The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer “Omics”
Abstract
:1. The Advent of “Omics”: Transitioning Mass Spectrometry from Cancer to Medicine
2. Expanding the Horizon for Mass Spectrometry
2.1. Basic Concepts Regarding MS
2.2. Small Molecule Identification; Quantification and Monitoring
2.3. Variations of MS and Their Associated Applications
3. Proof of Concept for the Medical Field: The Successful Implementation of Mass Spectrometry in Evaluating Cancer
3.1. Introduction to Molecular Diagnosis for Cancer
3.2. Early Cancer Diagnosis by Mass Spectrometry
3.3. Cancer Prognostic Evaluation Using Mass Spectrometry
3.4. Immunotherapy Assessment for Mass Spectrometry
3.5. Current Protein Investigations Using Mass Spectrometry
3.6. Clinical Trials
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
2D-DIGE | Two-dimensional difference in gel electrophoresis |
APCI | Atmospheric pressure chemical ionization |
circRNAs | Circularribonucleic acids |
CGH | Comparative Genomic Hybridization |
CUP | Cancer of unknown primary |
DESI | Desorption electrospray ionization |
DNA | Deoxyribonucleic acid |
EI | Electron ionization |
ELISA | Enzyme-linked immunosorbent assay |
ER | Estrogen Receptor |
ESI | Electrospray ionization |
exRNAs | Extracellularribonucleic acids |
FTMS | Fourier transform mass spectrometry |
GC-MS | Chromatography combined mass spectrometry |
iTRAQ | Ion Trap Quadrupole |
kDa | Kilodalton |
LC | Liquid chromatography |
LF | Labeled free |
LC/MS | Liquid chromatography-mass spectrometry |
LC-MS/MS | Liquid chromatography-tandem mass spectrometry |
lncRNAs | Long non-codingribonucleic acids |
LRP | Labeled reference peptide |
m/z | mass to charge ratio |
MALDI | Matrix-assisted laser desorption/ionization |
MALDI-MSI | Matrix-assisted laser desorption/ionization–mass spectrometry imaging |
MALDI-TOF | Matrix-assisted laser desorption/ionizationtime-of-flight |
microRNA | Micro-ribonucleic acid |
miRNAs | Micro-ribonucleic acids |
mRNA | Messenger ribonucleic acid |
MS | Mass spectrometry |
PCR | Polymerase Chain Reaction |
piRNAs | Piwi interacting ribonucleic acids |
RNA | Ribonucleic acid |
RNA-Seq | Ribonucleic acid sequencing |
scaRNAs | Small Cajal body-specific ribonucleic acids |
SELDI-TOF-MS | Surface-enhanced laser desorption/ionization time of flight mass spectrometry |
SID | Stable isotope dilution |
siRNAs | Small interfering ribonucleic acids |
snoRNAs | Small nucleolar ribonucleic acids |
snRNAs | Small nuclear ribonucleic acids |
SRM | Selected reaction monitoring |
TOF | Time-of-flight |
UPLC-QTOF | Ultra-performance liquid chromatography coupled with a quadrupole time-of-light |
References
- Bahcall, O. Precision medicine. Nature 2015, 526, 335. [Google Scholar] [CrossRef] [PubMed]
- Berindan-Neagoe, I.; Calin, G.A. Molecular pathways: Micrornas, cancer cells, and microenvironment. Clin. Cancer Res. 2014, 20, 6247–6253. [Google Scholar] [CrossRef] [PubMed]
- Berindan-Neagoe, I.; Monroig Pdel, C.; Pasculli, B.; Calin, G.A. Micrornaome genome: A treasure for cancer diagnosis and therapy. CA Cancer J. Clin. 2014, 64, 311–336. [Google Scholar] [CrossRef]
- Diederichs, S.; Bartsch, L.; Berkmann, J.C.; Frose, K.; Heitmann, J.; Hoppe, C.; Iggena, D.; Jazmati, D.; Karschnia, P.; Linsenmeier, M.; et al. The dark matter of the cancer genome: Aberrations in regulatory elements, untranslated regions, splice sites, non-coding rna and synonymous mutations. EMBO Mol. Med. 2016, 8, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.; Zander, S.; Gutschner, T. The dark side of the epitranscriptome: Chemical modifications in long non-coding rnas. Int. J. Mol. Sci. 2017, 18, 2387. [Google Scholar] [CrossRef] [PubMed]
- Braicu, C.; Calin, G.A.; Berindan-Neagoe, I. Micrornas and cancer therapy-from bystanders to major players. Curr. Med. Chem. 2013, 20, 3561–3573. [Google Scholar] [CrossRef]
- Baltimore, D. Our genome unveiled. Nature 2001, 409, 814–816. [Google Scholar] [CrossRef]
- Redis, R.S.; Sieuwerts, A.M.; Look, M.P.; Tudoran, O.; Ivan, C.; Spizzo, R.; Zhang, X.; de Weerd, V.; Shimizu, M.; Ling, H.; et al. Ccat2, a novel long non-coding rna in breast cancer: Expression study and clinical correlations. Oncotarget 2013, 4, 1748–1762. [Google Scholar] [CrossRef]
