Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review
Abstract
:1. Introduction
2. Sources of the Release of Waste Streams Containing Pharmaceuticals and Personal Care Products
3. Inhibitory Effect of Pharmaceuticals and Personal Care Products on Microalgal Growth
3.1. Antibiotics
3.1.1. Phenicols
3.1.2. Tetracyclines
3.1.3. Aminoglycosides
3.1.4. Sulphonamides
3.1.5. Trimethoprim
3.1.6. β-lactams
Penicillins
Aminopenicillins
Cephalosporins
3.1.7. Quinolones
3.1.8. Macrolides
3.1.9. Other Antibiotics
Glycopeptides
Lincosamides
Nitrofurans
Nitroimidazoles
Quinoxalines
Ansamycins
3.2. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)
3.2.1. Ibuprofen
3.2.2. Naproxen
3.2.3. Diclofenac
3.2.4. Ketoprofen and Etodolac
3.2.5. Acetylsalicylic Acid
3.3. Fever and Pain Treatment Medicines
3.4. Antidepressants
3.5. Lipid Regulators
3.6. Antineoplastic Agents
3.7. Antiepileptic Agents
3.8. Beta-Blockers
3.9. Estrogens
3.10. Other Drugs
3.10.1. Anaesthetic Drugs
3.10.2. Antianxiety Agents
3.10.3. Proton Pump Inhibitors
3.10.4. Antiviral Drugs
3.10.5. Antiparasitic Drugs
3.10.6. Antiallergic Agents
3.10.7. Angiotensin-Converting Enzyme (ACE) Inhibitors
3.10.8. Antiarrhythmic Agents
3.10.9. Diuretics
3.10.10. Quinazolines
3.10.11. Pleuromutilin Derivatives
3.11. Antiseptic/Preservative/Disinfectant Ingredients
3.12. General Inhibitory/Toxicity Ranges of Pharmaceuticals (PHRs) and Personal Care Products (PCPs) towards Different Microalgal Groups
4. Stimulatory Effect of PHRs on Microalgal Growth
5. Effect of Pharmaceuticals and Personal Care Products on Microalgal Metabolism
5.1. Antibacterial Activity of Antibiotics
5.2. Lipid Peroxidation
5.3. Antioxidant Enzymes
5.4. Pigments
5.5. Toxins
5.6. Other Toxicity Endpoints
6. Interactions between Microalgal Cells and PHRs/PCPs in the Presence of Organic/Inorganic Matter
7. Removal of PHRs/PCPs During Microalgal Cultivation
7.1. General Mechanisms of PHRs/PCPs Removal
7.2. Microalgal Cultures for Successful PHRs/PCPs Removal
7.3. Limitations for PHRs/PCPs Removal: Insufficient and Specific Microalgal PHRs/PCPs Removal
7.4. Limitations for PHRs/PCPs Removal: Microalgal Growth Inhibition
7.5. Limitations for PHRs/PCPs Removal: Scaling-Up of Bioremediation Processes
8. Applications of Post-Remediation Microalgal Biomass
8.1. Accumulation and Biotransformation of PHRs and PCPs in Microalgal Biomass
8.2. Effect of PHRs and PCPs on the Content/Composition of Lipids in Post-Bioremediation Microalgal Biomass
8.3. Effect of PHRs and PCPs on the Content/Composition of Pigments in Post-Bioremediation Microalgal Biomass
8.4. Application of Post-Bioremediation Living Microalgal Biomass
9. Discussion
10. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Sabatini, S.E.; Juarez, A.B.; Eppis, M.R.; Bianchi, L.; Luquet, C.M.; Ríos de Molina Mdel, C. Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol. Environ. Saf. 2009, 72, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Pal, R. Response of cyanobacteria to arsenic toxicity. J. Appl. Phycol. 2011, 23, 293–299. [Google Scholar] [CrossRef]
- Wang, X.; Harada, S.; Watanabe, M.; Koshikawa, H.; Sato, K.; Kimura, T. Determination of bioconcentration potential of tetrachloroethylene in marine algae by 13C. Chemosphere 1996, 33, 865–877. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R.; Sethunathan, N. The impacts of environmental pollutants on microalgae and cyanobacteria. Crit. Rev. Environ. Sci. Technol. 2010, 40, 699–821. [Google Scholar] [CrossRef]
- Biedlingmaier, S.; Wanner, G.; Schmidt, A. A correlation between detergent tolerance and cell wall structure in green algae. Z. Naturforsch. 1987, 42, 245–250. [Google Scholar] [CrossRef]
- Sanderson, H.; Johnson, D.J.; Wilson, C.J.; Brain, R.A.; Solomon, K.R. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol. Lett. 2003, 144, 383–395. [Google Scholar] [CrossRef]
- Haig, S.J.; Gauchotte-Lindsay, C.; Collins, G.; Quince, C. Bioaugmentation Mitigates the Impact of Estrogen on Coliform-Grazing Protozoa in Slow Sand Filters. Environ. Sci. Technol. 2016, 50, 3101–3110. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.R.; Granek, E.F. Effects of environmentally-relevant antibiotic mixtures on marine microalgal growth. Sci. Total Environ. 2017, 580, 43–49. [Google Scholar] [CrossRef]
- Pocock, T.; Falk, S. Negative impact on growth and photosynthesis in the green alga Chlamydomonas reinhardtii in the presence of the estrogen 17a-ethynylestradiol. PLoS ONE 2014, 9, e109289. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Kang, D.; Wu, C.; Wu, Y. Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: A review. Rev. Environ. Sci. Biotechnol. 2017, 16, 717–735. [Google Scholar] [CrossRef]
- Amouzgar, P.; Salamatinia, B. A short review on presence of pharmaceuticals in water bodies and the potential of chitosan and chitosan derivatives for elimination of pharmaceuticals. J. Mol. Genet. Med. 2015, 9. [Google Scholar] [CrossRef]
- Pal, P.; Thakura, R. Pharmaceutical waste treatment and disposal of concentrated rejects: A review. J. Eng. Technol. Sci. Res. 2017, 4, 130–155. [Google Scholar]
- Wu, Y.; Chen, D.; Kookana, R. Aqueous photodegradation of selected antibiotics under different conditions. Energy Procedia 2011, 11, 2098–2103. [Google Scholar]
- Cheng, D.L.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Mathava Kumar, S.; Du, B.; Wei, Q.; Wei, D. Problematic effects of antibiotics on anaerobic treatment of swine wastewater. Bioresour. Technol. 2018, 263, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Korzeniewska, E.; Harnisz, M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. Sci. Total Environ. 2018, 639, 304–315. [Google Scholar] [CrossRef]
- Escapa, C.; Coimbra, R.N.; Nuevo, C.; Vega, S.; Paniagua, S.; García, A.I.; Calvo, L.F.; Otero, M. Valorization of microalgae biomass by its use for the removal of paracetamol from contaminated water. Water 2017, 9, 312. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Escapa, C.; Vázquez, N.C.; Noriega-Hevia, G.; Otero, M. Utilization of non-living microalgae biomass from two different strains for the adsorptive removal of diclofenac from water. Water 2018, 10, 1401. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018, 5. [Google Scholar] [CrossRef]
- Ravindran, B.; Gupta, S.K.; Cho, W.M.; Kim, J.K.; Lee, S.R.; Jeong, K.H.; Lee, D.J.; Choi, H.C. Microalgae Potential and Multiple Roles—Current Progress and Future Prospects—An Overview. Sustainability 2016, 8, 1215. [Google Scholar] [CrossRef]
- Olicon-Hernandez, D.R.; Gonzalez-Lopez, J.; Aranda, E. Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front. Microbiol. 2017, 8, 1792. [Google Scholar] [CrossRef]
- Szekeres, E.; Baricz, A.; Chiriac, C.M.; Farkas, A.; Opris, O.; Soran, M.L.; Andrei, A.S.; Rudi, K.; Balcazar, J.L.; Dragos, N.; et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 2017, 225, 304–315. [Google Scholar] [CrossRef]
- Li, C.; Lu, J.; Liu, J.; Zhang, G.; Tong, Y.; Ma, N. Exploring the correlations between antibiotics and antibiotic resistance genes in the wastewater treatment plants of hospitals in Xinjiang, China. Environ. Sci. Pollut. Res. 2016, 23, 15111–15121. [Google Scholar] [CrossRef]
- Mater, N.; Geret, F.; Castillo, L.; Faucet-Marquis, V.; Albasi, C.; Pfohl-Leszkowicz, A. In vitro tests aiding ecological risk assessment of ciprofloxacin, tamoxifen and cyclophosphamide in range of concentrations released in hospital wastewater and surface water. Environ. Int. 2014, 63, 191–200. [Google Scholar] [CrossRef]
- Lien, L.T.Q.; Hoa, N.Q.; Chuc, N.T.K.; Thoa, N.T.M.; Phuc, H.D.; Diwan, V.; Dat, N.T.; Tamhankar, A.J.; Lundborg, C.S. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use—A One Year Study from Vietnam. Int. J. Environ. Res. Public Health 2016, 13, 588. [Google Scholar] [CrossRef]
- Boxall, A.B.A. New and Emerging Water Pollutants Arising from Agriculture; OECD, Environment Department, University of York: York, UK, 2012. [Google Scholar]
- Cheng, D.L.; Ngo, H.H.; Guo, W.S.; Liu, Y.W.; Zhou, J.L.; Chang, S.W.; Nguyen, D.D.; Bui, X.T.; Zhang, X.B. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 2018, 621, 1664–1682. [Google Scholar] [CrossRef] [PubMed]
- Shraim, A.; Diab, A.; Alsuhaimi, A.; Niazy, E.; Metwally, M.; Amad, M.; Sioud, S.; Dawoud, A. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arabian J. Chem. 2017, 10, 719–729. [Google Scholar] [CrossRef]
- Klancar, A.; Trontelj, J.; Kristl, A.; Justin, M.Z.; Roskar, R. Levels of pharmaceuticals in Slovene municipal and hospital wastewaters: A preliminary study. Arch. Hig. Rada Toksikol. 2016, 67, 106–115. [Google Scholar] [CrossRef]
- Krogh, J.; Lyons, S.; Lowe, C.J. Pharmaceuticals and personal care products in municipal wastewater and the marine receiving environment near Victoria Canada. Front. Mar. Sci. 2017, 4, 415. [Google Scholar] [CrossRef]
- Roudbari, A.; Rezakazemi, M. Hormones removal from municipal wastewater using ultrasound. AMB Express 2018, 8, 91. [Google Scholar] [CrossRef]
- Zhang, T.; Li, B. Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit. Rev. Environ. Sci. Technol. 2011, 41, 951–998. [Google Scholar] [CrossRef]
- Tahrani, L.; Van Loco, J.; Ben Mansour, H.; Reyns, T. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia. J. Water Health 2016, 14, 208–213. [Google Scholar] [CrossRef]
- Juliano, C.; Magrini, G.A. Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review. Cosmetics 2017, 4, 11. [Google Scholar] [CrossRef]
- Gasperi, J.; Geara, D.; Lorgeoux, C.; Bressy, A.; Zedek, S.; Rocher, V.; El Samrani, A.; Chebbo, G.; Moilleron, R. First assessment of triclosan, triclocarban and paraben mass loads at a very large regional scale: Case of Paris conurbation (France). Sci. Total Environ. 2014, 493, 854–861. [Google Scholar] [CrossRef] [Green Version]
- Rejment, M.; Balcerzak, W. Occurrence of antidepressants—From wastewater to drinking water. Czasopismo Techniczne 2016, Środowisko 1-Ś, 145–155. [Google Scholar] [CrossRef]
- Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sánchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011, 45, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Sui, Q.; Cao, X.; Lu, S.; Zhao, W.; Qiu, Z.; Yu, G. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerg. Contam. 2015, 1, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Eisentraeger, A.; Dott, W.; Klein, J.; Hahn, S. Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays. Ecotoxicol. Environ. Saf. 2003, 54, 346–354. [Google Scholar] [CrossRef]
- Xiong, Q.; Hu, L.X.; Liu, Y.S.; Wang, T.T.; Ying, G.G. New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. Aquat. Toxicol. 2019, 207, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.T.; Hou, J.H.; Su, C.I.; Chen, C.L. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicol. Environ. Saf. 2009, 72, 329–334. [Google Scholar] [CrossRef]
- Seoane, M.; Rioboo, C.; Herrero, C.; Cid, A. Toxicity induced by three antibiotics commonly used in aquaculture on the marine microalga Tetraselmis suecica (Kylin) Butch. Mar. Environ. Res. 2014, 101, 1–7. [Google Scholar] [CrossRef]
- Campa-Cordova, A.I.; Luna-Gonzalez, A.; Ascencio, F.; Cortes-Jacinto, E.; Caceres-Martinez, C.J. Effects of chloramphenicol, erythromycin, and furazolidone on growth of Isochrysis galbana and Chaetoceros gracilis. Aquaculture 2006, 260, 145–150. [Google Scholar] [CrossRef]
- Han, P.; Jia, S.; Sun, Y.; Tan, Z.; Zhong, C.; Dai, Y.; Tan, N.; Shen, S. Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme. World J. Microbiol. Biotechnol. 2014, 30, 2407–2418. [Google Scholar] [CrossRef]
- Eguchi, K.; Nagase, H.; Ozawa, M.; Endoh, Y.S.; Goto, K.; Hirata, K.; Miyamoto, K.; Yoshimura, H. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 2004, 57, 1733–1738. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Guo, P. Effect of florfenicol and thiamphenicol exposure on the photosynthesis and antioxidant system of Microcystis flosaquae. Aquat. Toxicol. 2017, 186, 67–76. [Google Scholar] [CrossRef]
- Ando, T.; Nagase, H.; Eguchi, K.; Hirooka, T.; Nakamura, T.; Miyamoto, K.; Hirata, K. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents. Environ. Toxicol. Chem. 2007, 26, 601–606. [Google Scholar] [CrossRef]
- Fu, L.; Huang, T.; Wang, S.; Wang, X.; Su, L.; Li, C.; Zhao, Y. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere 2017, 168, 217–222. [Google Scholar] [CrossRef]
- Ferreira, C.S.G.; Nunes, B.A.; Henriques-Almeida, J.M.M.; Guilhermino, L. Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotoxicol. Environ. Saf. 2007, 67, 452–458. [Google Scholar] [CrossRef]
- Kołodziejska, M.; Maszkowska, J.; Białk-Bielinska, A.; Steudte, S.; Kumirska, J.; Stepnowski, P.; Stolte, S. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. Chemosphere 2013, 92, 1253–1259. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Peijnenburg, W.J.G.M. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol: Independent action surpasses concentration addition. Chemosphere 2016, 156, 8–13. [Google Scholar] [CrossRef]
- Song, C.; Wei, Y.; Qiu, Y.; Qi, Y.; Li, Y.; Kitamura, Y. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38, Experimental study. Bioresour. Technol. 2019, 272, 529–534. [Google Scholar] [CrossRef]
- Liu, W.; Ming, Y.; Huang, Z.; Li, P. Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages. Plant Physiol. Biochem. 2012, 60, 165–170. [Google Scholar] [CrossRef]
- Bashir, K.M.I.; Cho, M.G. The effect of kanamycin and tetracycline on growth and photosynthetic activity of two chlorophyte algae. BioMed. Res. Int. 2016, 2016, 5656304. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pleiter, M.; Gonzalo, S.; Rodea-Palomares, I.; Leganes, F.; Rosal, R.; Boltes, K.; Marco, E.; Fernandez-Pinas, F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013, 47, 2050–2064. [Google Scholar] [CrossRef]
- Halling-Sorensen, B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 2000, 40, 731–739. [Google Scholar] [CrossRef]
- Yang, W.; Tang, Z.; Zhou, F.; Zhang, W.; Song, L. Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum. Environ. Toxicol. Pharmacol. 2013, 35, 320–324. [Google Scholar] [CrossRef]
- Havelkova, B.; Beklova, M.; Kovacova, V.; Hlavkova, D.; Pikula, J. Ecotoxicity of selected antibiotics for organisms of aquatic and terrestrial ecosystems. Neuro Endocrinol. Lett. 2016, 37, 38–44. [Google Scholar] [PubMed]
- Iswarya, V.; Sharma, V.; Chandrasekaran, N.; Mukherjee, A. Impact of tetracycline on the toxic effects of titanium dioxide (TiO2) nanoparticles towards the freshwater algal species, Scenedesmus obliquus. Aquat. Toxicol. 2017, 193, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Du, Y.; Wang, L.; Qian, J.; Chen, J.; Wu, Q.; Hu, X. Toxin release of cyanobacterium Microcystis aeruginosa after exposure to typical tetracycline antibiotic contaminants. Toxins 2017, 9, 53. [Google Scholar] [CrossRef]
- Dias, E.; Oliveira, M.; Jones-Dias, D.; Vasconcelos, V.; Ferreira, E.; Manageiro, V.; Canica, M. Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. Front. Microbiol. 2015, 6, 799. [Google Scholar] [CrossRef]
- Pomati, F.; Netting, A.G.; Calamari, D.; Neilan, B.A. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat. Toxicol. 2004, 67, 387–396. [Google Scholar] [CrossRef]
- Carusso, S.; Juarez, A.B.; Moretton, J.; Magdaleno, A. Effects of three veterinary antibiotics and their binary mixtures on two green alga species. Chemosphere 2018, 194, 821–827. [Google Scholar] [CrossRef]
- Lu, L.; Wu, Y.; Ding, H.; Zhang, W. The combined and second exposure effect of copper (II) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa. Environ. Toxicol. Pharmacol. 2015, 40, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef]
- Van der Grinten, E.; Pikkemaat, M.G.; Van den Brandhof, E.J.; Stroomberg, G.J.; Kraak, M.H.S. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 2010, 80, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolar, B.; Arnus, L.; Jeretin, B.; Gutmaher, A.; Drobne, D.; Durjav, M.K. The toxic effect of oxytetracycline and trimethoprim in the aquatic environment. Chemosphere 2014, 115, 75–80. [Google Scholar] [CrossRef]
- Holten Lutzhoft, H.C.; Halling-Sorensen, B.; Jorgensen, S.E. Algal toxicity of antibacterial agents applied in danish fish farming. Arch. Environ. Contam. Toxicol. 1999, 36, 1–6. [Google Scholar]
- Shang, A.H.; Ye, J.; Chen, D.H.; Lu, X.X.; Lu, H.D.; Liu, C.N.; Wang, L.M. Physiological effects of tetracycline antibiotic pollutants on non-target aquatic Microcystis aeruginosa. J. Environ. Sci. Health B 2015, 50, 809–818. [Google Scholar] [CrossRef]
- Prata, J.C.; Lavorante, B.R.B.O.; Montenegro, M.C.B.S.M.; Guilhermino, L. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat. Toxicol. 2018, 197, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, J.; Zhang, Y.; Wang, L.; Ye, J. Aquatic Toxicity of Antibiotic Contaminant Doxycycline Hydrochloride on Cyanobacterium Microcystis aeruginosa. Asian J. Water Environ. Pollut. 2014, 11, 45–50. [Google Scholar]
- Stoichev, T.; Baptista, M.S.; Basto, M.; Vasconcelos, V.M.; Vasconcelos, M.T. Effects of minocycline and its degradation products on the growth of Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 2011, 74, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Perales-Vela, H.V.; Garcia, R.V.; Gomez-Juarez, E.A.; Salcedo-Alvarez, M.O.; Canizares-Villanueva, R.O. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. Ecotoxicol. Environ. Saf. 2016, 132, 311–317. [Google Scholar] [CrossRef]
- Harrass, M.C.; Kindig, A.C.; Taub, F.B. Responses of blue-green and green algae to streptomycin in unialgal and paired culture. Aquat. Toxicol. 1985, 6, 1–11. [Google Scholar] [CrossRef]
- Magdaleno, A.; Saenz, M.E.; Juarez, A.B.; Moretton, J. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicol. Environ. Saf. 2015, 113, 72–78. [Google Scholar] [CrossRef]
- Białk-Bielińska, A.; Caban, M.; Pieczynska, A.; Stepnowski, P.; Stolte, S. Mixture toxicity of six sulfonamides and their two transformation products to green algae Scenedesmus vacuolatus and duckweed Lemna minor. Chemosphere 2017, 173, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.Q.; Kim, S.J.; Kurade, M.B.; Govindwar, S.; Abou-Shanab, R.A.I.; Kim, J.R.; Roh, H.S.; Khan, M.A.; Jeon, B.H. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: Toxicity, biodegradation, and metabolic fate. J. Hazard. Mater. 2018, 370, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Borecka, M.; Białk-Bielinska, A.; Halinski, Ł.P.; Pazdro, K.; Stepnowski, P.; Stolte, S. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris. J. Hazard. Mater. 2016, 308, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Baran, W.; Sochacka, J.; Wardas, W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 2006, 65, 1295–1299. [Google Scholar] [CrossRef]
- Liu, B.; Liu, W.; Nie, X.; Guan, C.; Yang, Y.; Wang, Z.; Liao, W. Growth response and toxic effects of three antibiotics on Selenastrum capricornutum evaluated by photosynthetic rate and chlorophyll biosynthesis. J. Environ. Sci. 2011, 23, 1558–1563. [Google Scholar] [CrossRef]
- Yang, L.H.; Ying, G.G.; Su, H.C.; Stauber, J.L.; Adams, M.S.; Binet, M.T. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 2008, 27, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, B.; Mons, R.; Vollat, B.; Fraysse, B.; Paxeus, N.; Lo Giudice, R.; Pollio, A.; Garric, J. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ. Toxicol. Chem. 2004, 23, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, E.C.; Dalke, C.R.; Oliveira, C.M.R. Influence of select antibiotics on Vibrio fischeri and Desmodesmus subspicatus at μg L−1 concentrations. Environ. Manag. 2017, 60, 157–164. [Google Scholar] [CrossRef]
- Escher, B.I.; Bramaz, N.; Eggen, R.I.L.; Richter, M. In Vitro Assessment of Modes of Toxic Action of Pharmaceuticals in Aquatic Life. Environ. Sci. Technol. 2005, 39, 3090–3100. [Google Scholar] [CrossRef] [PubMed]
- Ming, S.; Hong, L.; Wen, G.; Fazhen, Z.; Jian, L. Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa. J. Ocean Univ. China 2017, 16, 1167–1174. [Google Scholar]
- Xu, X.; Lu, X.; Ma, X.; Xia, H. Response of Spirulina Platensis to Sulfamethazine Contamination. IOP Conf. Ser. Mater. Sci. Eng. 2018, 301, 012027. [Google Scholar] [CrossRef]
