa, H.; Ishida, H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 2011, 23, 3215–3229. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Luo, L.; He, L.; Ni, J.; Xu, Z. A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas. J. Plant Res. 2014, 127, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fan, C.; Zhang, X.; Wang, X.; Wu, F.; Hu, R.; Fu, Y. Identification of a soybean MOTHER OF FT AND TFL1 homolog involved in regulation of seed germination. PLoS ONE 2014, 9, e99642. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Li, X.; Huang, H.; Hua, Y. Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis). Int. J. Mol. Sci. 2016, 17, 247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.; Pang, C.; Wei, H.; Wang, H.; Song, M.; Fan, S.; Yu, S. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.). PLoS ONE 2016, 11, e161080. [Google Scholar] [CrossRef] [PubMed]
- Ito-Inaba, Y.; Masuko-Suzuki, H.; Maekawa, H.; Watanabe, M.; Inaba, T. Characterization of two PEBP genes, SrFT and SrMFT, in thermogenic skunk cabbage (Symplocarpus renifolius). Sci. Rep. 2016, 6, 29440. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Yang, C. Comparative analysis of the pteridophyte Adiantum MFT ortholog reveals the specificity of combined FT/MFT C and N terminal interaction with FD for the regulation of the downstream gene AP1. Plant Mol. Biol. 2016, 91, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Yu, H. MOTHER OF FT AND TFL1 regulates seed germination and fertility relevant to the brassinosteroid signaling pathway. Plant Signal. Behav. 2010, 5, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- Vaistij, F.E.; Gan, Y.; Penfield, S.; Gilday, A.D.; Dave, A.; He, Z.; Josse, E.; Choi, G.; Halliday, K.J.; Graham, I.A. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proc. Natl. Acad. Sci. USA 2013, 110, 10866–10871. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Gao, Y.R.; Wei, W.; Zhang, K.; Feng, J.Y. Strawberry MOTHER OF FT AND TFL1 regulates seed germination and post-germination growth through integrating GA and ABA signaling in Arabidopsis. Plant Cell Tissue Organ Cult. 2016, 126, 343–352. [Google Scholar] [CrossRef]
- Ho, W.W.H.; Weigel, D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 2014, 26, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.C.; Gamage, C.K. Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci. 2000, 151, 193–198. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Hu, B.; Yi, X.; Liu, R.; Deng, Z.; Xiong, X. The Influence of Plant Growth Regulators and Light Quality on Somatic Embryogenesis in China Rose (Rosa chinensis Jacq.). J. Plant Growth Regul. 2014, 33, 295–304. [Google Scholar] [CrossRef]
- Finkelstein, R.R.; Tenbarge, K.M.; Shumway, J.E.; Crouch, M.L. Role of ABA in Maturation of Rapeseed Embryos. Plant Physiol. 1985, 78, 630–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Zhang, X. Regulation of Somatic Embryogenesis in Higher Plants. Crit. Rev. Plant Sci. 2010, 29, 36–57. [Google Scholar] [CrossRef]
- Langhansová, L.; Konrádová, H.; Vanĕk, T. Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep. 2004, 22, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.K.; Jaiswal, V.S.; Jaiswal, U. Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Sci. Hortic. 2008, 117, 302–305. [Google Scholar] [CrossRef]
- Vahdati, K.; Bayat, S.; Ebrahimzadeh, H.; Jariteh, M.; Mirmasoumi, M. Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tissue Organ Cult. 2008, 93, 163–171. [Google Scholar] [CrossRef]
- Rai, M.K.; Shekhawat, N.S.; Harish; Gupta, A.K.; Phulwaria, M.; Ram, K.; Jaiswal, U. The role of abscisic acid in plant tissue culture: A review of recent progress. Plant Cell Tissue Organ Cult. 2011, 106, 179–190. [Google Scholar] [CrossRef]
- Robichaud, R.L.; Lessard, V.C.; Merkle, S.A. Treatments affecting maturation and germination of American chestnut somatic embryos. J. Plant Physiol. 2004, 161, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Zavattieri, M.A.; Frederico, A.M.; Lima, M.; Sabino, R.; Arnholdtschmitt, B. Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron. J. Biotechnol. 2010, 13, 1–9. [Google Scholar] [CrossRef]
- Hao, Y.; Deng, X. Stress treatments and DNA methylation affected the somatic embryogenesis of citrus callus. Acta Bot. Sin. 2002, 44, 673–677. [Google Scholar]
- Ibraheem, Y.M.; Pinker, I.; Böhme, M.H. The effect of sodium chloride-stress on ‘zaghlool’ date palm somatic embryogenesis. Acta Hortic. 2012, 961. [Google Scholar] [CrossRef]