- Redis, R.S.; Vela, L.E.; Lu, W.; de Oliveira, J.F.; Ivan, C.; Rodriguez-Aguayo, C.; Adamoski, D.; Pasculli, B.; Taguchi, A.; Chen, Y.; et al. Allele-specific reprogramming of cancer metabolism by the long non-coding rna, ccat2. Mol. Cell 2016, 61, 520–534. [Google Scholar] [CrossRef]
- Gulei, D.; Irimie, A.I.; Cojocneanu-Petric, R.; Schultze, J.L.; Berindan-Neagoe, I. Exosomes-small players, big sound. Bioconjug Chem. 2018, 29, 635–648. [Google Scholar] [CrossRef]
- Braicu, C.; Tomuleasa, C.; Monroig, P.; Cucuianu, A.; Berindan-Neagoe, I.; Calin, G.A. Exosomes as divine messengers: Are they the hermes of modern molecular oncology? Cell Death Differ. 2015, 22, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Vincent, K.; Pichler, M.; Fodde, R.; Berindan-Neagoe, I.; Slack, F.J.; Calin, G.A. Junk DNA and the long non-coding rna twist in cancer genetics. Oncogene 2015, 34, 5003–5011. [Google Scholar] [CrossRef] [PubMed]
- Theodorescu, D.; Mischak, H. Mass spectrometry based proteomics in urine biomarker discovery. World J. Urol. 2007, 25, 435–443. [Google Scholar] [CrossRef]
- Pistol, G.C.; Braicu, C.; Motiu, M.; Gras, M.A.; Marin, D.E.; Stancu, M.; Calin, L.; Israel-Roming, F.; Berindan-Neagoe, I.; Taranu, I. Zearalenone mycotoxin affects immune mediators, mapk signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen. PLoS ONE 2015, 10, e0127503. [Google Scholar] [CrossRef]
- Jurj, A.; Braicu, C.; Pop, L.A.; Tomuleasa, C.; Gherman, C.D.; Berindan-Neagoe, I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel Ther. 2017, 11, 2871–2890. [Google Scholar] [CrossRef]
- Zhang, J.; Chiodini, R.; Badr, A.; Zhang, G. The impact of next-generation sequencing on genomics. J. Genet. Genom. 2011, 38, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Richard, P.; Horgan, L.C.K. Sac review ‘omic’technologies: Genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol. 2011, 13, 189–195. [Google Scholar]
- Pop, L.A.; Cojocneanu-Petric, R.M.; Pileczki, V.; Morar-Bolba, G.; Irimie, A.; Lazar, V.; Lombardo, C.; Paradiso, A.; Berindan-Neagoe, I. Genetic alterations in sporadic triple negative breast cancer. Breast 2017, 38, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Jhaveri, D.J.; Marshall, V.M.; Bauer, D.C.; Edson, J.; Narayanan, R.K.; Robinson, G.J.; Lundberg, A.E.; Bartlett, P.F.; Wray, N.R.; et al. A comparative study of techniques for differential expression analysis on rna-seq data. PLoS ONE 2014, 9, e103207. [Google Scholar] [CrossRef]
- Hrdlickova, R.; Toloue, M.; Tian, B. Rna-seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 2017, 8. [Google Scholar] [CrossRef]
- Huber, L.A.; Pfaller, K.; Vietor, I. Organelle proteomics: Implications for subcellular fractionation in proteomics. Circ. Res. 2003, 92, 962–968. [Google Scholar] [CrossRef]
- Unwin, R.D.; Whetton, A.D. How will haematologists use proteomics? Blood Rev. 2007, 21, 315–326. [Google Scholar] [CrossRef]
- Kamath, K.S.; Vasavada, M.S.; Srivastava, S. Proteomic databases and tools to decipher post-translational modifications. J. Proteom. 2011, 75, 127–144. [Google Scholar] [CrossRef]
- Michelsen, U.; von Hagen, J. Isolation of subcellular organelles and structures. Methods Enzym. 2009, 463, 305–328. [Google Scholar]
- Cox, B.; Emili, A. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat. Protoc. 2006, 1, 1872–1878. [Google Scholar] [CrossRef]
- Camafeita, E.; Lamas, J.R.; Calvo, E.; López, J.A.; Fernández-Gutiérrez, B. Proteomics: New insights into rheumatic diseases. Proteomics 2009, 3, 226–241. [Google Scholar] [CrossRef]
- Ruiz-Romero, C.; Lopez-Armada, M.J.; Blanco, F.J. Proteomic characterization of human normal articular chondrocytes: A novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics 2005, 5, 3048–3059. [Google Scholar] [CrossRef]
- López-Pedrera, C.; Barbarroja, N.; Aguirre, M.A.; Torres, L.A.; Velasco, F.; Cuadrado, M.J. Genomics and proteomics: A new approach for assessing thrombotic risk in autoimmune diseases. Lupus 2008, 17, 904–915. [Google Scholar] [CrossRef]
- Barcelo-Batllori, S.; Gomis, R. Proteomics in obesity research. Proteom. Clin. Appl. 2009, 3, 263–278. [Google Scholar] [CrossRef] [Green Version]
- Rehman, I.; Azzouzi, A.; Catto, J.; Hamdy, F.C. The use of proteomics in urological research. Mol. Biol. Urol. 2005, 102, 17041–17046. [Google Scholar] [CrossRef]
- Zhang, Y.; Fonslow, B.R.; Shan, B.; Baek, M.C.; Yates, J.R., 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 2013, 113, 2343–2394. [Google Scholar] [CrossRef]