- De Orte, M.R.; Carballeira, C.; Viana, I.G.; Carballeira, A. Assessing the toxicity of chemical compounds associated with marine land-based fish farms: The use of mini-scale microalgal toxicity tests. Chem. Ecol. 2013, 29, 554–563. [Google Scholar] [CrossRef]
- Huang, D.J.; Hou, J.H.; Kuo, T.F.; Lai, H.T. Toxicity of the veterinary sulfonamide antibiotic sulfamonomethoxine to five aquatic organisms. Environ. Toxicol. Pharmacol. 2014, 38, 874–880. [Google Scholar] [CrossRef]
- De Liguoro, M.; Leva, V.D.; Bona, M.D.; Merlanti, R.; Caporale, G.; Radaelli, G. Sublethal effects of trimethoprim on four freshwater organisms. Ecotoxicol. Environ. Saf. 2012, 82, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Claessens, M.; Vanhaecke, L.; Wille, K.; Janssen, C.R. Emerging contaminants in Belgian marine waters: Single toxicant and mixture risks of pharmaceuticals. Mar. Pollut. Bull. 2013, 71, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Selby, K.; Boxall, A.B.A. Comparing the sensitivity of chlorophytes, cyanobacteria, and diatoms to major-use antibiotics. Environ. Toxicol. Chem. 2016, 35, 2587–2596. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Ciniglia, C.; De Champdorea, M.; Lo Giudice, R.; Marotta, R.; Zuccato, E. Antibiotics in the environment: Occurrence in italian stps, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ. Sci. Technol. 2004, 38, 6832–6838. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Sures, B.; Schmidt, T.C. Ecotoxicity of the two veterinarian antibiotics ceftiofur and cefapirin before and after photo-transformation. Sci. Total Environ. 2018, 619, 866–873. [Google Scholar] [CrossRef]
- Chen, J.Q.; Guo, R.X. Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae. J. Hazard. Mater. 2012, 209, 520–523. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium. Environ. Pollut. 2017, 226, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Rico, A.; Zhao, W.; Gillissen, F.; Lurling, M.; Van den Brink, P.J. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin. Ecotoxicol. Environ. Saf. 2018, 148, 228–236. [Google Scholar] [CrossRef]
- Qin, H.; Chen, L.; Lu, N.; Zhao, Y.; Yuan, X. Toxic effects of enrofloxacin on Scenedesmus obliquus. Front. Environ. Sci. Eng. 2012, 6, 107–116. [Google Scholar] [CrossRef]
- Magdaleno, A.; Carusso, S.; Moretton, J. Toxicity and genotoxicity of three antimicrobials commonly used in veterinary medicine. Bull. Environ. Contam. Toxicol. 2017, 99, 315–320. [Google Scholar] [CrossRef]
- Nie, X.; Gu, J.; Lu, J.; Pan, W.; Yang, Y. Effects of norfloxacin and butylated hydroxyanisole on the freshwater microalga Scenedesmus obliquus. Ecotoxicology 2009, 18, 677–684. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 2017, 313, 1251–1257. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Patil, D.V.; Jang, M.; Paeng, K.J.; Jeon, B.H. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal Res. 2017, 25, 54–61. [Google Scholar] [CrossRef]
- Wan, J.; Guo, P.; Zhang, S. Response of the cyanobacterium Microcystis flos-aquae to levofloxacin. Environ. Sci. Pollut. Res. 2014, 21, 3858–3865. [Google Scholar] [CrossRef] [PubMed]
- Zaleska-Radziwill, M.; Lebkowska, M.; Affek, K.; Chrzanowska, N. Environmental risk assessment of selected pharmaceuticals present in surface waters in relation to cyanobacteria and plants. Ochr. Śr. Zasobów Nat. 2011, 48, 372–382. [Google Scholar]
- Geiger, E.; Hornek-Gausterer, R.; Sacan, M.T. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicol. Environ. Saf. 2016, 129, 189–198. [Google Scholar] [CrossRef]
- Nie, X.; Wang, X.; Chen, J.; Zitko, V.; An, T. Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environ. Toxicol. Chem. 2008, 27, 168–173. [Google Scholar] [CrossRef]
- Wu, M.N.; Wang, X.C.; Ma, X.Y. Phytotoxicity comparison of organic contaminants and heavy metals using Chlorella vulgaris. Desalin. Water Treat. 2015, 57, 20809–20816. [Google Scholar]
- Zhang, Y.; Guo, J.; Yao, T.; Zhang, Y.; Zhou, X.; Chu, H. The influence of four pharmaceuticals on Chlorella pyrenoidosa culture. Sci. Rep. 2019, 9, 1624. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Kim, J.R.; Roh, H.S.; Jeon, B.H. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 2017, 323, 212–219. [Google Scholar] [CrossRef]
- Hagenbuch, I.M.; Pinckney, J.L. Toxic effect of the combined antibiotics ciprofloxacin, lincomycin, and tylosin on two species of marine diatoms. Water Res. 2012, 46, 5028–5036. [Google Scholar] [CrossRef]
- Yamagishi, T.; Horie, Y.; Tatarazako, N. Synergism between macrolide antibiotics and the azole fungicide ketoconazole in growth inhibition testing of the green alga Pseudokirchneriella subcapitata. Chemosphere 2017, 174, 1–7. [Google Scholar] [CrossRef]
- Sendra, M.; Moreno-Garrido, I.; Blasco, J.; Araujo, C.V.M. Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Environ. Pollut. 2018, 242, 357–366. [Google Scholar] [CrossRef]
- El-Bassat, R.A.; Touliabah, H.E.; Harisa, G.I. Toxicity of four pharmaceuticals from different classes to isolated plankton species. Afr. J. Aquat. Sci. 2012, 37, 71–80. [Google Scholar] [CrossRef]
- Wan, J.; Guo, P.; Peng, X.; Wen, K. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. J. Hazard. Mater. 2015, 283, 778–786. [Google Scholar] [CrossRef]
- Lopez-Rodas, V.; Agrelo, M.; Carrillo, E.; Ferrero, L.; Larrauri, A.; Martin-Otero, L.; Costas, E. Resistance of microalgae to modern water contaminants as the result of rare spontaneous mutations. Eur. J. Phycol. 2001, 36, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Villain, J.; Minguez, L.; Halm-Lemeille, M.P.; Durrieu, G.; Bureau, R. Acute toxicities of pharmaceuticals toward green algae. Mode of action, biopharmaceutical drug disposition classification system and quantile regression models. Ecotoxicol. Environ. Saf. 2016, 124, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Tamura, I.; Abe, R.; Takanobu, H.; Nakamura, A.; Suzuki, T.; Hirose, A.; Nishimura, T.; Tatarazako, N. Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish). Environ. Toxicol. Chem. 2016, 35, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Weiss, K.; Maletzki, D.; Schussler, W.; Schudoma, D.; Kopf, W.; Kuhnen, U. Aquatic toxicity of the macrolide antibiotic clarithromycin and its metabolites. Chemosphere 2015, 120, 192–198. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, B.; Yue, Q.; Guan, Y.; Wang, Y.; Huang, L. Influences of two antibiotic contaminants on the production, release and toxicity of microcystins. Ecotoxicol. Environ. Saf. 2012, 77, 79–87. [Google Scholar] [CrossRef]
- Lampen, J.O.; Arnow, P. Inhibition of algae by nystatin. J. Bacteriol. 1961, 82, 247–251. [Google Scholar] [PubMed]
- Andreozzi, R.; Canterino, M.; Lo Giudice, R.; Marotta, R.; Pinto, G.; Pollio, A. Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Res. 2006, 40, 630–638. [Google Scholar] [CrossRef]
- Klobucar, R.S.; Brozovic, A.; Stambuk, A. Ecotoxicological assessment of nitrofurantoin in fish cell lines, unicellular algae Desmodesmus subspicatus, and bacterial strains of Salmonella typhimurium. Fresenius Environ. Bull. 2013, 22, 2669–2675. [Google Scholar]
- Canton, J.H.; Van Esch, G.J. The short-term toxicity of some feed additives to different freshwater organisms. Bull. Environ. Contam. Toxicol. 1976, 15, 720–725. [Google Scholar] [CrossRef]
- Lanzky, P.F.; Halling-Sorensen, B. The toxic effect of the antibiotic metronidazole on aquatic organisms. Chemosphere 1997, 35, 2553–2561. [Google Scholar] [CrossRef]
- Magalhaes, S.M.; Bretas, C.M.; Bretas, J.M.; Pianetti, G.A.; Franco, M.W.; Barbosa, F.A. Toxic concentrations of metronidazole to Microcystis protocystis. Braz. J. Biol. 2014, 74, 120–124. [Google Scholar] [CrossRef]
- Rodriguez Lopez, M.; Munoz, M.L.; Vazquez, D. The effects of the rifamycin antibiotics on algae. FEBS Lett. 1970, 9, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Rubasinghege, G.; Gurung, R.; Rijal, H.; Maldonado-Torres, S.; Chan, A.; Acharya, S.; Rogelj, S.; Piyasena, M. Abiotic degradation and environmental toxicity of ibuprofen: Roles of mineral particles and solar radiation. Water Res. 2018, 131, 22–32. [Google Scholar] [CrossRef]
- Cleuvers, M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol. Environ. Saf. 2004, 59, 309–315. [Google Scholar] [CrossRef]
- Gonzalez-Naranjo, V.; Boltes, K. Toxicity of ibuprofen and perfluorooctanoic acid for risk assessment of mixtures in aquatic and terrestrial environments. Int. J. Environ. Sci. Technol. 2014, 11, 1743–1750. [Google Scholar] [CrossRef]
- Grzesiuk, M.; Wacker, A.; Spijkerman, E. Photosynthetic sensitivity of phytoplankton to commonly used pharmaceuticals and its dependence on cellular phosphorus status. Ecotoxicology 2016, 25, 697–707. [Google Scholar] [CrossRef]
- Ding, T.; Yang, M.; Zhang, J.; Yang, B.; Lin, K.; Li, J.; Gan, J. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. J. Hazard. Mater. 2017, 330, 127–134. [Google Scholar] [CrossRef]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Parrella, A.; Previtera, L.; Rubino, M. Ecotoxicity of naproxen and its phototransformation products. Sci. Total Environ. 2005, 348, 93–101. [Google Scholar] [CrossRef]
- Ding, T.; Lin, K.; Yang, B.; Yang, M.; Li, J.; Li, W.; Gan, J. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour. Technol. 2017, 238, 164–173. [Google Scholar] [CrossRef]
- Straub, J.O.; Stewart, K.M. Deterministic and probabilistic acute-based environmental risk assessment for naproxen for western Europe. Environ. Toxicol. Chem. 2007, 26, 795–806. [Google Scholar] [CrossRef]
- Weissmannova, H.D.; Pavlovsky, J.; Fiserova, L.; Kosarova, H. Toxicity of diclofenac: Cadmium binary mixtures to algae Desmodesmus subspicatus using normalization method. Bull. Environ. Contam. Toxicol. 2018, 101, 205–213. [Google Scholar] [CrossRef]
- Bacsi, I.; Deli, J.; Gonda, S.; Meszaros, I.; Vereb, G.; Dobronoki, D.; Nagy, S.A.; B-Beres, V.; Vasas, G. Non-steroidal anti-inflammatory drugs initiate morphological changes but inhibit carotenoid accumulation in Haematococcus pluvialis. Algal Res. 2018, 31, 1–13. [Google Scholar] [CrossRef]
