Chitosan–Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of pH on the Bulk Aqueous PE Solution
2.2. Surface Adsorption Behaviour of CH and NaCMC
2.3. Emulsion Preparation
2.3.1. Influence of pH on CH-Based Emulsion-1 Droplets
2.3.2. Influence of NaCMC Concentration on Emulsion-2
2.4. CH–NaCMC-Based Microcapsule Shell Formation
2.4.1. Mechanism of Shell Formation
2.4.2. Structure of the Microcapsule Shell
2.4.3. Morphology of the Microcapsules
2.4.4. Effect of GTA on Microcapsule Thermal Properties
3. Experimental
3.1. Materials
3.2. Solution Preparation
3.3. Emulsion Preparation
3.4. Microcapsule Preparation
4. Characterization
4.1. Zeta Potential
4.2. Surface Tension
4.3. Microcapsule Morphology
4.3.1. Optical Microscopy
4.3.2. SEM Image Analysis
4.4. ATR Analysis
4.5. Differential Scanning Calorimetry (DSC)
4.6. Characterization of Microcapsule
4.6.1. Encapsulation Yield (EY%)
4.6.2. Content of Paraffin Oil (CA %)
4.6.3. Encapsulation Efficiency (EE %)
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Koehler, R.; Steitz, R.; Von Klitzing, R. About Different Types of Water in Swollen Polyelectrolyte Multilayers. Adv. Colloid Interface Sci. 2014, 207, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Bachus, K.N.; Stewart, R.J. A Water-Borne Adhesive Modeled after the Sandcastle Glue of P. Californica. Macromol. Biosci. 2010, 9, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Gärdlund, L.; Wågberg, L.; Gernandt, R. Polyelectrolyte Complexes for Surface Modification of Wood Fibres: II. Influence of Complexes on Wet and Dry Strength of Paper. Colloids Surf. A Physicochem. Eng. Asp. 2003, 218, 137–149. [Google Scholar] [CrossRef]
- Kamiya, N.; Klibanov, A.M. Controling the Rate of Protein Release from Polyelectrolyte Complexes. Biotechnol. Bioeng. 2003, 82, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, H.H.; Lukáš, J.; Richau, K. Surface and Permeability Properties of Membranes from Polyelectrolyte Complexes and Polyelectrolyte Surfactant Complexes. J. Membr. Sci. 2003, 218, 1–9. [Google Scholar] [CrossRef]
- Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, G.; Guan, J. Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms. In Solubility of Polysaccharides; Xu, Z., Ed.; InTech: Vienna, Austria, 2017; pp. 109–127. [Google Scholar]
- Kean, T.; Thanou, M. Biodegradation, Biodistribution and Toxicity of Chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Schulz, P.C.; Rodríguez, M.S.; Del Blanco, L.F.; Pistonesi, M.; Agulló, E. Emulsification Properties of Chitosan. Colloid Polym. Sci. 1998, 276, 1159–1165. [Google Scholar] [CrossRef]
- Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A.; Guan, J. Surface Behavior and Bulk Properties of Aqueous Chitosan and Type-B Gelatin Solutions for Effective Emulsion Formulation. Carbohydr. Polym. 2017, 173, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, W.C.; Chang, C.P.; Gao, Y.L. Controlled Release Properties of Chitosan Encapsulated Volatile Citronella Oil Microcapsules by Thermal Treatments. Colloids Surf. B Biointerfaces 2006, 53, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, C.; Navarro-Lisboa, R.; Zúñiga, R.N.; Matiacevich, S. Application of CMC as Thickener on Nanoemulsions Based on Olive Oil: Physical Properties and Stability. Int. J. Polym. Sci. 2016, 2016, 6280581. [Google Scholar] [CrossRef]