- Catherman, A.D.; Skinner, O.S.; Kelleher, N.L. Top down proteomics: Facts and perspectives. Biochem. Biophys. Res. Commun. 2014, 445, 683–693. [Google Scholar] [CrossRef]
- Wu, C.; Tran, J.C.; Zamdborg, L.; Durbin, K.R.; Li, M.; Ahlf, D.R.; Early, B.P.; Thomas, P.M.; Sweedler, J.V.; Kelleher, N.L. A protease for ‘middle-down’ proteomics. Nat. Methods 2012, 9, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 2003, 21, 255–261. [Google Scholar] [CrossRef]
- Khoury, G.A.; Baliban, R.C.; Floudas, C.A. Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci. Rep. 2011, 1. [Google Scholar] [CrossRef]
- Goodacre, R.; Vaidyanathan, S.; Dunn, W.B.; Harrigan, G.G.; Kell, D.B. Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends Biotechnol. 2004, 22, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Corte, A.D.; Gika, H.; Narduzzi, L.; Mattivi, F.; Theodoridis, G. Studying the effect of storage conditions on the metabolite content of red wine using hilic lc-ms based metabolomics. Food Chem. 2016, 197 Pt B, 1331–1340. [Google Scholar] [CrossRef]
- Gooding, J.R.; Jensen, M.V.; Newgard, C.B. Metabolomics applied to the pancreatic islet. Arch Biochem. Biophys. 2016, 589, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Li, H.; Peng, X.X. Functional metabolomics: From biomarker discovery to metabolome reprogramming. Protein Cell 2015, 6, 628–637. [Google Scholar] [CrossRef]
- Carrola, J.; Bastos, V.; Ferreira de Oliveira, J.M.; Oliveira, H.; Santos, C.; Gil, A.M.; Duarte, I.F. Insights into the impact of silver nanoparticles on human keratinocytes metabolism through nmr metabolomics. Arch Biochem. Biophys. 2016, 589, 53–61. [Google Scholar] [CrossRef]
- Rusiecki, J.A.; Baccarelli, A.; Bollati, V.; Tarantini, L.; Moore, L.E.; Bonefeld-Jorgensen, E.C. Global DNA hypomethylation is associated with high serum-persistent organic pollutants in greenlandic inuit. Environ. Health Perspect 2008, 116, 1547–1552. [Google Scholar] [CrossRef]
- Oliver, S.G.; Winson, M.K.; Kell, D.B.; Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998, 16, 373–378. [Google Scholar] [CrossRef]
- Jeanneret, F.; Tonoli, D.; Hochstrasser, D.; Saurat, J.H.; Sorg, O.; Boccard, J.; Rudaz, S. Evaluation and identification of dioxin exposure biomarkers in human urine by high-resolution metabolomics, multivariate analysis and in vitro synthesis. Toxicol. Lett. 2016, 240, 22–31. [Google Scholar] [CrossRef]
- Li, N.; Liu, Y.; Li, W.; Zhou, L.; Li, Q.; Wang, X.; He, P. A uplc/ms-based metabolomics investigation of the protective effect of ginsenosides rg1 and rg2 in mice with alzheimer’s disease. J. Ginseng Res. 2016, 40, 9–17. [Google Scholar] [CrossRef]
- Gowda, G.A.; Djukovic, D. Overview of mass spectrometry-based metabolomics: Opportunities and challenges. Methods Mol. Biol. 2014, 1198, 3–12. [Google Scholar]
- Chen, R.; Snyder, M. Promise of personalized omics to precision medicine. Wiley Interdiscip Rev. Syst. Biol. Med. 2013, 5, 73–82. [Google Scholar] [CrossRef]
- Janssens, A.C.; van Duijn, C.M. Genome-based prediction of common diseases: Advances and prospects. Hum. Mol. Genet. 2008, 17, R166–R173. [Google Scholar] [CrossRef]
- Bell, J. Predicting disease using genomics. Nature 2004, 429, 453–456. [Google Scholar] [CrossRef]
- Casamassimi, A.; Federico, A.; Rienzo, M.; Esposito, S.; Ciccodicola, A. Transcriptome profiling in human diseases: New advances and perspectives. Int. J. Mol. Sci. 2017, 18, 1652. [Google Scholar] [CrossRef]
- Verma, M. Personalized medicine and cancer. J. Pers Med. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Vogenberg, F.R.; Isaacson Barash, C.; Pursel, M. Personalized medicine: Part 1: Evolution and development into theranostics. PT 2010, 35, 560–576. [Google Scholar]
- Chiorean, R.; Braicu, C.; Berindan-Neagoe, I. Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth? Breast 2013, 22, 1026–1033. [Google Scholar] [CrossRef]
- Braicu, C.; Selicean, S.; Cojocneanu-Petric, R.; Lajos, R.; Balacescu, O.; Taranu, I.; Marin, D.E.; Motiu, M.; Jurj, A.; Achimas-Cadariu, P.; et al. Evaluation of cellular and molecular impact of zearalenone and escherichia coli co-exposure on ipec-1 cells using microarray technology. BMC Genom. 2016, 17, 576. [Google Scholar] [CrossRef]