- Yang, J.; Wu, S.; Li, C. High Efficiency Secondary Somatic Embryogenesis in Hovenia dulcis Thunb. through Solid and Liquid Cultures. Sci. World J. 2013, 2013, 718754. [Google Scholar] [CrossRef] [PubMed]
- Soitamo, A.J.; Piippo, M.; Allahverdiyeva, Y.; Battchikova, N.; Aro, E. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol. 2008, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Michler, C.H.; Lineberger, R.D. Effects of light on somatic embryo development and abscisic levels in carrot suspension cultures. Plant Cell Tissue Organ Cult. 1987, 11, 189–207. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Morini, S.; Bellocchi, G. Effect of light quality on somatic embryogenesis of quince leaves. Plant Cell Tissue Organ Cult. 1998, 53, 91–98. [Google Scholar] [CrossRef]
- Merkle, S.A.; Montello, P.M.; Xia, X.; Upchurch, B.L.; Smith, D.R. Light quality treatments enhance somatic seedling production in three southern pine species. Tree Physiol. 2006, 26, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De-la-Peña, C.; Galaz-Avalos, R.M.; Loyola-Vargas, V.M. Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Mol. Biotechnol. 2008, 39, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sahagún, A.; Acevedo-Hernández, G.; Rodríguez-Domínguez, J.M.; Rodríguez-Garay, B.; Cervantes-Martínez, J.; Castellanos-Hernández, O.A. Effect of light quality and culture medium on somatic embryogenesis of Agave tequilana Weber var. Azul. Plant Cell Tissue Organ Cult. 2011, 104, 271–275. [Google Scholar] [CrossRef]
- Rolland, F.; Moore, B.; Sheen, J. Sugar Sensing and Signaling in Plants. Plant Cell 2002, 14, S185–S205. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Huang, X.; Wu, M.; Wang, Y.; Chang, Y.; Liu, K.; Zhang, J.; Zhang, Y.; Zhang, F.; Yi, L.; et al. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE 2014, 9, e83556. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Lai, Z.X. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci. 2010, 178, 359–365. [Google Scholar] [CrossRef]
Primer Name | Primer Sequence (5′–3′) | Description |
---|---|---|
DlMFT 3′GSP1 | GGATTCACTGGATGGTCGT | 3′-RACE |
DlMFT 3′GSP2: | TCAACAGAAGGCACCATTAG | |
DlMFT 5′GSPa | CCTAATGGTGCCTTCTGTTG | 5′-RACE |
DlMFT 5′GSPb | GACCATCCAGTGAATCCATT | |
DlMFT-F | TTTTGGTTATGGCGGCTTC | Splice verification, gDNA amplification |
DlMFT-R | ATGCTCCAGACCCCATACTA | |
DlMFT-SP1 | GCGAACCAGTGAATCCATT | Promoter cloning |
DlMFT-SP2 | CATCAGAGTGACCAGTGAGAGT | |
DlMFT-SP3 | TGATGTCACAGCCGTTGGT | |
DlMFT-pro-F | GCGGATCCTTTGCCTTGTCCAACTTCAC | For construction of DlMFT pro:GUS. The added BamI (GGATCC) and NcoI (CCATGG) sites were underlined |
DlMFT-pro-R | GCCCATGGCAAACAAAGAGAAGAGAGGA | |
DlMFT-SL-F | GAAGATCTATGGCGGCTTCGGTGGATC | Subcellar localization of DlMFT. The added BglII (AGATCT) site was underlined |
DlMFT-SL-R | GAAGATCTGCGGCGACGGTTGGCCTTCC | |
DlMFT-q-F | AACGGCTGTGACATCAAGC | qRT-PCR |
DlMFT-q-R | CGACCATCCAGTGAATCCA | |
NbEF1a-F | AGAGGCCCTCAGACAAAC | Reference gene for qRT-PCR in N. benthamiana |
NbEF1a-R | TAGGTCCAAAGGTCACAA | |
GeneRacerTM 3′-Primer | GCTGTCAACGATACGCTACGTAACG | 3′-RACE |
GeneRacerTM 3′-Nested Primer | CGCTACGTAACGGCATGACAGTG | |
GeneRacerTM 5′-Primer | CGACTGGAGCACGAGGACACTGA | 5′-RACE |
GeneRacerTM 5′-Nested Primer | GGACACTGACATGGACTGAAGGAGTA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Xu, X.; Chen, X.; Chen, Y.; Zhang, Z.; Xuhan, X.; Lin, Y.; Lai, Z. Seed-Specific Gene MOTHER of FT and TFL1 (MFT) Involved in Embryogenesis, Hormones and Stress Responses in Dimocarpus longan Lour. Int. J. Mol. Sci. 2018, 19, 2403. https://doi.org/10.3390/ijms19082403
Chen Y, Xu X, Chen X, Chen Y, Zhang Z, Xuhan X, Lin Y, Lai Z. Seed-Specific Gene MOTHER of FT and TFL1 (MFT) Involved in Embryogenesis, Hormones and Stress Responses in Dimocarpus longan Lour. International Journal of Molecular Sciences. 2018; 19(8):2403. https://doi.org/10.3390/ijms19082403
Chicago/Turabian StyleChen, Yukun, Xiaoping Xu, Xiaohui Chen, Yan Chen, Zihao Zhang, Xu Xuhan, Yuling Lin, and Zhongxiong Lai. 2018. "Seed-Specific Gene MOTHER of FT and TFL1 (MFT) Involved in Embryogenesis, Hormones and Stress Responses in Dimocarpus longan Lour." International Journal of Molecular Sciences 19, no. 8: 2403. https://doi.org/10.3390/ijms19082403
APA StyleChen, Y., Xu, X., Chen, X., Chen, Y., Zhang, Z., Xuhan, X., Lin, Y., & Lai, Z. (2018). Seed-Specific Gene MOTHER of FT and TFL1 (MFT) Involved in Embryogenesis, Hormones and Stress Responses in Dimocarpus longan Lour. International Journal of Molecular Sciences, 19(8), 2403. https://doi.org/10.3390/ijms19082403