- Quinn, B.; Schmidt, W.; O’Rourke, K.; Hernan, R. Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. Chemosphere 2011, 84, 657–663. [Google Scholar] [CrossRef]
- Ferrari, B.; Paxeus, N.; Lo Giudice, R.; Pollio, A.; Garric, J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Saf. 2003, 55, 359–370. [Google Scholar] [CrossRef]
- Majewska, M.; Harshkova, D.; Gusciora, M.; Aksmann, A. Phytotoxic activity of diclofenac: Evaluation using a model green alga Chlamydomonas reinhardtii with atrazine as a reference substance. Chemosphere 2018, 209, 989–997. [Google Scholar] [CrossRef]
- DeLorenzo, M.E.; Fleming, J. Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Arch. Environ. Contam. Toxicol. 2008, 54, 203–210. [Google Scholar] [CrossRef]
- Kusk, K.O.; Christensen, A.M.; Nyholm, N. Algal growth inhibition test results of 425 organic chemical substances. Chemosphere 2018, 204, 405–412. [Google Scholar] [CrossRef]
- Kamaya, Y.; Tsuboi, S.; Takada, T.; Suzuki, K. Growth stimulation and inhibition effects of 4-hydroxybenzoic acid and some related compounds on the freshwater green alga Pseudokirchneriella subcapitata. Arch. Environ. Contam. Toxicol. 2006, 51, 537–541. [Google Scholar] [CrossRef]
- Wang, D.C.Y.; Chu, W.L.; Kok, Y.Y. Assessment of paracetamol (acetaminophen) toxicity in microalgae. Pol. J. Environ. Stud. 2015, 24, 735–741. [Google Scholar]
- Henschel, K.P.; Wenzel, A.; Diedrich, M.; Fliedner, A. Environmental hazard assessment of pharmaceuticals. Regul. Toxicol. Pharmacol. 1997, 25, 220–225. [Google Scholar] [CrossRef]
- Silva, A.; Santos, L.H.; Delerue-Matos, C.; Figueiredo, S.A. Impact of excipients in the chronic toxicity of fluoxetine on the alga Chlorella vulgaris. Environ. Technol. 2014, 35, 3124–3129. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.W.; Turner, P.K.; Stanley, J.K.; Weston, J.J.; Glidewell, E.A.; Foran, C.M.; Slattery, M.; La Point, T.W.; Huggett, D.B. Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 2003, 52, 135–142. [Google Scholar] [CrossRef]
- Neuwoehner, J.; Fenner, K.; Escher, B.I. Physiological modes of action of fluoxetine and its human metabolites in algae. Environ. Sci. Technol. 2009, 43, 6830–6837. [Google Scholar] [CrossRef] [PubMed]
- Minguez, L.; Di Poi, C.; Farcy, E.; Ballandonne, C.; Benchouala, A.; Bojic, C.; Cossu-Leguille, C.; Costil, K.; Serpentini, A.; Lebel, J.M.; et al. Comparison of the sensitivity of seven marine and freshwater bioassays as regards antidepressant toxicity assessment. Ecotoxicology 2014, 23, 1744–1754. [Google Scholar] [CrossRef]
- Minguez, L.; Bureau, R.; Halm-Lemeille, M.P. Joint effects of nine antidepressants on Raphidocelis subcapitata and Skeletonema marinoi: A matter of amine functional groups. Aquat. Toxicol. 2018, 196, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.M.; Faaborg-Andersen, S.; Ingerslev, F.; Baun, A. Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans. Environ. Toxicol. Chem. 2007, 26, 85–91. [Google Scholar] [CrossRef]
- Johnson, D.J.; Sanderson, H.; Brain, R.A.; Wilson, C.J.; Solomon, K.R. Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotoxicol. Environ. Saf. 2007, 67, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Zeng, X.; Mu, L.; Hou, L.; Liu, W.; Li, P.; Chen, H.; Li, D.; Bouchez, A.; Tang, J.; et al. Sensitivities of seven algal species to triclosan, fluoxetine and their mixtures. Sci. Rep. 2018, 8, 15361. [Google Scholar] [CrossRef]
- Neuwoehner, J.; Escher, B.I. The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquat. Toxicol. 2011, 101, 266–275. [Google Scholar] [CrossRef]
- Petersen, K.; Heiaas, H.H.; Tollefsen, K.E. Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. Aquat. Toxicol. 2014, 150, 45–54. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, T.; Zhu, Y.; Zhang, Q.; Zhou, Z.; Pan, X.; Qian, H. Aquatic ecotoxicity of an antidepressant, sertraline hydrochloride, on microbial communities. Sci. Total Environ. 2018, 654, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Minagh, E.; Hernan, R.; O’Rourke, K.; Lyng, F.M.; Davoren, M. Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotoxicol. Environ. Saf. 2009, 72, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Nardelli, A.; Pascarella, L.; Rubino, M.; Parrella, A. Toxic and genotoxic impact of fibrates and their photoproducts on non-target organisms. Environ. Int. 2007, 33, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Boltes, K.; Rosal, R.; García-Calvo, E. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated chemicals and lipid regulators. Chemosphere 2012, 86, 24–29. [Google Scholar] [CrossRef]
- Rosal, R.; Rodea-Palomares, I.; Boltes, K.; Fernandez-Pinas, F.; Leganes, F.; Gonzalo, S.; Petre, A. Ecotoxicity assessment of lipid regulators in water and biologically treated wastewater using three aquatic organisms. Environ. Sci. Pollut. Res. 2010, 17, 135–144. [Google Scholar] [CrossRef]
- Nunes, B.; Carvalho, F.; Guilhermino, L. Acute toxicity of widely used pharmaceuticals in aquatic species: Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chuii. Ecotoxicol. Environ. Saf. 2005, 61, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Cleuvers, M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 2003, 142, 185–194. [Google Scholar] [CrossRef]
- Emblidge, J.P.; DeLorenzo, M.E. Preliminary risk assessment of the lipid-regulating pharmaceutical clofibric acid, for three estuarine species. Environ. Res. 2006, 100, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Brezovsek, P.; Elersek, T.; Filipic, M. Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis. Water Res. 2014, 52, 168–177. [Google Scholar] [CrossRef]
- Białk-Bielinska, A.; Mulkiewicz, E.; Stokowski, M.; Stolte, S.; Stepnowski, P. Acute aquatic toxicity assessment of six anti-cancer drugs and one metabolite using biotest battery—Biological effects and stability under test conditions. Chemosphere 2017, 189, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Orias, F.; Bony, S.; Devaux, A.; Durrieu, C.; Aubrat, M.; Hombert, T.; Wigh, A.; Perrodin, Y. Tamoxifen ecotoxicity and resulting risks for aquatic ecosystems. Chemosphere 2015, 128, 79–84. [Google Scholar] [CrossRef]
- Zounkova, R.; Kovalova, L.; Blaha, L.; Dott, W. Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere 2010, 81, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Cesen, M.; Elersek, T.; Novak, M.; Zegura, B.; Kosjek, T.; Filipic, M.; Heath, E. Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures. Environ. Pollut. 2016, 210, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.Q.; Kurade, M.B.; Abou-Shanab, R.A.I.; Ji, M.K.; Choi, J.; Kim, J.O.; Jeon, B.H. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 2016, 205, 183–190. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Lin, K.; Sun, W.; Xiong, B.; Guo, M.; Cui, X.; Fu, R. Eco-toxicological effect of Carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ. Toxicol. Pharmacol. 2012, 33, 344–352. [Google Scholar] [CrossRef]
- Jos, A.; Repetto, G.; Rios, J.C.; Hazen, M.J.; Molero, M.L.; del Peso, A.; Salguero, M.; Fernandez-Freire, P.; Perez-Martın, J.M.; Camean, A. Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicol. In Vitro 2003, 17, 525–532. [Google Scholar] [CrossRef]
- Tsiaka, P.; Tsarpali, V.; Ntaikou, I.; Kostopoulou, M.N.; Lyberatos, G.; Dailianis, S. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 2013, 22, 1208–1220. [Google Scholar] [CrossRef]
- Haase, S.M.; Panas, P.; Rath, T.; Huchzermeyer, B. Effects of carbamazepine on two microalgae species differing in stress resistance. Water Air Soil Pollut. 2015, 226, 328. [Google Scholar] [CrossRef]
- Liu, Q.T.; Williams, T.D.; Cumming, R.I.; Holm, G.; Hetheridge, M.J.; Murray-Smith, R. Comparative aquatic toxicity of propranolol and its photodegraded mixtures: Algae and rotifer screening. Environ. Toxicol. Chem. 2009, 28, 2622–2631. [Google Scholar] [CrossRef]
- Maszkowska, J.; Stolte, S.; Kumirska, J.; Łukaszewicz, P.; Mioduszewska, K.; Puckowski, A.; Caban, M.; Wagil, M.; Stepnowski, P.; Białk-Bielińska, A. Beta-blockers in the environment: Part II. Ecotoxicity study. Sci. Total Environ. 2014, 493, 1122–1126. [Google Scholar] [CrossRef]
- Lodowska, J.; Wilczok, A.; Tam, I.; Cwalina, B.; Swiatkowska, L.; Wilczok, T. Alteration of growth and metabolic activity of cells in the presence of propranolol and metoprolol. Acta Pol. Pharm. 2003, 60, 263–268. [Google Scholar]
- De Andres, F.; Castaneda, G.; Rios, A. Use of toxicity assays for enantiomeric discrimination of pharmaceutical substances. Chirality 2009, 21, 751–759. [Google Scholar] [CrossRef]
- Salomao, A.L.; Soroldoni, S.; Marques, M.; Hogland, W.; Bila, D.M. Effects of single and mixed estrogens on single and combined cultures of D. subspicatus and P. subcapitata. Bull. Environ. Contam. Toxicol. 2014, 93, 215–221. [Google Scholar] [CrossRef]
- Balina, K.; Balode, M.; Muzikante, L.; Blumberga, D. Impact of synthetic hormone 17α-ethinylestradiol on growth of microalgae Desmodesmus communis. Agron. Res. 2015, 13, 445–454. [Google Scholar]
- Czarny, K.; Szczukocki, D.; Krawczyk, B.; Skrzypek, S.; Zieliński, M.; Gadzała-Kopciuch, R. Toxic effects of single animal hormones and their mixtures on the growth of Chlorella vulgaris and Scenedesmus armatus. Chemosphere 2019, 224, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, D.; Athmouni, K.; Frikha, D.; Kallel, M.; Feki, A.E.; Maalej, S.; Zhou, J.L.; Ayadi, H. Biochemical and physiological responses of halophilic nanophytoplankton (Dunaliella salina) from exposure to xeno-estrogen 17α-ethinylestradiol. Environ. Sci. Pollut. Res. 2017, 24, 7392–7402. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, Y.; Gao, Q.; Tam, N.F.Y.; Zhu, W. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 2010, 80, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Czarny, K.; Szczukocki, D.; Krawczyk, B.; Skrzypek, S.; Miękoś, E.; Gadzała-Kopciuch, R. Inhibition of growth of Anabaena variabilis population by single and mixed steroid hormones. J. Appl. Phycol. 2019, 31, 389–398. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Q.; He, N.; Sun, K.; Sun, D.; Wu, X.; Duan, S. Removal and Biodegradation of 17β-Estradiol and Diethylstilbestrol by the Freshwater Microalgae Raphidocelis subcapitata. Int. J. Environ. Res. Public Health 2018, 15, 452. [Google Scholar] [CrossRef]