- Taranu, I.; Braicu, C.; Marin, D.E.; Pistol, G.C.; Motiu, M.; Balacescu, L.; Beridan Neagoe, I.; Burlacu, R. Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression. Toxicol. Lett. 2015, 232, 310–325. [Google Scholar] [CrossRef]
- Hunter, D.J. Genomics and proteomics in epidemiology: Treasure trove or “high-tech stamp collecting”? Epidemiology 2006, 17. [Google Scholar] [CrossRef]
- Vineis, P.; Khan, A.E.; Vlaanderen, J.; Vermeulen, R. The impact of new research technologies on our understanding of environmental causes of disease: The concept of clinical vulnerability. Environ. Health 2009, 8, 54. [Google Scholar] [CrossRef]
- Prideaux, B.; Stoeckli, M. Mass spectrometry imaging for drug distribution studies. J. Proteom. 2012, 75, 4999–5013. [Google Scholar] [CrossRef]
- Berindan-Neagoe, I.; Braicu, C.; Gulei, D.; Tomuleasa, C.; Calin, G.A. Noncoding RNAs in lung cancer angiogenesis. In Physiologic and Pathologic Angiogenesis-Signaling Mechanisms and Targeted Therapy; Simionescu, D., Simionescu, A., Eds.; InTech: Rijeka, Croatia, 2017; Chapter 14. [Google Scholar]
- Deng, G.; Sanyal, G. Applications of mass spectrometry in early stages of target based drug discovery. J. Pharm. Biomed. Anal. 2006, 40, 528–538. [Google Scholar] [CrossRef]
- Geoghegan, K.F.; Kelly, M.A. Biochemical applications of mass spectrometry in pharmaceutical drug discovery. Mass Spectrom Rev. 2005, 24, 347–366. [Google Scholar] [CrossRef]
- Ketola, R.A.; Mauriala, T. Mass spectrometric tools for cell and tissue studies. Eur J. Pharm. Sci. 2012, 46, 293–314. [Google Scholar] [CrossRef]
- Pirro, V.; Jarmusch, A.K.; Vincenti, M.; Cooks, R.G. Direct drug analysis from oral fluid using medical swab touch spray mass spectrometry. Anal. Chim. Acta 2015, 861, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernemalm, M.; Lehtio, J. Mass spectrometry-based plasma proteomics: State of the art and future outlook. Expert Rev. Proteom. 2014, 11, 431–448. [Google Scholar] [CrossRef]
- Jenkins, R.; Duggan, J.X.; Aubry, A.F.; Zeng, J.; Lee, J.W.; Cojocaru, L.; Dufield, D.; Garofolo, F.; Kaur, S.; Schultz, G.A.; et al. Recommendations for validation of lc-ms/ms bioanalytical methods for protein biotherapeutics. Aaps J. 2015, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Veselkov, K.A.; Mirnezami, R.; Strittmatter, N.; Goldin, R.D.; Kinross, J.; Speller, A.V.; Abramov, T.; Jones, E.A.; Darzi, A.; Holmes, E.; et al. Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc. Natl. Acad. Sci. USA 2014, 111, 1216–1221. [Google Scholar] [CrossRef] [Green Version]
- Drissi, R.; Dubois, M.L.; Boisvert, F.M. Proteomics methods for subcellular proteome analysis. FEBS J. 2013, 280, 5626–5634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meringer, M.; Schymanski, E.L. Small molecule identification with molgen and mass spectrometry. Metabolites 2013, 3, 440–462. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.; Hunter, C.L. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell Proteom. 2006, 5, 573–588. [Google Scholar] [CrossRef]
- Marko-Varga, G.; Fehniger, T.E.; Rezeli, M.; Dome, B.; Laurell, T.; Vegvari, A. Drug localization in different lung cancer phenotypes by maldi mass spectrometry imaging. J. Proteom. 2011, 74, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Henion, J.; Brewer, E.; Rule, G. Sample preparation for lc/ms/ms: Analyzing biological and environmental samples. Anal. Chem. 1998, 70, 650A–656A. [Google Scholar] [CrossRef]
- Pham, Q.K.; Seo, H.; Ahn, S.H. A rapid and sensitive liquid chromatography/tandem mass spectrometry assay for simultaneous quantitation of disopyramide and its major metabolite, mono-isopropyl-disopyramide, in rat plasma and its application to a pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1096, 154–159. [Google Scholar] [CrossRef]
- Vogeser, M.; Parhofer, K.G. Liquid chromatography tandem-mass spectrometry (lc-ms/ms)-technique and applications in endocrinology. Exp. Clin. Endocrinol. Diabetes 2007, 115, 559–570. [Google Scholar] [CrossRef]
- Gilani, S.; Giridharan, S. Is it safe for pregnant health-care professionals to handle cytotoxic drugs? A review of the literature and recommendations. Ecancermedicalscience 2014, 8, 418. [Google Scholar] [CrossRef]