- Arinaitwe, E.; Pawlik, M. Dilute Solution Properties of Carboxymethyl Celluloses of Various Molecular Weights and Degrees of Substitution. Carbohydr. Polym. 2014, 99, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.I.H.; Yeasmin, M.S. Toxicity Study of Food-Grade Carboxymethyl Cellulose Synthesized from Maize Husk in Swiss Albino Mice. Int. J. Boil. Macromol. 2016, 92, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Fei-jun, W.; Fang-su, L.; Meng, C.; Zi-qiang, S. Biocompatible Microcapsule of Carboxymethyl Cellulose/Chitosan as Drug Carrier. Adv. Mater. Res. 2015, 1118, 227–236. [Google Scholar]
- Zhang, L.; Jin, Y.; Liu, H.; Du, Y. Structure and Control Release of Chitosan/Carboxymethyl Cellulose Microcapsules. J. Appl. Polym. Sci. 2001, 82, 584–592. [Google Scholar] [CrossRef]
- Long, D.D.; Van Luyen, D. Chitosan-Carboxymethylcellulose Hydrogels as Supports for Cell Immobilization hydrogels as supports for cell immobilization. J. Macromol. Sci. Part A Pure Appl. Chem. 1996, 33, 1875–1884. [Google Scholar] [CrossRef]
- Yan, L.; Qian, F.; Zhu, Q. Interpolymer Complex Polyampholytic Hydrogel of Chitosan and Carboxymethyl Cellulose (CMC): Synthesis and Ion Effect. Polym. Int. 2001, 50, 1370–1374. [Google Scholar] [CrossRef]
- Samrot, A.V.; Akanksha; Jahnavi, T.; Padmanaban, S.; Philip, S.-A.; Burman, U.; Rabel, A.M. Chelators Influenced Synthesis of Chitosan–carboxymethyl Cellulose Microparticles for Controlled Drug Delivery. Appl. Nanosci. 2016, 6, 1219–1231. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, A.; Jin, Y.; Zhang, Q.; Zhang, L.; Peng, Y.; Du, S. Molecularly Imprinted Layer-Coated Hollow Polysaccharide Microcapsules toward Gate-Controlled Release of Water-Soluble Drugs. RSC Adv. 2014, 4, 26063. [Google Scholar] [CrossRef]
- Takigawa, T.; Endo, Y. Effects of Glutaraldehyde Exposure on Human Health. J. Occup. Health 2006, 48, 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merhi, Y.; Roy, R.; Guidoin, R.; Hebert, J.; Mourad, W.; Benslimane, S. Cellular Reactions to Polyester Arterial Prostheses Impregnated with Cross-Linked Albumin: In Vivo Studies in Mice. Biomaterials 1989, 10, 56–58. [Google Scholar] [CrossRef]
- Jonas, R.A.; Ziemer, G.; Schoen, F.J.; Britton, L.; Castaneda, A.R. A New Sealant for Knitted Dacron Prostheses: Minimally Cross-Linked Gelatin. J. Vasc. Surg. 1988, 7, 414–419. [Google Scholar] [CrossRef]
- Wissemann, K.W.; Jacobson, B.S. Synthesis and Use in Cell Attachment. In Vitro Cell. Dev. Boil. 1985, 7, 391–401. [Google Scholar] [CrossRef]
- Speer, D.P.; Chvapil, M.; Eskelson, C.D.; Ulreich, J. Biological Effects of Residual Glutaraldehyde in Glutaraldehyde-tanned Collagen Biomaterials. J. Biomed. Mater. Res. 1980, 14, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Goissis, G.; Marcantonio, E.; Marcantônio, R.A.C.; Lia, R.C.C.; Cancian, D.C.J.; De Carvalho, W.M. Biocompatibility Studies of Anionic Collagen Membranes with Different Degree of Glutaraldehyde Cross-Linking. Biomaterials 1999, 20, 27–34. [Google Scholar] [CrossRef]
- Van Wachem, P.B.; Zeeman, R.; Dijkstra, P.J.; Feijen, J.; Hendriks, M.; Cahalan, P.T.; Van Luyn, M.J.A. Characterization and Biocompatibility of Epoxy-Crosslinked Dermal Sheep Collagens. J. Biomed. Mater. Res. 1999, 47, 270–277. [Google Scholar] [CrossRef]