- Seoane, M.; Esperanza, M.; Cid, A. Cytotoxic effects of the proton pump inhibitor omeprazole on the non-target marine microalga Tetraselmis suecica. Aquat. Toxicol. 2017, 191, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Escher, B.I.; Bramaz, N.; Lienert, J.; Neuwoehner, J.; Straub, J.O. Mixture toxicity of the antiviral drug Tamiflu® (oseltamivir ethylester) and its active metabolite oseltamivir acid. Aquat. Toxicol. 2010, 96, 194–202. [Google Scholar] [CrossRef]
- Straub, J.O. An environmental risk assessment for oseltamivir (Tamiflu®) for sewage works and surface waters under seasonal-influenza- and pandemic-use conditions. Ecotoxicol. Environ. Saf. 2009, 72, 1625–1634. [Google Scholar] [CrossRef]
- Wagil, M.; Białk-Bielińska, A.; Puckowski, A.; Wychodnik, K.; Maszkowska, J.; Mulkiewicz, E.; Kumirska, J.; Stepnowski, P.; Stolte, S. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ. Sci. Pollut. Res. 2015, 22, 2566–2573. [Google Scholar] [CrossRef] [PubMed]
- Tisler, T.; Erzen, N.K. Abamectin in the aquatic environment. Ecotoxicology 2006, 15, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Nardelli, A.; Parrella, A.; Pascarella, L.; Previtera, L. A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: Furosemide and its photoproduct. Chemosphere 2006, 63, 785–793. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, W.; Li, Q.; Yang, Q.; Chai, W.; Zeng, M.; Li, R.; Peng, Y. Multiparameter-based bioassay of 2-(4-chlorophenyl)-4-(4-methoxyphenyl) quinazoline, a newly-synthesized quinazoline derivative, toward Microcystis aeruginosa HAB5100 (cyanobacteria). Bull. Environ. Contam. Toxicol. 2015, 94, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Tamura, I.; Kagota, K.I.; Yasuda, Y.; Yoneda, S.; Morita, J.; Nakada, N.; Kameda, Y.; Kimura, K.; Tatarazako, N.; Yamamoto, H. Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: Triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol. J. Appl. Toxicol. 2013, 33, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Di Poi, C.; Costil, K.; Bouchart, V.; Halm-Lemeille, M.P. Toxicity assessment of five emerging pollutants, alone and in binary or ternary mixtures, towards three aquatic organisms. Environ. Sci. Pollut. Res. Int. 2018, 25, 6122–6134. [Google Scholar] [CrossRef] [PubMed]
- Gorenoglu, E.; Aydin, E.; Topuz, E.; Pehlivanoglu-Mantas, E. Effect of triclosan and its photolysis products on marine bacterium V. fischeri and freshwater alga R. subcapitata. J. Environ. Manag. 2018, 211, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Tatarazako, N.; Ishibashi, H.; Teshima, K.; Kishi, K.; Arizono, K. Effects of triclosan on various aquatic organisms. Environ. Sci. 2004, 11, 133–140. [Google Scholar] [PubMed]
- Pan, C.G.; Peng, F.J.; Shi, W.J.; Hu, L.X.; Wei, X.D.; Ying, G.G. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. Ecotoxicol. Environ. Saf. 2018, 148, 393–401. [Google Scholar] [CrossRef] [PubMed]
- González-Pleiter, M.; Rioboo, C.; Reguera, M.; Abreu, I.; Leganés, F.; Cid, Á.; Fernández-Pinas, F. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan. Aquat. Toxicol. 2017, 186, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Seoane, M.; Esperanza, M.; Rioboo, C.; Herrero, C.; Cid, A. Flow cytometric assay to assess short-term effects of personal care products on the marine microalga Tetraselmis suecica. Chemosphere 2017, 171, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Orvos, D.R.; Versteeg, D.J.; Inauen, J.; Capdevielle, M.; Rothenstein, A.; Cunningham, V. Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 2002, 21, 1338–1349. [Google Scholar] [CrossRef]
- Franz, S.; Altenburger, R.; Heilmeier, H.; Schmitt-Jansen, M. What contributes to the sensitivity of microalgae to triclosan? Aquat. Toxicol. 2008, 90, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Poon, K.; Cai, Z. Removal and metabolism of triclosan by three different microalgal species in aquatic environment. J. Hazard. Mater. 2018, 342, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Tastan, B.E.; Tekinay, T.; Celik, H.S.; Ozdemir, C.; Cakir, D.N. Toxicity assessment of pesticide triclosan by aquatic organisms and degradation studies. Regul. Toxicol. Pharmacol. 2017, 91, 208–215. [Google Scholar] [CrossRef]
- Ding, T.; Lin, K.; Yang, M.; Bao, L.; Li, J.; Yang, B.; Gan, J. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. J. Hazard. Mater. 2018, 344, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Lin, K.; Bao, L.; Yang, M.; Li, J.; Yang, B.; Gan, J. Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid. Environ. Pollut. 2018, 234, 231–242. [Google Scholar] [CrossRef]
- Huang, X.; Tu, Y.; Song, C.; Li, T.; Lin, J.; Wu, Y.; Liu, J.; Wu, C. Interactions between the antimicrobial agent triclosan and the bloom-forming cyanobacteria Microcystis aeruginosa. Aquat. Toxicol. 2016, 172, 103–110. [Google Scholar] [CrossRef]
- Pan, C.G.; Peng, F.J.; Ying, G.G. Removal, biotransformation and toxicity variations of climbazole by freshwater algae Scenedesmus obliquus. Environ. Pollut. 2018, 240, 534–540. [Google Scholar] [CrossRef]
- Yamamoto, H.; Watanabe, M.; Hirata, Y.; Nakamura, Y.; Nakamura, Y.; Kitani, C.; Sekizawa, J.; Uchida, M.; Nakamura, H.; Kagami, Y.; et al. Preliminary ecological risk assessment of butylparaben and benzylparaben-1. Removal efficiency in wastewater treatment, acute/chronic toxicity for aquatic organisms, and effects on medaka gene expression. Environ. Sci. 2007, 14, 73–87. [Google Scholar] [PubMed]
- Cao, J.; Xu, Z.; Qiu, G.; Li, B. Studies on the sensitivity of Spirulina platensis to antibiotics and herbicide: Relationship with selectable markers for genetic transformation. Bioresour. Technol. 1999, 70, 89–93. [Google Scholar] [CrossRef]
- Escapa, C.; Coimbra, R.N.; Paniagua, S.; Garcia, A.I.; Otero, M. Paracetamol and salicylic acid removal from contaminated water by microalgae. J. Environ. Manag. 2017, 203, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Escapa, C.; Coimbra, R.N.; Paniagua, S.; Garcia, A.I.; Otero, M. Comparative assessment of diclofenac removal from water by different microalgae strains. Algal Res. 2016, 18, 127–134. [Google Scholar] [CrossRef]
- Duarte, B.; Prata, D.; Matos, A.R.; Cabrita, M.T.; Cacador, I.; Marques, J.C.; Cabral, H.N.; Reis-Santos, P.; Fonseca, V.F. Ecotoxicity of the lipid-lowering drug bezafibrate on the bioenergetics and lipid metabolism of the diatom Phaeodactylum tricornutum. Sci. Total Environ. 2019, 650, 2085–2094. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Zhang, J.; Gao, B. Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin. Water Res. 2016, 93, 141–152. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Chen, X.; Zhang, J.; Gao, B. Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels. Ecotoxicol. Environ. Saf. 2015, 111, 138–145. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Zhang, J.; Li, X.; Gao, B. Stimulation effects of ciprofloxacin and sulphamethoxazole in Microcystis aeruginosa and isobaric tag for relative and absolute quantitation-based screening of antibiotic targets. Mol. Ecol. 2017, 26, 689–701. [Google Scholar] [CrossRef]
- Prabaharan, D.; Sumathi, M.; Subramanian, G. Ability to Use Ampicillin as a Nitrogen Source by the Marine Cyanobacterium Phormidium valderianum BDU 30501. Curr. Microbiol. 1994, 28, 315–320. [Google Scholar] [CrossRef]
- Cheng, J.; Ye, Q.; Yang, Z.; Yang, W.; Zhou, J.; Cen, K. Microstructure and antioxidative capacity of the microalgae mutant Chlorella PY-ZU1 during tilmicosin removal from wastewater under 15% CO2. J. Hazard. Mater. 2017, 324, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Ye, Q.; Li, K.; Liu, J.; Zhou, J. Removing ethinylestradiol from wastewater by microalgae mutant Chlorella PY-ZU1 with CO2 fixation. Bioresour. Technol. 2018, 249, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Uehara, T.; Bernhardt, T.G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 2014, 159, 1300–1311. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Fung, K.F.; Chen, Z.; Zeng, Z.; Zhang, J. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae. Antimicrob. Agents Chemother. 2003, 47, 820–823. [Google Scholar] [CrossRef]
- Tenson, T.; Lovmar, M.; Ehrenberg, M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 2003, 330, 1005–1014. [Google Scholar] [CrossRef]
- Du, Y.; Wang, J.; Zhu, F.; Mai, D.; Xiang, Z.; Chen, J.; Guo, R. Comprehensive assessment of three typical antibiotics on cyanobacteria (Microcystis aeruginosa): The impact and recovery capability. Ecotoxicol. Environ. Saf. 2018, 160, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guan, Y.; Gao, B.; Yue, Q. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 2012, 86, 23–30. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Chen, X.; Zhang, J.; Gao, B. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels. J. Hazard. Mater. 2015, 297, 83–91. [Google Scholar] [CrossRef]
- Nie, X.P.; Liu, B.Y.; Yu, H.J.; Liu, W.Q.; Yang, Y.F. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut. 2013, 172, 23–32. [Google Scholar] [CrossRef]
- Kovacik, J.; Klejdus, B.; Hedbavny, J.; Backor, M. Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci. 2010, 178, 307–311. [Google Scholar] [CrossRef]
- Du, Y.; Wang, J.; Li, H.; Mao, S.; Wang, D.; Xiang, Z.; Guo, R.; Chen, J. The dual function of the algal treatment: Antibiotic elimination combined with CO2 fixation. Chemosphere 2018, 211, 192–201. [Google Scholar] [CrossRef]
- Moro, I.; Matozzo, V.; Piovan, A.; Moschin, E.; Vecchia, F.D. Morpho-physiological effects of ibuprofen on Scenedesmus rubescens. Environ. Toxicol. Pharmacol. 2014, 38, 379–387. [Google Scholar] [CrossRef]