- Johnson, R.W., Jr.; Talaty, N. Tissue imaging by mass spectrometry: A practical guide for the medicinal chemist. ACS Med. Chem. Lett. 2019, 10, 161–167. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharm. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Specenier, P.; Vermorken, J.B. Advances in the systemic treatment of head and neck cancers. Curr. Opin. Oncol. 2010, 22, 200–205. [Google Scholar] [CrossRef]
- Da Silva, S.D.; Hier, M.; Mlynarek, A.; Kowalski, L.P.; Alaoui-Jamali, M.A. Recurrent oral cancer: Current and emerging therapeutic approaches. Front. Pharm. 2012, 3, 149. [Google Scholar] [CrossRef]
- Allardyce, C.S.; Dyson, P.J.; Coffey, J.; Johnson, N. Determination of drug binding sites to proteins by electrospray ionisation mass spectrometry: The interaction of cisplatin with transferrin. Rapid Commun. Mass Spectrom 2002, 16, 933–935. [Google Scholar] [CrossRef]
- Fraiser, L.H.; Kanekal, S.; Kehrer, J.P. Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 1991, 42, 781–795. [Google Scholar] [CrossRef]
- Al-Anazi, K.A.; Eltayeb, K.I.; Bakr, M.; Al-Mohareb, F.I. Methotrexate-induced acute leukemia: Report of three cases and review of the literature. Clin. Med. Case Rep. 2009, 2, 43–49. [Google Scholar] [CrossRef]
- Kiewe, P.; Loddenkemper, C.; Anagnostopoulos, I.; Reinwald, M.; Thiel, E.; Korfel, A. High-dose methotrexate is beneficial in parenchymal brain masses of uncertain origin suspicious for primary cns lymphoma. Neuro Oncol. 2007, 9, 96–102. [Google Scholar] [CrossRef]
- El-Husseiny, K.; Motawei, H.; Ali, M.S. Continuous low-dose oral cyclophosphamide and methotrexate as maintenance therapy in patients with advanced ovarian carcinoma after complete clinical response to platinum and paclitaxel chemotherapy. Int. J. Gynecol. Cancer 2016, 26, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Hara, T.; Matsui, Y.; Koido, K.; Hashimoto, H.; Shinoda, Y.; Komiyama, M.; Fujimoto, H.; Terakado, H. Tolerability and efficacy of neoadjuvant chemotherapy with a tri-weekly interval methotrexate, doxorubicin, vinblastine, and cisplatin regimen for patients with locally advanced bladder cancer. Case Rep. Oncol. 2018, 11, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, J.; Zhao, N.; Wang, C.; Kamar, S.; Zhou, Y.; He, Z.; Yang, J.; Sun, B.; Shi, X.; et al. Progress in the chemotherapeutic treatment of osteosarcoma. Oncol. Lett. 2018, 16, 6228–6237. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M.; Dassopoulos, T. Update on the use of thiopurines and methotrexate in inflammatory bowel disease. Curr. Gastroenterol. Rep. 2018, 20, 53. [Google Scholar] [CrossRef] [PubMed]
- Huennekens, F.M. The methotrexate story: A paradigm for development of cancer chemotherapeutic agents. Adv. Enzym. Regul. 1994, 34, 397–419. [Google Scholar] [CrossRef]
- Bai, F.; Fraga, C.H.; Tagen, M.; Schaiquevich, P.; Hagedorn, N.; Stewart, C.F. Simultaneous determination of cyclophosphamide and carboxyethylphosphoramide mustard in human plasma using online extraction and electrospray tandem mass spectrometry (htlc-esi-ms/ms). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1709–1715. [Google Scholar] [CrossRef]
- Rodin, I.; Braun, A.; Stavrianidi, A.; Shpigun, O. A validated lc-ms/ms method for rapid determination of methotrexate in human saliva and its application to an excretion evaluation study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 937, 1–6. [Google Scholar] [CrossRef]
- Bylda, C.; Thiele, R.; Kobold, U.; Volmer, D.A. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using lc-ms/ms. Analyst 2014, 139, 2265–2276. [Google Scholar] [CrossRef]
- Wang, W.; Qin, S.; Li, L.; Chen, X.; Wang, Q.; Wei, J. An optimized high throughput clean-up method using mixed-mode spe plate for the analysis of free arachidonic acid in plasma by lc-ms/ms. Int. J. Anal. Chem. 2015, 2015, 374819. [Google Scholar] [CrossRef]
- Chertov, O.; Biragyn, A.; Kwak, L.W.; Simpson, J.T.; Boronina, T.; Hoang, V.M.; Prieto, D.A.; Conrads, T.P.; Veenstra, T.D.; Fisher, R.J. Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics 2004, 4, 1195–1203. [Google Scholar] [CrossRef]
- Mushtaq, M.Y.; Choi, Y.H.; Verpoorte, R.; Wilson, E.G. Extraction for metabolomics: Access to the metabolome. Phytochem. Anal. 2014, 25, 291–306. [Google Scholar] [CrossRef]
- Kim, S.Y.; Theunissen, J.W.; Balibalos, J.; Liao-Chan, S.; Babcock, M.C.; Wong, T.; Cairns, B.; Gonzalez, D.; van der Horst, E.H.; Perez, M.; et al. A novel antibody-drug conjugate targeting sail for the treatment of hematologic malignancies. Blood Cancer J. 2015, 5, e316. [Google Scholar] [CrossRef] [PubMed]