- Xu, Y.; Li, L.; Wang, H.; Yu, X.; Gu, Z.; Huang, C.; Peng, H. In Vitro Cytocompatibility Evaluation of Alginate Dialdehyde for Biological Tissue Fixation. Carbohydr. Polym. 2013, 92, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Hass, V.; Luque-Martinez, I.V.; Gutierrez, M.F.; Moreira, C.G.; Gotti, V.B.; Feitosa, V.P.; Koller, G.; Otuki, M.F.; Loguercio, A.D.; Reis, A. Collagen Cross-Linkers on Dentin Bonding: Stability of the Adhesive Interfaces, Degree of Conversion of the Adhesive, Cytotoxicity and in Situ MMP Inhibition. Dent. Mater. 2016, 32, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Preparation and Optimization of Chitosan-Gelatin Films for Sustained Delivery of Lupeol for Wound Healing. Int. J. Boil. Macromol. 2018, 107, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Pelton, R. Carboxymethyl Cellulose: Polyvinylamine Complex Hydrogel Swelling. Macromolecules 2007, 40, 1624–1630. [Google Scholar] [CrossRef]
- Dogsa, I.; Tomšič, M.; Orehek, J.; Benigar, E.; Jamnik, A.; Stopar, D. Amorphous Supramolecular Structure of Carboxymethyl Cellulose in Aqueous Solution at Different PH Values as Determined by Rheology, Small Angle X-Ray and Light Scattering. Carbohydr. Polym. 2014, 111, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Tsaih, M.L.; Chen, R.H. Effects of Ionic Strength and PH on the Diffusion Coefficients and Conformation of Chitosans. J. Appl. Polym. Sci. 1999, 73, 2041–2050. [Google Scholar] [CrossRef]
- Philippova, O.E.; Volkov, E.V.; Sitnikova, N.L.; Khokhlov, A.R.; Rinaudo, M.D. Two Types of Hydrophobic Aggregates in Aqueous Solutions of Chitosan and Its Hydrophobic Derivative. Biomacromolecules 2001, 2, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Guillot, S.; Delsanti, M.; De, S.; Langevin, D. Surfactant-Induced Collapse of Polymer Chains and Monodisperse Growth of Aggregates near the Precipitation Boundary in Carboxymethylcellulose—DTAB Aqueous Solutions. Langmuir 2003, 19, 230–237. [Google Scholar] [CrossRef]
- Mai-ngam, K. Comblike Poly(Ethylene Oxide)Hydrophobic C6 Branched Chitosan Surfactant Polymers as Anti-Infection Surface Modifying. Colloids Surf. B Biointerfaces 2006, 49, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Desbrieres, J.; Babak, V.G. Interfacial Properties of Amphiphilic Natural Polymer Systems Based on Derivatives of Chitin. Polym. Int. 2006, 55, 1177–1183. [Google Scholar] [CrossRef]
- Wang, X.; Heuzey, M. Chitosan-Based Conventional and Pickering Emulsions with Long-Term Stability. Langmuir 2016, 32, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Zhang, S.; Vardhanabhuti, B. Influence of the Molecular Weight of Carboxymethylcellulose on Properties and Stability of Whey Protein-Stabilized Oil-in-Water Emulsions. J. Dairy Sci. 2016, 99, 3305–3315. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Cheng, Y.Q.; Wang, P.; Zhao, W.T.; Yin, L.J.; Saito, M. A Novel Improvement in Whey Protein Isolate Emulsion Stability: Generation of an Enzymatically Cross-Linked Beet Pectin Layer Using Horseradish Peroxidase. Food Hydrocoll. 2012, 26, 448–455. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, J.; An, Q.; Gao, C.; Gui, Z.; Jin, H. Synthesis and Characterization of Soluble Chitosan/Sodium Carboxymethyl Cellulose Polyelectrolyte Complexes and the Pervaporation Dehydration of Their Homogeneous Membranes. J. Membr. Sci. 2009, 333, 68–78. [Google Scholar] [CrossRef]