- Vannini, C.; Domingo, G.; Marsoni, M.; De Mattia, F.; Labra, M.; Castiglioni, S.; Bracale, M. Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. Aquat. Toxicol. 2011, 101, 459–465. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Gao, B.; Feng, S. Combined effects of two antibiotic contaminants on Microcystis aeruginosa. J. Hazard. Mater. 2014, 279, 148–155. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Chen, X.; Zhang, J.; Gao, B. Influence of coexisting spiramycin contaminant on the harm of Microcystis aeruginosa at different nitrogen levels. J. Hazard. Mater. 2015, 285, 517–524. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Zhang, J.; Gao, B. iTRAQ-based quantitative proteomic analysis of Microcystis aeruginosa exposed to spiramycin at different nutrient levels. Aquat. Toxicol. 2017, 185, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Pan, X.; Zhang, D. Influence of ofloxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow. J. Biosci. Bioeng. 2015, 119, 159–164. [Google Scholar] [CrossRef]
- Perron, M.C.; Juneau, P. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ. Res. 2011, 111, 520–529. [Google Scholar] [CrossRef]
- Kalla, S.R.; Lonneborg, A.; Oquist, G.; Gustafsson, P. Light-modulated antennae acclimation in the cyanobacterium Anacystis nidulans: Effects of transcriptional and translational inhibitors. J. Gen. Microbiol. 1986, 132, 3195–3200. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nie, X.P.; Liu, W.Q.; Snoeijs, P.; Guan, C.; Tsui, M.T.K. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2011, 74, 1027–1035. [Google Scholar] [CrossRef]
- Aderemi, A.O.; Novais, S.C.; Lemos, M.F.; Alves, L.M.; Hunter, C.; Pahl, O. Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics. Aquat. Toxicol. 2018, 203, 130–139. [Google Scholar] [CrossRef]
- Kovacik, J.; Klejdus, B.; Babula, P. Oxidative stress, uptake and bioconversion of 5-fluorouracil in algae. Chemosphere 2014, 100, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Huang, G.; Liu, X.; An, C.; Yao, Y.; Weger, H.; Zhang, P.; Chen, X. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy. Environ. Pollut. 2017, 226, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Samuilov, V.D.; Bulakhov, A.V.; Kiselevsky, D.B.; Kuznetsova, Y.E.; Molchanova, D.V.; Sinitsyn, S.V.; Shestak, A.A. Tolerance to antimicrobial agents and persistence of Escherichia coli and cyanobacteria. Biochemistry 2008, 73, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.G.; Carr, N.G. Control of heterocyst development in the cyanobacterium Anabaena cylindrica. J. Gen. Microbiol. 1989, 135, 839–849. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Poon, K.; Wang, Y.; Li, S.; Liu, H.; Lin, S.; Cai, Z. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere 2013, 92, 1498–1505. [Google Scholar] [CrossRef]
- Xin, X.; Huang, G.; An, C.; Huang, C.; Weger, H.; Zhao, S.; Zhou, Y.; Rosendahl, S. Insights into the toxicity of triclosan to green microalga Chlorococcum sp. using synchrotron-based fourier transform infrared spectromicroscopy: Biophysiological analyses and roles of environmental factors. Environ. Sci. Technol. 2018, 52, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Grzesiuk, M.; Spijkerman, E.; Lachmann, S.C.; Wacker, A. Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions. Ecotoxicol. Environ. Saf. 2018, 156, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Yegin, Y.; Yegin, C.; Oh, J.K.; Orr, A.; Zhang, M.; Nagabandi, N.; Severin, T.; Villareal, T.A.; Sari, M.M.; Castillo, A.; et al. Ecotoxic effects of paclitaxel-loaded nanotherapeutics on freshwater algae, Raphidocelis subcapitata and Chlamydomonas reinhardti. Environ. Sci. Nano 2017, 4, 1077. [Google Scholar] [CrossRef]
- Gentili, F.G.; Fick, J. Algal cultivation in urban wastewater: An efficient way to reduce pharmaceutical pollutants. J. Appl. Phycol. 2017, 29, 255–262. [Google Scholar] [CrossRef]
- Matamoros, V.; Uggetti, E.; Garcia, J.; Bayona, J.M. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study. J. Hazard. Mater. 2016, 301, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhou, Y.; Wang, Z.; Torres, O.L.; Guo, R.; Chen, J. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment. Sci. Rep. 2017, 7, 4168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.; Acharya, K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environ. Pollut. 2019, 247, 534–540. [Google Scholar] [CrossRef]
- Gojkovic, Z.; Lindberg, R.H.; Tysklind, M.; Funk, C. Northern green algae have the capacity to remove active pharmaceutical ingredients. Ecotoxicol. Environ. Saf. 2019, 170, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, V.; Meffe, R.; Herrera, S.; Arranz, E.; de Bustamante, I. Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Sci. Total Environ. 2014, 472, 273–281. [Google Scholar] [CrossRef]
- Tsezos, M.; Bell, J.P. Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass. Water Res. 1989, 23, 561–568. [Google Scholar] [CrossRef]
- Yu, X.; Zuo, J.; Tang, X.; Li, R.; Li, Z.; Zhang, F. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. J. Hazard. Mater. 2014, 266, 68–74. [Google Scholar] [CrossRef]
- Shi, X.; Yeap, T.S.; Huang, S.; Chen, J.; Ng, H.Y. Pretreatment of saline antibiotic wastewater using marine microalga. Bioresour. Technol. 2018, 258, 240–246. [Google Scholar] [CrossRef]
- Li, H.; Pan, Y.; Wang, Z.; Chen, S.; Guo, R.; Chen, J. An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine. RSC Adv. 2015, 5, 100775. [Google Scholar] [CrossRef]
- Cao, J.; Jiang, R.; Wang, J.; Sun, J.; Feng, Q.; Zhao, Z.; Chen, G.; Zhou, C.; Yin, E. Study on the interaction mechanism between cefradine and Chlamydomonas reinhardtii in water solutions under dark condition. Ecotoxicol. Environ. Saf. 2018, 159, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.Q.; Zheng, H.S.; Li, S.; Du, J.S.; Feng, X.C.; Yin, R.L.; Wu, Q.L.; Ren, N.Q.; Chang, J.S. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresour. Technol. 2016, 221, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Maza-Marquez, P.; Gonzalez-Martinez, A.; Martinez-Toledo, M.V.; Fenice, M.; Lasserrot, A.; Gonzalez-Lopez, J. Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor. Environ. Sci. Pollut. Res. Int. 2017, 24, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Villar-Navarro, E.; Baena-Nogueras, R.M.; Paniw, M.; Perales, J.A.; Lara-Martin, P.A. Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes. Water Res. 2018, 139, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Norvill, Z.N.; Shilton, A.; Guieysse, B. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps. J. Hazard. Mater. 2016, 313, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Lima, D.L.D.; Silva, C.P.; Calisto, V.; Otero, M.; Esteves, V.I. Photodegradation of sulfamethoxazole in environmental samples: The role of pH, organic matter and salinity. Sci. Total Environ. 2019, 648, 1403–1410. [Google Scholar] [CrossRef]
- Andreozzi, R.; Marotta, R.; Pinto, G.; Pollio, A. Carbamazepine in water: Persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Res. 2002, 36, 2869–2877. [Google Scholar] [CrossRef]
- Donner, E.; Kosjek, T.; Qualmann, S.; Kusk, K.O.; Heath, E.; Revitt, D.M.; Ledin, A.; Andersen, H.R. Ecotoxicity of carbamazepine and its UV photolysis transformation products. Sci. Total Environ. 2013, 443, 870–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, M.; Lo, C.; Hsu, C.C.; Wang, Y.; Chiang, Y.R.; Sun, Q.; Wu, Y.; Li, Y.; Chen, L.; Yu, C.P. Identification of Enantiomeric Byproducts During Microalgae-Mediated Transformation of Metoprolol by MS/MS Spectrum Based Networking. Front. Microbiol. 2018, 9, 2115. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Feng, J.; Liu, Q.; Xie, S. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work. Int. J. Mol. Sci. 2017, 18, 79. [Google Scholar] [CrossRef]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Hozic, D.; Goncalves, A.L.; Simoes, M.; Hong, P.Y. Increasing tetracycline concentrations on the performance and communities of mixed microalgae-bacteria photo-bioreactors. Algal Res. 2018, 29, 249–256. [Google Scholar] [CrossRef]
- Goncalves, A.L.; Pires, J.C.M.; Simoes, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017, 24, 403–415. [Google Scholar] [CrossRef]
- Rzymski, P.; Jaskiewicz, M. Microalgal food supplements from the perspective of Polish consumers: Patterns of use, adverse events, and beneficial effects. J. Appl. Phycol. 2017, 29, 1841–1850. [Google Scholar] [CrossRef]
- Orias, F.; Simon, L.; Perrodin, Y. Experimental assessment of the bioconcentration of 15N-tamoxifen in Pseudokirchneriella subcapitata. Chemosphere 2015, 122, 251–256. [Google Scholar] [CrossRef]
- Franz, A.K.; Danielewicz, M.A.; Wong, D.M.; Anderson, L.A.; Boothe, J.R. Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem. Biol. 2013, 8, 1053–1062. [Google Scholar] [CrossRef]
- Conte, M.; Lupette, J.; Seddiki, K.; Mei, C.; Dolch, L.J.; Gros, V.; Barette, C.; Rebeille, F.; Jouhet, J.; Marechal, E. Screening for biologically annotated drugs that trigger triacylglycerol accumulation in the diatom Phaeodactylum. Plant Physiol. 2018, 177, 532–552. [Google Scholar] [CrossRef]
- Bazin, M.J. 5-fluorouracil resistance in Anacystis nidulans Drouet. Br. Phycol. J. 1971, 6, 25–28. [Google Scholar] [CrossRef]
- Bonnineau, C.; Guasch, H.; Proia, L.; Ricart, M.; Geiszinger, A.; Romani, A.M.; Sabater, S. Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity. Aquat. Toxicol. 2010, 96, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.; van der Maarel, M.J.E.C. Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express 2016, 6, 71. [Google Scholar] [CrossRef]
- Ismaiel, M.M.; El-Ayouty, Y.M.; Piercey-Normore, M. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Braz. J. Microbiol. 2016, 47, 298–304. [Google Scholar] [CrossRef]
- Hagemann, M.; Wolfel, L.; Kruger, B. Alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 after a salt shock. J. Gen. Microbiol. 1990, 136, 1393–1399. [Google Scholar] [CrossRef]
- Kis, M.; Zsiros, O.; Farkas, T.; Wada, H.; Nagy, F.; Gombos, Z. Light-induced expression of fatty acid desaturase genes. Proc. Natl. Acad. Sci. USA 1998, 95, 4209–4214. [Google Scholar] [CrossRef] [Green Version]