- Marz, A.M.; Fabian, A.K.; Kozany, C.; Bracher, A.; Hausch, F. Large fk506-binding proteins shape the pharmacology of rapamycin. Mol. Cell Biol 2013, 33, 1357–1367. [Google Scholar] [CrossRef]
- Xie, J.; Wang, X.; Proud, C.G. Mtor inhibitors in cancer therapy. F1000Res 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Stallone, G.; Infante, B.; Grandaliano, G.; Gesualdo, L. Management of side effects of sirolimus therapy. Transplantation 2009, 87, S23–S26. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.; Qazi, Y.; Wellen, J.R. Strategies for the management of adverse events associated with mtor inhibitors. Transpl. Rev. 2014, 28, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Baroja-Mazo, A.; Revilla-Nuin, B.; Ramirez, P.; Pons, J.A. Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation. World J. Transpl. 2016, 6, 183–192. [Google Scholar] [CrossRef]
- Drenan, R.M.; Liu, X.; Bertram, P.G.; Zheng, X.F. Fkbp12-rapamycin-associated protein or mammalian target of rapamycin (frap/mtor) localization in the endoplasmic reticulum and the golgi apparatus. J. Biol Chem. 2004, 279, 772–778. [Google Scholar] [CrossRef]
- Moss, S.C.; Lightell, D.J., Jr.; Marx, S.O.; Marks, A.R.; Woods, T.C. Rapamycin regulates endothelial cell migration through regulation of the cyclin-dependent kinase inhibitor p27kip1. J. Biol Chem. 2010, 285, 11991–11997. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Lee, J.; Xu, L.; Mohammed, A.U.; Li, W.; Hale, J.S.; Tan, W.G.; Wu, T.; Davis, C.W.; Ahmed, R.; et al. Mtor promotes antiviral humoral immunity by differentially regulating cd4 helper t cell and b cell responses. J. Virol 2017, 91. [Google Scholar] [CrossRef]
- Vogeser, M.; Fleischer, C.; Meiser, B.; Groetzner, J.; Spohrer, U.; Seidel, D. Quantification of sirolimus by liquid chromatography-tandem mass spectrometry using on-line solid-phase extraction. Clin. Chem. Lab. Med. 2002, 40, 40–45. [Google Scholar] [CrossRef]
- Streit, F.; Christians, U.; Schiebel, H.M.; Napoli, K.L.; Ernst, L.; Linck, A.; Kahan, B.D.; Sewing, K.F. Sensitive and specific quantification of sirolimus (rapamycin) and its metabolites in blood of kidney graft recipients by hplc/electrospray-mass spectrometry. Clin. Chem. 1996, 42, 1417–1425. [Google Scholar]
- Hortin, G.L. The maldi-tof mass spectrometric view of the plasma proteome and peptidome. Clin. Chem. 2006, 52, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Stauber, J.; MacAleese, L.; Franck, J.; Claude, E.; Snel, M.; Kaletas, B.K.; Wiel, I.M.; Wisztorski, M.; Fournier, I.; Heeren, R.M. On-tissue protein identification and imaging by maldi-ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom 2010, 21, 338–347. [Google Scholar] [CrossRef]
- Lopez, M.F.; Mikulskis, A.; Kuzdzal, S.; Bennett, D.A.; Kelly, J.; Golenko, E.; DiCesare, J.; Denoyer, E.; Patton, W.F.; Ediger, R.; et al. High-resolution serum proteomic profiling of alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin. Chem. 2005, 51, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Pirman, D.A.; Efuet, E.; Ding, X.P.; Pan, Y.; Tan, L.; Fischer, S.M.; DuBois, R.N.; Yang, P. Changes in cancer cell metabolism revealed by direct sample analysis with maldi mass spectrometry. PLoS ONE 2013, 8, e61379. [Google Scholar] [CrossRef]
- Castellino, S.; Groseclose, M.R.; Wagner, D. Maldi imaging mass spectrometry: Bridging biology and chemistry in drug development. Bioanalysis 2011, 3, 2427–2441. [Google Scholar] [CrossRef] [PubMed]
- Kriegsmann, J.; Kriegsmann, M.; Casadonte, R. Maldi tof imaging mass spectrometry in clinical pathology: A valuable tool for cancer diagnostics (review). Int. J. Oncol. 2015, 46, 893–906. [Google Scholar] [CrossRef]
- Wang, H.; Luo, C.; Zhu, S.; Fang, H.; Gao, Q.; Ge, S.; Qu, H.; Ma, Q.; Ren, H.; Wang, Y.; et al. Serum peptidome profiling for the diagnosis of colorectal cancer: Discovery and validation in two independent cohorts. Oncotarget 2017, 8, 59376–59386. [Google Scholar] [CrossRef] [PubMed]
- Kan, F.; Ye, L.; Yan, T.; Cao, J.; Zheng, J.; Li, W. Proteomic and transcriptomic studies of hbv-associated liver fibrosis of an aav-hbv-infected mouse model. BMC Genom. 2017, 18, 641. [Google Scholar] [CrossRef]
