Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T
Abstract
:1. Introduction
2. Results and Discussion
2.1. Different Morphology of Amyloid Fibrils Formed from Various Forms of β2M
2.2. Investigation of ThT-β2M Amyloid Fibrils Interaction Using Absorption Spectroscopy of Solutions Prepared by Equilibrium Microdialysis
2.3. Determination of the ThT-β2M Amyloid Fibrils Binding Parameters Using Fluorescence Spectroscopy of Solutions Prepared by Equilibrium Microdialysis
2.4. Photophysical Characteristics of ThT Bound to β2M Amyloid Fibrils
3. Materials and Methods
3.1. Materials
3.2. Full-Length and Truncated Forms of β2M Expression and Purification
3.3. Polyacrylamide Gel Electrophoresis
3.4. Mass Spectral Analysis
3.5. Preparation of β2M Amyloid Fibrils
3.6. Spectroscopic Studies
3.7. Electron Microscopy
3.8. Equilibrium Microdialysis
3.9. Time-Resolved Fluorescence Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
β2M | beta-2-microglobulin |
β2m | full-length β2M |
N6β2m | β2M truncated form that lacks the 6 N-terminal amino acids of the polypeptide chain |
N10β2m | β2M truncated form that lacks the 10 N-terminal amino acids of the polypeptide chain |
DRA | dialysis-related amyloidosis |
ThT | thioflavin T |
TEM | transmission electron microscopy |
CD | circular dichroism |
UV | ultraviolet |
IPTG | isopropyl β-d-thiogalactoside |
SDS-PAGE | sodium dodecyl sulfate polyacrylamide gel |
IRF | instrument response function |
References
- Bjorkman, P.J.; Saper, M.A.; Samraoui, B.; Bennett, W.S.; Strominger, J.L.; Wiley, D.C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987, 329, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Goldsby, R.A.; Kindt, T.J.; Osborne, B.A. Major histocompatibility complex. In Kuby Immunology, 6th ed.; W.H. Freeman: New York, NY, USA, 2007; pp. 166–178. [Google Scholar]
- Scarpioni, R.; Ricardi, M.; Albertazzi, V.; De Amicis, S.; Rastelli, F.; Zerbini, L. Dialysis-related amyloidosis: Challenges and solutions. Int. J. Nephrol. Renovasc. Dis. 2016, 9, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.V. Clinical Utility of Beta 2 Microglobulin Measurement. Med. J. Armed Forces India 1997, 53, 249–250. [Google Scholar] [CrossRef]
- Poley, S.; Fateh-Moghadam, A.; Nüssler, V.; Pahl, H. Serum β2-Microglobulin for Staging and Monitoring of Multiple Myelomas and Other Non-Hodgkin Lymphomas. Onkologie 1994, 17, 428–432. [Google Scholar] [CrossRef]
- Gejyo, F.; Yamada, T.; Odani, S.; Nakagawa, Y.; Arakawa, M.; Kunitomo, T.; Kataoka, H.; Suzuki, M.; Hirasawa, Y.; Shirahama, T.; et al. A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin. Biochem. Biophys. Res. Commun. 1985, 129, 701–706. [Google Scholar] [CrossRef]
- Linke, R.P.; Hampl, H.; Lobeck, H.; Ritz, E.; Bommer, J.; Waldherr, R.; Eulitz, M. Lysine-specific cleavage of beta 2-microglobulin in amyloid deposits associated with hemodialysis. Kidney Int. 1989, 36, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Gejyo, F.; Arakawa, M. Clinical studies of destructive spondyloarthropathy in long-term hemodialysis patients. Nephron 1992, 61, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Michelutti, R.; Verdone, G.; Viglino, P.; Hernandez, H.; Robinson, C.V.; Amoresano, A.; Dal Piaz, F.; Monti, M.; Pucci, P.; et al. Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci. 2000, 9, 831–845. [Google Scholar] [CrossRef] [PubMed]
- Sakono, M.; Zako, T. Amyloid oligomers: Formation and toxicity of Abeta oligomers. FEBS J. 2010, 277, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Shin, T.M.; Isas, J.M.; Hsieh, C.L.; Kayed, R.; Glabe, C.G.; Langen, R.; Chen, J. Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin. Mol. Neurodegener. 2008, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Wan, O.W.; Chung, K.K. The role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson’s disease. PLoS ONE 2012, 7, e38545. [Google Scholar] [CrossRef] [PubMed]