- Gendel, S.; Ohad, I.; Bogorad, L. Control of phycoerythrin synthesis during chromatic adaptation. Plant Physiol. 1979, 64, 786–790. [Google Scholar] [CrossRef]
- Fasulo, M.P.; Bonora, A. Indications about the mechanism of action and toxicity of netilmicin on the basis of the antiplastidial activity in Euglena gracilis. Protoplasma 1984, 119, 31–34. [Google Scholar] [CrossRef]
- Pikula, K.S.; Zakharenko, A.M.; Aruoja, V.; Golokhvast, K.S.; Tsatsakis, A.M. Oxidative stress and its biomarkers in microalgal ecotoxicology—A mini review. Curr. Opin. Toxicol. 2018, 13, 8–15. [Google Scholar] [CrossRef]
- Belghith, T.; Athmouni, K.; Bellassoued, K.; Feki, A.E.; Ayadi, H. Physiological and biochemical response of Dunaliella salina to cadmium pollution. J. Appl. Phycol. 2016, 28, 991–999. [Google Scholar] [CrossRef]
- Rodrıguez, M.C.; Barsanti, L.; Passarelli, V.; Evangelista, V.; Conforti, V.; Gualtieri, P. Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environ. Res. 2007, 105, 234–239. [Google Scholar] [CrossRef]
- Simon, L.; Fodor, M.; Pais, I. Effects of zirconium on the growth and photosynthetic pigment composition of Chlorella pyrenoidosa green algae. J. Plant Nutr. 2001, 24, 159–174. [Google Scholar] [CrossRef]
- Mallick, N. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: Response of the antioxidant system. J. Plant Physiol. 2004, 161, 591–597. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Q.; Hu, C.W.; Chen, L.; Liu, Z.L.; Kong, Z.M. Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): Effect on lipid peroxidation and antioxidant enzymes. J. Environ. Sci. 2007, 19, 1330–1335. [Google Scholar] [CrossRef]
- Soto, P.; Gaete, H.; Hidalgo, M.E. Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat. Am. J. Aquat. Res. 2011, 39, 280–285. [Google Scholar] [CrossRef]
- Du, Y.; Wang, J.; Wang, Z.; Torres, O.L.; Guo, R.; Chen, J. Exogenous organic carbon as an artificial enhancement method to assist the algal antibiotic treatment system. J. Clean. Prod. 2018, 194, 624–634. [Google Scholar] [CrossRef]
- Escapa, C.; Torres, T.; Neuparth, T.; Coimbra, R.N.; Garcia, A.I.; Santos, M.M.; Otero, M. Zebrafish embryo bioassays for a comprehensive evaluation of microalgae efficiency in the removal of diclofenac from water. Sci. Total Environ. 2018, 640, 1024–1033. [Google Scholar] [CrossRef]
- Ceballos-Laita, L.; Calvo, L.; Bes, M.T.; Fillat, M.F.; Peleato, M.L. Effects of benzene and several pharmaceuticals on the growth and microcystin production in Microcystis aeruginosa PCC 7806. Limnetica 2015, 34, 237–246. [Google Scholar]
- Prasanna, R.; Madhan, K.; Singh, R.N.; Chauhan, A.K.; Nain, L. Developing Biochemical and Molecular Markers for Cyanobacterial Inoculants. Folia Microbiol. 2010, 55, 474–480. [Google Scholar] [CrossRef]
- Nicolas, P. Sensitivity of Euglena gracilis to chloroplast-inhibiting antibiotics, and properties of antibiotic-resistant mutants. Plant Sci. Lett. 1981, 22, 309–316. [Google Scholar] [CrossRef]
- Pikula, K.S.; Zakharenko, A.M.; Chaika, V.V.; Stratidakis, A.K.; Kokkinakis, M.; Waissi, G.; Rakitskii, V.N.; Sarigiannis, D.A.; Hayes, A.W.; Coleman, M.D.; et al. Toxicity bioassay of waste cooking oil-based biodiesel on marine microalgae. Toxicol. Rep. 2019, 6, 111–117. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: Why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 2008, 27, 1451–1474. [Google Scholar] [CrossRef]
- Pareek, A.; Srivastava, P. Efficacy of antibiotics on bacterial contamination in outdoor cultures of Spirulina platensis. J. Algal Biomass Util. 2013, 4, 1–9. [Google Scholar]
- Mustapa, M.; Sallehudin, N.J.; Mohamed, M.S.; Noor, N.M.; Raus, R.A. Decontamination of Chlorella sp. culture using antibiotics and antifungal cocktail treatment. ARPN J. Eng. Appl. Sci. 2016, 11, 104–109. [Google Scholar]
- Han, J.; Wang, S.; Zhang, L.; Yang, G.; Zhao, L.; Pan, K. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations. Chin. J. Oceanol. Limnol. 2016, 34, 79–85. [Google Scholar] [CrossRef]
- Kan, Y.; Pan, J. A one-shot solution to bacterial and fungal contamination in the green alga Chlamydomonas reinhardtii culture by using an antibiotic cocktail. J. Phycol. 2010, 46, 1356–1358. [Google Scholar] [CrossRef]
- Liu, C.L.; Place, A.R.; Jagus, R. Use of Antibiotics for Maintenance of Axenic Cultures of Amphidinium carterae for the Analysis of Translation. Mar. Drugs 2017, 15, 242. [Google Scholar] [CrossRef]
- Yang, Y.T.; Wang, C.Y. Review of microfluidic photobioreactor technology for metabolic engineering and synthetic biology of cyanobacteria and microalgae. Micromachines 2016, 7, 185. [Google Scholar] [CrossRef]
- Kim, H.S.; Devarenne, T.P.; Han, A. Microfluidic systems for microalgal biotechnology: A review. Algal Res. 2018, 30, 149–161. [Google Scholar] [CrossRef]
- Zheng, G.X.; Li, Y.J.; Qi, L.L.; Liu, X.M.; Wang, H.; Yu, S.P.; Wang, Y.H. Marine phytoplankton motility sensor integrated into a microfluidic chip for high-throughput pollutant toxicity assessment. Mar. Pollut. Bull. 2014, 84, 147–154. [Google Scholar] [CrossRef]
- Ross, J.J.; Zitomer, D.H.; Miller, T.R.; Weirich, C.A.; McNamara, P.J. Emerging investigators series: Pyrolysis removes common microconstituents triclocarban, triclosan, and nonylphenol from biosolids. Environ. Sci. Water Res. Technol. 2016, 2, 28. [Google Scholar] [CrossRef]
- Liu, Z.; Singer, S.; Zitomer, D.; McNamara, P. Sub-Pilot-Scale Autocatalytic Pyrolysis of Wastewater Biosolids for Enhanced Energy Recovery. Catalysts 2018, 8, 524. [Google Scholar] [CrossRef]
- Li, R.; Zhong, Z.; Jin, B.; Zheng, A. Selection of Temperature for Bio-oil Production from Pyrolysis of Algae from Lake Blooms. Energy Fuels 2012, 26, 2996–3002. [Google Scholar] [CrossRef]
- Gang, L.; Shunan, X.; Fang, J.; Yuguang, Z.; Zhigang, H. Thermal cracking products and bio-oil production from microalgae Desmodesmus sp. Int. J. Agric. Biol. Eng. 2017, 10, 198–206. [Google Scholar] [CrossRef]
- Tian, L.; Bayen, S.; Yaylayan, V. Thermal degradation of five veterinary and human pharmaceuticals using pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 2017, 127, 120–125. [Google Scholar] [CrossRef]
Microalgae | Concentrations of FF (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Pseudokirchneriella subcapitata | 2.9 | [48] |
Tetraselmis | 1.3–11 | [41,42,49] |
Isochrysis galbana | 8 | [41] |
Scenedesmus vacuolatus | 18 | [50] |
Chlorella | 14–215 | [41,51,52] |
Skeletonema costatum | 5 | [53] |
Microcystis flosaquae | 0.05 | [46] |
Microalgae | Concentrations of SMX (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Scenedesmus | 0.12–1.54 | [76,77] |
Chlorella vulgaris | 0.98–1.57 | [78,79] |
Selenastrum capricornutum/ Pseudokirchneriella subcapitata | 0.146–2.5 (25–50% GI) | [45,65,80,81,82] |
Pseudokirchneriella subcapitata | >9 PI | [66] |
Desmodesmus subspicatus | 0.25–210 PI | [83,84] |
Microcystis aeruginosa | 0.55 PI | [66] |
Synechococcus leopolensis | 0.027 | [82] |
Cyclotella meneghiniana | 2.4 | [82] |
Microalgae | Concentrations of LIN (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Pseudokirchneriella subcapitata | 0.07–3.26 | [65,91,120] |
Desmodesmus subspicatus | 7.08 | [91] |
Cyclotella meneghiniana | 1.6 | [120] |
Cylindrotheca closterium | 14 | [109] |
Navicula ramosissima | 11 | [109] |
Anabaena flosaquae | 0.057 | [91] |
Synechococcus leopoliensis | 0.042–0.195 | [91] |
Microalgae | Concentrations of Fluoxetine (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Pseudokirchneriella subcapitata/Raphidocelis subcapitata | 0.024–0.2 | [115,145,146,147,148,149,150] |
Chlorella | 0.036–4.3 | [112,150,151] |
Scenedesmus | 0.024–0.207 | [150,151,152] |
Acutodesmus obliquus | 5 | [129] |
Chlamydomonas | 0.25–1.6 | [129,151] |
Ankestrodesmus falcatus | 0.04 | [112] |
Dunaliella | 0.05–0.169 | [139,151] |
Skeletonema | 0.018–0.043 | [147,148,153] |
Microalgae | Concentrations of Clofibric Acid (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Pseudokirchneriella subcapitata | 75–94 | [82,137] |
Scenedesmus/Desmodesmus subspicatus | 89–115 | [143,160] |
Tetraselmis chuii | 318 | [159] |
Dunaliella tertiolecta | 224 | [139] |
Chlorella pyrenoidosa | 100–150 | [107] |
Anabaena sp. | 30–48 | [158] |
Synechococcus leopolensis | 40.2 | [82] |
Microalgae | Concentrations of CBZ (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Micractinium reisseri | 100 | [167] |
Scenedesmus/Desmodesmus | 54–201 | [160,167,168] |
Chlorella | 33–1339 | [168,169] |
Dunaliella tertiolecta | 53–296 | [170] |
Cyclotella meneghiniana | 31.6 | [82] |
Phaeodactylum tricornutum | 62 | [90] |
Synechococcus leopolensis | 33.6 | [82] |
Microalgae | Concentrations of PRO (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Pseudokirchneriella subcapitata | 0.77–7.4 | [82,115,172] |
Scenedesmus/Desmodesmus | 0.118–24 | [84,152,160,173] |
Acutodesmus obliquus | 19 | [129] |
Chlamydomonas reinhardtii | 3 | [129] |
Chlorella vulgaris | 0.259 (F = 21%) | [174] |
Skeletonema pseudocostatum | 0.236 | [153] |
Cyclotella meneghiniana | 0.24 | [82] |
Phaeodactylum tricornutum | 0.29 | [90] |
Synechococcus leopolensis | 0.67 | [82] |
Microalgae | Concentrations of EE2 (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Pseudokirchneriella subcapitata/Raphidocelis subcapitata | 0.01–0.8 | [103,176] |
Scenedesmus/Desmodesmus | 0.04–144 | [84,103,176,177,178] |
Chlorella vulgaris | 70–121 | [178] |
Dunaliella salina | 0.001 | [179] |
Navicula incerta | 3.2 | [180] |
Microcystis aeruginosa | 1.48 | [103] |
Anabaena variabilis | 71–100 | [181] |
Microalgae | Concentrations of E2 (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Pseudokirchneriella subcapitata/Raphidocelis subcapitata | 0.01–0.87 | [176] |
Desmodesmus subspicatus | 0.08–1.07 | [176] |
Scenedesmus armatus | 206–522 | [178] |
Chlorella vulgaris | 105–242 | [178] |
Anabaena variabilis | 438–2002 | [181] |
Microalgae | Concentrations of TCS (mg/L) Causing 50% Growth Inhibition/Toxicity | Ref. |
---|---|---|
Pseudokirchneriella subcapitata/Raphidocelis subcapitata/Selenastrum capricornutum | 0.00053–0.037 | [81,157,190,191,192,193] |