- Qin, R.; Zhao, J.; Qin, W.; Zhang, Z.; Zhao, R.; Han, J.; Yang, Y.; Li, L.; Wang, X.; Ren, S.; et al. Discovery of non-invasive glycan biomarkers for detection and surveillance of gastric cancer. J. Cancer 2017, 8, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Swiatly, A.; Horala, A.; Hajduk, J.; Matysiak, J.; Nowak-Markwitz, E.; Kokot, Z.J. Maldi-tof-ms analysis in discovery and identification of serum proteomic patterns of ovarian cancer. BMC Cancer 2017, 17, 472. [Google Scholar] [CrossRef]
- Wang, L.; Tang, C.; Xu, B.; Yang, L.; Qu, L.; Li, L.; Li, X.; Wang, W.; Qin, H.; Gao, H.; et al. Mass spectrometry-based serum peptidome profiling accurately and reliably predicts outcomes of pemetrexed plus platinum chemotherapy in patients with advanced lung adenocarcinoma. PLoS ONE 2017, 12, e0179000. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, G.; Kasap, M.; Canturk, N.Z.; Zulfigarova, M.; Islek, E.E.; Guler, S.A.; Simsek, T.; Canturk, Z. Proteomics analysis of tissue samples reveals changes in mitochondrial protein levels in parathyroid hyperplasia over adenoma. Cancer Genom. Proteom. 2017, 14, 197–211. [Google Scholar] [CrossRef]
- Calligaris, D.; Caragacianu, D.; Liu, X.; Norton, I.; Thompson, C.J.; Richardson, A.L.; Golshan, M.; Easterling, M.L.; Santagata, S.; Dillon, D.A.; et al. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc. Natl. Acad. Sci. USA 2014, 111, 15184–15189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spengler, B.; Hubert, M.; Kaufmann, R. Maldi ion imaging and biological ion imaging with a new scanning uv-laser microprobe. In Proceedings of the 42nd Annual Conference on Mass Spectrometry and Allied Topics, Chicago, IL, USA, 29 May–3 June 1994. [Google Scholar]
- Aichler, M.; Walch, A. Maldi imaging mass spectrometry: Current frontiers and perspectives in pathology research and practice. Lab. Investig. 2015, 95, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Vegvari, A. Drug localizations in tissue by mass spectrometry imaging. Biomark. Med. 2015, 9, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Vegvari, A.; Shavkunov, A.S.; Fehniger, T.E.; Grabau, D.; Nimeus, E.; Marko-Varga, G. Localization of tamoxifen in human breast cancer tumors by maldi mass spectrometry imaging. Clin. Transl. Med. 2016, 5, 10. [Google Scholar] [CrossRef]
- Ho, C.S.; Lam, C.W.; Chan, M.H.; Cheung, R.C.; Law, L.K.; Lit, L.C.; Ng, K.F.; Suen, M.W.; Tai, H.L. Electrospray ionisation mass spectrometry: Principles and clinical applications. Clin. Biochem. Rev. 2003, 24, 3–12. [Google Scholar]
- Tessitore, A.; Gaggiano, A.; Cicciarelli, G.; Verzella, D.; Capece, D.; Fischietti, M.; Zazzeroni, F.; Alesse, E. Serum biomarkers identification by mass spectrometry in high-mortality tumors. Int. J. Proteom. 2013, 2013, 125858. [Google Scholar] [CrossRef]
- Weiskopf, A.S.; Vouros, P.; Harvey, D.J. Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Commun. Mass Spectrom 1997, 11, 1493–1504. [Google Scholar] [CrossRef]
- Liu, C. The application of seldi-tof-ms in clinical diagnosis of cancers. J. Biomed. Biotechnol. 2011, 2011, 245821. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, C.A.; Thomas, S.N.; Sokoll, L.J.; Chan, D.W. Advances in mass spectrometry-based clinical biomarker discovery. Clin. Proteom. 2016, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Hanash, S.; Taguchi, A. Application of proteomics to cancer early detection. Cancer J. 2011, 17, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Sallam, R.M. Proteomics in cancer biomarkers discovery: Challenges and applications. Dis. Mark. 2015, 2015, 321370. [Google Scholar] [CrossRef] [PubMed]
- Desmetz, C.; Mange, A.; Maudelonde, T.; Solassol, J. Autoantibody signatures: Progress and perspectives for early cancer detection. J. Cell Mol. Med. 2011, 15, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, C.; Braicu, C.; Chiorean, R.; Cojocneanu Petric, R.; Neagoe, E.; Pop, L.; Chira, S.; Berindan-Neagoe, I. Timp-1 expression in human colorectal cancer is associated with smad3 gene expression levels: A pilot study. J. Gastrointestin. Liver Dis. 2014, 23, 413–418. [Google Scholar] [PubMed]