- Caruana, M.; Hogen, T.; Levin, J.; Hillmer, A.; Giese, A.; Vassallo, N. Inhibition and disaggregation of alpha-synuclein oligomers by natural polyphenolic compounds. FEBS Lett. 2011, 585, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Turoverov, K.K.; Kuznetsova, I.M.; Uversky, V.N. The protein kingdom extended: Ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog. Biophys. Mol. Biol. 2010, 102, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Eknoyan, G.; Levin, A.; Levin, N.W. β2-microglobulin amyloidosis. Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42, 1–202. [Google Scholar] [CrossRef]
- Assenat, H.; Calemard, E.; Charra, B.; Laurent, G.; Terrat, J.C.; Vanel, T. Hemodialysis: Carpal tunnel syndrome and amyloid substance. Nouv. Presse Med. 1980, 9, 1715. [Google Scholar] [PubMed]
- Kuntz, D.; Naveau, B.; Bardin, T.; Drueke, T.; Treves, R.; Dryll, A. Destructive spondylarthropathy in hemodialyzed patients. A new syndrome. Arthritis Rheum. 1984, 27, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Zingraff, J.J.; Noel, L.H.; Bardin, T.; Atienza, C.; Zins, B.; Drueke, T.B.; Kuntz, D. Beta 2-microglobulin amyloidosis in chronic renal failure. N. Engl. J. Med. 1990, 323, 1070–1071. [Google Scholar] [PubMed]
- Campistol, J.M.; Sole, M.; Munoz-Gomez, J.; Lopez-Pedret, J.; Revert, L. Systemic involvement of dialysis-amyloidosis. Am. J. Nephrol. 1990, 10, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Gal, R.; Korzets, A.; Schwartz, A.; Rath-Wolfson, L.; Gafter, U. Systemic distribution of beta 2-microglobulin-derived amyloidosis in patients who undergo long-term hemodialysis. Report of seven cases and review of the literature. Arch. Pathol. Lab. Med. 1994, 118, 718–721. [Google Scholar] [PubMed]
- Charra, B.C.E.; Uzan, M.; Terrat, J.C.; Vanel, T.; Laurent, G. Carpal tunnel syndrome, shoulder pain and amyloid deposits in longterm hemodialysis patients. Proc. Eur. Dial. Transpl. Assoc. 1984, 21, 291–295. [Google Scholar]
- Sprague, S.M.; Moe, S.M. Clinical manifestations and pathogenesis of dialysis-related amyloidosis. Semin. Dial. 1996, 9, 360–369. [Google Scholar] [CrossRef]
- Hong, D.P.; Gozu, M.; Hasegawa, K.; Naiki, H.; Goto, Y. Conformation of beta 2-microglobulin amyloid fibrils analyzed by reduction of the disulfide bond. J. Biol. Chem. 2002, 277, 21554–21560. [Google Scholar] [CrossRef] [PubMed]
- Sasahara, K.; Yagi, H.; Naiki, H.; Goto, Y. Heat-triggered conversion of protofibrils into mature amyloid fibrils of beta2-microglobulin. Biochemistry 2007, 46, 3286–3293. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Garvey, M.; Alverdi, V.; Pettirossi, F.; Corazza, A.; Fogolari, F.; Polano, M.; Mangione, P.P.; Giorgetti, S.; Stoppini, M.; et al. Monitoring the interaction between beta2-microglobulin and the molecular chaperone alphaB-crystallin by NMR and mass spectrometry: AlphaB-crystallin dissociates beta2-microglobulin oligomers. J. Biol. Chem. 2013, 288, 17844–17858. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Sarell, C.J.; Eddy, M.T.; Debelouchina, G.T.; Andreas, L.B.; Pashley, C.L.; Radford, S.E.; Griffin, R.G. Secondary structure in the core of amyloid fibrils formed from human beta(2)m and its truncated variant DeltaN6. J. Am. Chem. Soc. 2014, 136, 6313–6325. [Google Scholar] [CrossRef] [PubMed]