Chlamydomonas | 0.4(36% inhibition)–4 | [151,194,195] |
Dunaliella | 0.0035–0.16 | [139,151] |
Tetraselmis suecica | 0.8 (80% inhibition) | [196] |
Scenedesmus/Desmodesmus | 0.0014–0.4 | [151,197,198,199] |
Chlorella | 0.4–1.44 | [151,199,200] |
Skeletonema pseudocostatum | 0.027 | [153] |
Navicula sp. | 0.145–0.173 | [201] |
Microcystis aeruginosa | 0.0092 | [203] |
Anabaena flosaquae | 0.0016 | [197] |
General Inhibitory/Toxicity Ranges of PHPs and PCPs towards Different Microalgal Groups * | |||||||
---|---|---|---|---|---|---|---|
PHPs or PCPs | Green Microalgae (All Strains) | Green Microalgae (Pseudokirchneriella subcapitata **) | Green Microalgae (Chlorella strains) | Diatoms (All Strains) | Other Microalgae | Cyanobacteria (All Strains) | Cyanobacteria (Microcystis Strains) |
Phenicols | 0.47–1283 mg/L | 2.7–8.9 mg/L | 14–1283 mg/L | 5–12 mg/L | 8–158 mg/L | 0.05 to ≥25 mg/L | 0.05–0.43 mg/L |
Tetracyclines | 0.17–40 mg/L | 0.17–4.5 mg/L | 7–37.8 mg/L | n.d. | 1.6 mg/L | ≥0.0015–100 mg/L | ≥0.05–15.2 mg/L (20 mg/L) |
Aminoglycosides | 0.133–30 mg/L (66 mg/L MIC) | 0.133–19.2 mg/L | 2.4–66 mg/L MIC | 6.6 mg/L MIC | n.d. | 0.007–100 mg/L | 0.007–1.6 mg/L |
Sulphonamides | 0.146–210 mg/L | 0.146 to >9 mg/L | 0.98–17.74 mg/L | 0.11–2.4 mg/L | 1.44–403 mg/L | 0.027 to >2000 mg/L | 0.135–500 mg/L |
Trimethoprim | 0.0078–130 mg/L | >9–130 mg/L | 90–123 mg/L | 2.13–21.6 mg/L | 16 mg/L | 0.003–253 mg/L (>200 mg/L) | 6.9 to >200 mg/L |
β-lactams | ≥12 mg/L | ≥400 mg/L | >1000 mg/L | n.d. | 3100 mg/L | 0.0002 to >200 mg/L | 0.0002 to ≥0.2 mg/L (≥3 mg/L) |
Quinolones | 1.44–150 mg/L (>120 mg/L) | 1.44–>120 mg/L | 12.2–150 mg/L | 0.09–72 mg/L | 10–24 mg/L | >0.006–5.6 mg/L | >0.006–0.18 mg/L |
Macrolides | 0.002–13 mg/L | 0.002–2.3 mg/L | 3–12 mg/L | 0.27 to >60 mg/L MIC | 1–30 mg/L MIC | 0.001–10 mg/L | 0.001–0.29 mg/L |
Glycopeptides | 371–724 mg/L | 371–724 mg/L | n.d. | n.d. | n.d. | n.d. | n.d. |
Lincosamides | 0.01–7 mg/L | 0.01–3.26 mg/L | n.d. | 1.6–14 mg/L | n.d. | 0.042–0.195 mg/L | n.d. |
Nitrofurans | 0.5– 17 mg/L | n.d. | 1.3 mg/L | 0.5 mg/L | 0.5 mg/L | n.d. | n.d. |
Nitroimidazoles | 0.0078–705 mg/L | 40.4–56.6 mg/L | 12.5–38.8 mg/L | n.d. | n.d. | 117 mg/L | 117 mg/L |
Quinoxalines | 1.72–40 mg/L | 1.72–40 mg/L | n.d. | n.d. | n.d. | 5 mg/L | 5 mg/L |
Ansamycins | 171 mg/L | 171 mg/L | n.d. | n.d. | n.d. | 4–10 mg/L | n.d. |
NSAIDs | 10–620 mg/L | 10–240 mg/L | 40–150 mg/L | 19.2–255 mg/L | 965 mg/L | 12.3–14.5 mg/L | n.d. |
Acetaminophen | 88 to >240 mg/L | >240 mg/L | 88 to >240 mg/L | 266 mg/L | n.d. | n.d. | n.d. |
Antidepressants | 0.012–99.8 mg/L | 0.012–99.8 mg/L | 0.036–10.2 mg/L | 0.0019–6.9 mg/L | n.d. | 0.200 mg/L | 0.200 mg/L |
Lipid regulators | 15–318 mg/L | 15–103 mg/L | 100–150 mg/L | n.d. | n.d. | 4–48 mg/L | n.d. |
Antineoplastic agents | 0.075–260 mg/L | 0.075 to >100 mg/L | 0.61 mg/L | 0.014 mg/L | n.d. | 0.67–17 mg/L | 6 mg/L |
Antiepileptic agents | 0.1–1339 mg/L | 28.3 to >100 mg/L | 33–1339 mg/L | 31.6–62 mg/L | n.d. | 33.6 mg/L | n.d. |
Beta-blockers | 0.118 to >100 mg/L | 0.77–190 mg/L | 0.259–25.9 mg/L | 0.24–312 mg/L | n.d. | 0.67 mg/L | n.d. |
Estrogens | 0.001–522 mg/L | 0.01–0.87 mg/L | 70–242 mg/L | 3.2 to >10 mg/L | n.d. | 1.48–2002 mg/L | 1.48 mg/L |
Triclosan | 0.00053–4 mg/L | 0.00053–0.037 mg/L | 0.4–1.44 mg/L | 0.027–0.173 mg/L | n.d. | 0.0016–0.0092 mg/L | 0.0092 mg/L |
PHRs/PCPs | Concentration in Medium * (mg/L) | Strain | Maximal MDA Increase ** | Ref. |
---|---|---|---|---|
Amoxicillin | 20 | Microcystis aeruginosa | 1.18-fold | [219] |
Amoxicillin | 0.001 | Microcystis aeruginosa | ~2.6-fold | [220] |
Amoxicillin | 0.0005 | Microcystis aeruginosa | ~1.7-fold | [221] |
Amoxicillin | 0.0005 | Microcystis aeruginosa | ~1.5-fold | [211] |
Ciprofloxacin | 100 | Chlamydomonas mexicana | ~4-fold | [108] |
Ciprofloxacin | 2.5 | Pseudokirchneriella subcapitata | ~2.2-fold | [222] |
Enrofloxacin | 100 | Chlamydomonas mexicana | ~1.8-fold | [95] |
Micractinium resseri | ~9.3-fold | |||
Enrofloxacin | 80 | Scenedesmus obliquus | 2.4-fold | [97] |
Norfloxacin | 20 | Microcystis aeruginosa | 1.48-fold | [219] |
Norfloxacin | 60 | Scenedesmus obliquus | 1.86-fold | [99] |
Levofloxacin | 0.1 | Microcystis flosaquae | 3.84-fold | [102] |
Tetracycline | 0.5 | Microcystis aeruginosa | 1.75-fold | [57] |
5 | Selenastrum capricornutum | ~6-fold | ||
Doxycycline | 5 | Microcystis aeruginosa | 1.8-fold | [71] |
Chlortetracycline | 60 | Chlorella pyrenoidosa | 2.5-fold | [64] |
48 | Microcystis aeruginosa | 2.7-fold | ||
Florfenicol | 0.025 | Microcystis flosaquae | 2.06-fold | [46] |
Florfenicol | 46 → 160 | Chlorella sp. | 25.6-fold F | [52] |
Thiamphenicol | 0.07 | Microcystis flosaquae | ~2.3-fold | [46] |
Erythromycin | 0.03 | Microcystis flosaquae | ~5-fold | [113] |
Erythromycin | 0.3 | Pseudokirchneriella subcapitata | ~3.2-fold | [222] |
Spiramycin | 0.001 | Microcystis aeruginosa | ~3.2-fold | [220] |
Sulfamethoxazole | 2.5 | Pseudokirchneriella subcapitata | ~1.9-fold | [222] |
Carbamazepine | 200 | Dunaliella tertiolecta | ~9-fold | [170] |
Ethinylestradiol | 0.001 | Dunaliella salina | ~2.37-fold | [179] |
Triclosan | 0.405 | Chlamydomonas reinhardtii | 1.33-fold | [194] |
Triclosan | 4 | Chlamydomonas reinhardtii | ~6.5-fold | [195] |
Strain | PHR/PCP | Concentration in Medium (mg/L) | SOD Activity * | CAT Activity * | POD Activity * | Ref. |
---|---|---|---|---|---|---|
Microcystis flosaquae | ERY | 0.04 | 3.86-fold ↑ | 4.8-fold ↑ | - | [113] |
Microcystis flosaquae | FF TAP | 0.05 0.1 | 2.7-fold ↑ 1.7-fold ↑ | 5.3-fold ↑ 3.4-fold ↑ | - - | [46] |
Microcystis aeruginosa | TET | 0.5 | ~2.9-fold ↑ | - | - | [57] |
Microcystis aeruginosa | CTC | 48 | 3-fold ↑ | - | - | [64] |
Microcystis aeruginosa | DOX | 10 | No change | 3-fold ↑ | - | [71] |
Microcystis aeruginosa | CTC | 0.05 | ~25% ↓ | ~10% ↑ | ~90% ↑ | [69] |
Microcystis aeruginosa | SPI | 0.001 | 2.1-fold ↑ | 75% ↓ | 71% ↓ | [220] |
Microcystis aeruginosa | NOR | 20 | 36% ↓ | - | - | [219] |
Microcystis aeruginosa | AMO | 20 | 57% ↓ | - | - | [219] |
Microcystis aeruginosa | AMO | 0.001 | 1.6-fold ↑ | 2.2-fold ↑ | 1.3-fold ↑ | [220] |
Selenastrum capricornutum | TET | 2 | 1.6-fold ↑ | - | - | [57] |
Chlorella pyrenoidosa | CTC | 60 | 3.5-fold ↑ | - | - | [64] |
Chlamydomonas mexicana | CPX | 100 | 8.5-fold ↑ | - | - | [108] |
Pseudokirchneriella subcapitata | ERY CPX SMX | 0.3 2.5 2.5 | 15% ↓ 1.3-fold ↑ 1.2-fold ↑ | 6% ↓ 1.1-fold ↑ 1.06-fold ↑ | - - - | [222] |
Scenedesmus obliquus | CBZ | 10 | 1.78-fold ↑ | 2.68-fold ↑ | - | [168] |
Chlorella pyrenoidosa | CBZ | 10 | 3.5-fold ↑ | 2.46-fold ↑ | - | [168] |
Scenedesmus obliquus | CBZ | 50 200 | 60% ↓ ~100% ↓ | ~1.25-fold ↑ ~10-fold ↑ | - - | [167] |
Chlamydomonas mexicana | CBZ | 50 200 | 1.3-fold ↑ 62% ↓ | - - | - - | [167] |
Chlorella vulgaris | Fluoxetine | 0.04 | 54% ↓ | 46% ↓ | - | [112] |
Ankestrodesmus falcatus | Fluoxetine | 0.036 | 40% ↓ | 52% ↓ | - | [112] |
Navicula incerta | EE2 | 4 | 1.6-fold ↑ | - | 25% ↓ | [180] |
Dunaliella salina | EE2 | 0.001 | 1.4-fold ↑ | 25% ↓ | - | [179] |
Microcystis aeruginosa | TCS | 0.00025 0.002 | 1.3-fold ↑ 55% ↓ | - - | No change No change | [203] |
Pharmaceutical Type | Pharmaceutical Concentration | Pharmaceutical Removal | Microalgal Strain | Effect on Growth/Biomass Production | Ref. |
---|---|---|---|---|---|
Amoxicillin (AMX) | 10–150 mg/L | 99% within 2 h | Chlorella sp. | Up to 20% stimulation after 12 h | [251] |
Amoxicillin (AMX) | 100–500 mg/L | 85–97% after 48 h | Chlorella pyrenoidosa | No effect on growth | [252] |
Cefradine | 0.5–10 mg/L | Up to 50% v within 2 h | Chlamydomonas reinhardtii | Slight growth stimulation possible (within 7 days) | [253] |
Florfenicol | 46 mg/L | 97% (20 days) | Chlorella sp. | Slight inhibition | [52] |
Ethinylestradiol (EE2) | 5 mg/L | 94% (9 days) | Chlorella | No effect on growth (9 days) | [215] |
Estradiol (E2) | 0.1–0.5 mg/L | ~80% (4 days) | Raphidocelis subcapitata | No effect on growth (4 days) | [182] |
Triclosan | 0.4 mg/L | ~100% after 1 day | Scenedesmus obliquus | No effect on growth after 4 days | [199] |
7-Aminocephalosporanic acid (7-ACA) | 100 mg/L | 99% within 125 h H&P | Chlorella sp. Mychonastes sp. Chlamydomonas sp. | Slight inhibition (up to 12%) after 200 h | [254] |
Paracetamol | 25 mg/L 250 mg/L | 67% (7 days) 48% (7 days) | Chlorella sorokiniana | 42% increase (8 days) 28% increase (7 days) | [207] |
Salicylic acid | 25 mg/L 250 mg/L | 73% (4 days) 94% (4 days) | 28% increase (8 days) No increase (7 days) C | ||
Diclofenac | 25 mg/L | 65% (9 days) | Chlorella sorokiniana | 53% improvement (9 days) | [208] |
69% (9 days) | Chlorella vulgaris | 43% improvement (9 days) | |||
98% (9 days) | Scenedesmus obliquus | 10% improvement (9 days) |
Microalgae | Specific PHR/PCP | Orientative Concentration (μg/L) in Wastewaters to Monitor |
---|---|---|
Scenedesmus/Desmodesmus | Sulfamethoxazole | ≥120 |
Desmodesmus | Trimethoprim | ≥7.8 |
Desmodesmus | Clarithromycin | 32 |
Chlorella Scenedesmus Dunaliella | Fluoxetine | ≥36 ≥24 ≥50 |
Scenedesmus Chlorella | Propranolol | ≥118 ≥259 |
Desmodesmus | Estradiol | ≥80 |
Desmodesmus Dunaliella | Ethinylestradiol | ≥40 ≥1 |
Scenedesmus Dunaliella Chlorella | Triclosan | ≥1.4 ≥3.5 ≥400 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miazek, K.; Brozek-Pluska, B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int. J. Mol. Sci. 2019, 20, 2492. https://doi.org/10.3390/ijms20102492
Miazek K, Brozek-Pluska B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. International Journal of Molecular Sciences. 2019; 20(10):2492. https://doi.org/10.3390/ijms20102492
Chicago/Turabian StyleMiazek, Krystian, and Beata Brozek-Pluska. 2019. "Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review" International Journal of Molecular Sciences 20, no. 10: 2492. https://doi.org/10.3390/ijms20102492
APA StyleMiazek, K., & Brozek-Pluska, B. (2019). Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. International Journal of Molecular Sciences, 20(10), 2492. https://doi.org/10.3390/ijms20102492