- Das, B.P.; Tsianou, M. From Polyelectrolyte Complexes to Polyelectrolyte Multilayers: Electrostatic Assembly, Nanostructure, Dynamics, and Functional Properties. Adv. Colloid Interface Sci. 2017, 244, 71–89. [Google Scholar] [CrossRef] [PubMed]
- Esselin, N.; Portolan, F.; Domloge, N.; Rees, D.; Musa, O.M.; Pilard, J.-F. Potentialities of the Poly(Aminoethyl Methacrylate) p(AMA) as Gelatin-Like Polymer in Complex Coacervation. J. Encapsulation Adsorpt. Sci. 2016, 6, 147–160. [Google Scholar] [CrossRef]
- Kim, J.R.; Kim, S.H. Eco-Friendly Acaricidal Effects of Nylon 66 Nanofibers via Grafted Clove Bud Oil-Loaded Capsules on House Dust Mites. Nanomaterials 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, Y.; Yang, Z.; Lin, Q.; Qiao, K.; Chenb, X.; Peng, Y. Influence of Dialdehyde Bacterial Cellulose with the Nonlinear Elasticity and Topology Structure of ECM on Cell Adhesion and Proliferation. RSC Adv. 2014, 4, 3998–4009. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.; Wang, Z. Synthesis and Degradable Properties of Cycloaliphatic Epoxy Resin from Renewable Biomass-Based Furfural. RSC Adv. 2015, 5, 95126–95132. [Google Scholar] [CrossRef]
- Kim, U.-J.; Kuga, S.; Wada, M.; Okano, T.; Kondo, T. Periodate Oxidation of Crystalline Cellulose. Biomacromolecules 2000, 1, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A.; Guan, J. Chitosan-carboxymethylcellulose based microcapsules formulation for controlled release of active ingredients from cosmeto-textile. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 17th World Textile Conference AUTEX 2017: Shaping the Future of Textiles, Corfu, Greece, May 2017; IOP Publishing: Bristol, UK, 2017; Abstract No. 072020; Volume 254, pp. 29–31. [Google Scholar] [CrossRef]
Sample Label | Tm Onset (°C) | Tm Peak (°C) | ΔHm (J/g) | Tc Onset (°C) | Tc Peak (°C) | ΔHc (J/g) | CA% | EE% | EY% |
---|---|---|---|---|---|---|---|---|---|
Paraffin oil | 20.0 | 28.1 | 232.0 | 15.0 | 7.6 | 230.1 | - | - | - |
CH1-CMC1-GTA0.3 | 17.9 | 29.1 | 136.1 | 16.5 | 8.4 | 136.3 | 58.6 | 66.4 | 34.4 |
CH1-CMC1-GTA0.6 | 13.5 | 26.0 | 155.5 | 15.2 | 3.8 | 154.8 | 67.0 | 76.0 | 44.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, J.C.; Ferri, A.; Giraud, S.; Jinping, G.; Salaün, F. Chitosan–Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. Int. J. Mol. Sci. 2018, 19, 2521. https://doi.org/10.3390/ijms19092521
Roy JC, Ferri A, Giraud S, Jinping G, Salaün F. Chitosan–Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. International Journal of Molecular Sciences. 2018; 19(9):2521. https://doi.org/10.3390/ijms19092521
Chicago/Turabian StyleRoy, Jagadish Chandra, Ada Ferri, Stéphane Giraud, Guan Jinping, and Fabien Salaün. 2018. "Chitosan–Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation" International Journal of Molecular Sciences 19, no. 9: 2521. https://doi.org/10.3390/ijms19092521
APA StyleRoy, J. C., Ferri, A., Giraud, S., Jinping, G., & Salaün, F. (2018). Chitosan–Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. International Journal of Molecular Sciences, 19(9), 2521. https://doi.org/10.3390/ijms19092521