- Leney, A.C.; Pashley, C.L.; Scarff, C.A.; Radford, S.E.; Ashcroft, A.E. Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry. Mol. Biosyst. 2014, 10, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, V.; Stoppini, M.; Mangione, P.; Sunde, M.; Robinson, C.; Asti, L.; Brancaccio, D.; Ferri, G. Beta2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur. J. Biochem. 1998, 258, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Stoppini, M.; Mangione, P.; Monti, M.; Giorgetti, S.; Marchese, L.; Arcidiaco, P.; Verga, L.; Segagni, S.; Pucci, P.; Merlini, G.; Bellotti, V. Proteomics of beta2-microglobulin amyloid fibrils. Biochim. Biophys. Acta 2005, 1753, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Linke, R.P.; Hampl, H.; Bartel-Schwarze, S.; Eulitz, M. Beta 2-microglobulin, different fragments and polymers thereof in synovial amyloid in long-term hemodialysis. Biol. Chem. Hoppe Seyler 1987, 368, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Chatani, E.; Yagi, H.; Naiki, H.; Goto, Y. Polymorphism of beta2-microglobulin amyloid fibrils manifested by ultrasonication-enhanced fibril formation in trifluoroethanol. J. Biol. Chem. 2012, 287, 22827–22837. [Google Scholar] [CrossRef] [PubMed]
- Kardos, J.; Okuno, D.; Kawai, T.; Hagihara, Y.; Yumoto, N.; Kitagawa, T.; Zavodszky, P.; Naiki, H.; Goto, Y. Structural studies reveal that the diverse morphology of beta(2)-microglobulin aggregates is a reflection of different molecular architectures. Biochim. Biophys. Acta 2005, 1753, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Mukaiyama, A.; Nakamura, T.; Makabe, K.; Maki, K.; Goto, Y.; Kuwajima, K. Native-state heterogeneity of beta(2)-microglobulin as revealed by kinetic folding and real-time NMR experiments. J. Mol. Biol. 2013, 425, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Hall, Z.; Schmidt, C.; Politis, A. Uncovering the Early Assembly Mechanism for Amyloidogenic beta2-Microglobulin Using Cross-linking and Native Mass Spectrometry. J. Biol. Chem. 2016, 291, 4626–4637. [Google Scholar] [CrossRef] [PubMed]
- Naiki, H.; Higuchi, K.; Hosokawa, M.; Takeda, T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal. Biochem. 1989, 177, 244–249. [Google Scholar] [CrossRef]
- LeVine, H., 3rd. Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 1993, 2, 404–410. [Google Scholar] [CrossRef] [PubMed]
- LeVine, H., 3rd. Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 1999, 309, 274–284. [Google Scholar] [PubMed]
- Kuznetsova, I.M.; Sulatskaya, A.I.; Uversky, V.N.; Turoverov, K.K. Analyzing thioflavin T binding to amyloid fibrils by an equilibrium microdialysis-based technique. PLoS ONE 2012, 7, e30724. [Google Scholar] [CrossRef] [PubMed]
- Fonin, A.V.; Sulatskaya, A.I.; Kuznetsova, I.M.; Turoverov, K.K. Fluorescence of dyes in solutions with high absorbance. Inner filter effect correction. PLoS ONE 2014, 9, e103878. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Kuznetsova, I.M.; Belousov, M.V.; Bondarev, S.A.; Zhouravleva, G.A.; Turoverov, K.K. Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils. PLoS ONE 2016, 11, e0156314. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Maskevich, A.A.; Kuznetsova, I.M.; Uversky, V.N.; Turoverov, K.K. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS ONE 2010, 5, e15385. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Turoverov, K.K.; Kuznetsova, I.M. Spectral properties and factors determining high quantum yield of thioflavin T incorporated in amyloid fibrils. Spectroscopy 2010, 24, 169–171. [Google Scholar] [CrossRef]
- Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J. Chem. Biol. 2010, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Rodina, N.P.; Kuznetsova, I.M.; Turoverov, K.K. Different conditions of fibrillogenesis cause polymorphysm of lysozyme amyloid fibrils. J. Mol. Struct. 2017, 1140, 52–58. [Google Scholar] [CrossRef]
- Sulatskaya, A.I.; Sulatsky, M.I.; Povarova, O.I.; Rodina, N.P.; Kuznetsova, I.M.; Lugovskii, A.A.; Voropay, E.S.; Lavysh, A.V.; Maskevich, A.A.; Turoverov, K.K. Trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium perchlorate-New fluorescent dye for testing of amyloid fibrils and study of their structure. Dyes Pigm. 2018, 157, 385–395. [Google Scholar] [CrossRef]
- Sulatskaya, A.I.; Lavysh, A.V.; Maskevich, A.A.; Kuznetsova, I.M.; Turoverov, K.K. Thioflavin T fluoresces as excimer in highly concentrated aqueous solutions and as monomer being incorporated in amyloid fibrils. Sci. Rep. 2017, 7, 2146. [Google Scholar] [CrossRef] [PubMed]
- Maskevich, A.A.; Stsiapura, V.I.; Kuzmitsky, V.A.; Kuznetsova, I.M.; Povarova, O.I.; Uversky, V.N.; Turoverov, K.K. Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J. Proteome Res. 2007, 6, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Krebs, M.R.; Bromley, E.H.; Donald, A.M. The binding of thioflavin-T to amyloid fibrils: Localisation and implications. J. Struct. Biol. 2005, 149, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L.; Corey, R.B. Configurations of Polypeptide Chains with Favored Orientations around Single Bonds: Two New Pleated Sheets. Proc. Natl. Acad. Sci. USA 1951, 37, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Rodina, N.P.; Sulatsky, M.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Investigation of alpha-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T. Int. J. Mol. Sci. 2018, 19, 2486. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.M.; Sulatskaya, A.I.; Maskevich, A.A.; Uversky, V.N.; Turoverov, K.K. High Fluorescence Anisotropy of Thioflavin T in Aqueous Solution Resulting from Its Molecular Rotor Nature. Anal. Chem. 2016, 88, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Sabate, R.; Saupe, S.J. Thioflavin T fluorescence anisotropy: An alternative technique for the study of amyloid aggregation. Biochem. Biophys. Res. Commun. 2007, 360, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- O’Connor, D.V.; Phillips, D. Time-correlated Single Photon Counting. In Academic Press, 2nd ed.; Elsevier: New York, NY, USA, 1984; pp. 37–54. [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of non linear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
Object | Binding Mode | λmax, nm | Kbi × 10−5, M−1 | ni | εi *10−4, M−1cm−1 | qi | <τ>, ns | r |
---|---|---|---|---|---|---|---|---|
ThT + β2m amyloid fibrils | 1 | 442 ± 1 | 0.34 ± 0.04 | 0.041 ± 0.006 | 2.3 ± 0.3 | 0.36 ± 0.03 | 1.80 ± 0.03 | 0.40 ± 0.01 |
ThT + ΔN6β2m amyloid fibrils | 1 | 441 ± 1 | 0.14 ± 0.03 | 0.020 ± 0.004 | 4.0 ± 0.4 | 0.07 ± 0.02 | 1.66 ± 0.03 | 0.39 ± 0.01 |
ThT + ΔN10β2m amyloid fibrils | 1 | 438 ± 1 | 0.08 ± 0.03 | 0.009 ± 0.004 | 8.2 ± 0.5 | 0.08 ± 0.03 | 1.62 ± 0.03 | 0.40 ± 0.01 |
ThT + insulin amyloid fibrils [45] | 1 | 449 | 0.35 | 0.14 | 2.3 | 0.27 | - | - |
2 | 448 | 78 | 0.02 | 7.9 | 0.72 | - | - | |
ThT + lysozyme amyloid fibrils [44] | 1 | 451 | 0.60 | 0.25 | 6.2 | 0.0001 | - | - |
2 | 449 | 72 | 0.11 | 5.3 | 0.44 | - | - | |
ThT free in water solution [41] | - | 412 | - | - | 3.2 | 0.0001 | 0.001 | 0.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulatskaya, A.I.; Rodina, N.P.; Polyakov, D.S.; Sulatsky, M.I.; Artamonova, T.O.; Khodorkovskii, M.A.; Shavlovsky, M.M.; Kuznetsova, I.M.; Turoverov, K.K. Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T. Int. J. Mol. Sci. 2018, 19, 2762. https://doi.org/10.3390/ijms19092762
Sulatskaya AI, Rodina NP, Polyakov DS, Sulatsky MI, Artamonova TO, Khodorkovskii MA, Shavlovsky MM, Kuznetsova IM, Turoverov KK. Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T. International Journal of Molecular Sciences. 2018; 19(9):2762. https://doi.org/10.3390/ijms19092762
Chicago/Turabian StyleSulatskaya, Anna I., Natalia P. Rodina, Dmitry S. Polyakov, Maksim I. Sulatsky, Tatyana O. Artamonova, Mikhail A. Khodorkovskii, Mikhail M. Shavlovsky, Irina M. Kuznetsova, and Konstantin K. Turoverov. 2018. "Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T" International Journal of Molecular Sciences 19, no. 9: 2762. https://doi.org/10.3390/ijms19092762
APA StyleSulatskaya, A. I., Rodina, N. P., Polyakov, D. S., Sulatsky, M. I., Artamonova, T. O., Khodorkovskii, M. A., Shavlovsky, M. M., Kuznetsova, I. M., & Turoverov, K. K. (2018). Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T. International Journal of Molecular Sciences, 19(9), 2762. https://doi.org/10.3390/ijms19092762