- Ling, H.; Pickard, K.; Ivan, C.; Isella, C.; Ikuo, M.; Mitter, R.; Spizzo, R.; Bullock, M.; Braicu, C.; Pileczki, V.; et al. The clinical and biological significance of mir-224 expression in colorectal cancer metastasis. Gut 2016, 65, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Irimie, A.I.; Braicu, C.; Cojocneanu-Petric, R.; Berindan-Neagoe, I.; Campian, R.S. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol. Scand 2015, 73, 161–168. [Google Scholar] [CrossRef]
- Etzioni, R.; Urban, N.; Ramsey, S.; McIntosh, M.; Schwartz, S.; Reid, B.; Radich, J.; Anderson, G.; Hartwell, L. The case for early detection. Nat. Rev. Cancer 2003, 3, 243–252. [Google Scholar] [CrossRef]
- Kulasingam, V.; Diamandis, E.P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pr. Oncol. 2008, 5, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Pop-Bica, C.; Pintea, S.; Cojocneanu-Petric, R.; Del Sal, G.; Piazza, S.; Wu, Z.H.; Alencar, A.J.; Lossos, I.S.; Berindan-Neagoe, I.; Calin, G.A. Mir-181 family-specific behavior in different cancers: A meta-analysis view. Cancer Metastasis Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Pop-Bica, C.; Gulei, D.; Cojocneanu-Petric, R.; Braicu, C.; Petrut, B.; Berindan-Neagoe, I. Understanding the role of non-coding rnas in bladder cancer: From dark matter to valuable therapeutic targets. Int. J. Mol. Sci. 2017, 18, 1514. [Google Scholar] [CrossRef] [PubMed]
- Gulei, D.; Magdo, L.; Jurj, A.; Raduly, L.; Cojocneanu-Petric, R.; Moldovan, A.; Moldovan, C.; Florea, A.; Pasca, S.; Pop, L.A.; et al. The silent healer: Mir-205-5p up-regulation inhibits epithelial to mesenchymal transition in colon cancer cells by indirectly up-regulating e-cadherin expression. Cell Death Dis. 2018, 9, 66. [Google Scholar] [CrossRef]
- Mittal, P.; Klingler-Hoffmann, M.; Arentz, G.; Zhang, C.; Kaur, G.; Oehler, M.K.; Hoffmann, P. Proteomics of endometrial cancer diagnosis, treatment, and prognosis. Proteom. Clin. Appl. 2016, 10, 217–229. [Google Scholar] [CrossRef]
- Gerdtsson, A.S.; Wingren, C.; Persson, H.; Delfani, P.; Nordström, M.; Ren, H.; Wen, X.; Ringdahl, U.; Borrebaeck, C.A.; Hao, J. Plasma protein profiling in a stage defined pancreatic cancer cohort-implications for early diagnosis. Mol. Oncol. 2016, 10, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Tsay, J.C.; Li, J.; Yie, T.A.; Munger, J.S.; Pass, H.; Rom, W.N.; Zhang, Y.; Tan, E.M.; Zhang, J.Y. Autoantibodies against tumor-associated antigens in the early detection of lung cancer. Lung Cancer 2016, 99, 172–179. [Google Scholar] [CrossRef]
- Martin, K.; Ricciardelli, C.; Hoffmann, P.; Oehler, M.K. Exploring the immunoproteome for ovarian cancer biomarker discovery. Int. J. Mol. Sci. 2011, 12, 410–428. [Google Scholar] [CrossRef]
- Jain, R.K. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 2001, 46, 149–168. [Google Scholar] [CrossRef]
- Tjalsma, H.; Schaeps, R.M.; Swinkels, D.W. Immunoproteomics: From biomarker discovery to diagnostic applications. Proteom. Clin. Appl. 2008, 2, 167–180. [Google Scholar] [CrossRef]
- Willitzki, A.; Hiemann, R.; Peters, V.; Sack, U.; Schierack, P.; Rödiger, S.; Anderer, U.; Conrad, K.; Bogdanos, D.P.; Reinhold, D.; et al. New platform technology for comprehensive serological diagnostics of autoimmune diseases. Clin. Dev. Immunol. 2012, 2012. [Google Scholar] [CrossRef]
- Tozzoli, R.; Bonaguri, C.; Melegari, A.; Antico, A.; Bassetti, D.; Bizzaro, N. Current state of diagnostic technologies in the autoimmunology laboratory. Clin. Chem. Lab. Med. 2013, 51, 129–138. [Google Scholar] [CrossRef]
- Meeusen, E.N.; Lim, E.; Mathivanan, S. Secreted tumor antigens-immune biomarkers for diagnosis and therapy. Proteomics 2017. [Google Scholar] [CrossRef]
- van Laar, R.K.; Ma, X.J.; de Jong, D.; Wehkamp, D.; Floore, A.N.; Warmoes, M.O.; Simon, I.; Wang, W.; Erlander, M.; van’t Veer, L.J.; et al. Implementation of a novel microarray-based diagnostic test for cancer of unknown primary. Int. J. Cancer 2009, 125, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Semmes, O.J.; Feng, Z.; Adam, B.L.; Banez, L.L.; Bigbee, W.L.; Campos, D.; Cazares, L.H.; Chan, D.W.; Grizzle, W.E.; Izbicka, E.; et al. Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin. Chem. 2005, 51, 102–112. [Google Scholar] [CrossRef]
- Adam, B.L.; Qu, Y.; Davis, J.W.; Ward, M.D.; Clements, M.A.; Cazares, L.H.; Semmes, O.J.; Schellhammer, P.F.; Yasui, Y.; Feng, Z.; et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002, 62, 3609–3614. [Google Scholar]
- Qu, Y.; Adam, B.L.; Yasui, Y.; Ward, M.D.; Cazares, L.H.; Schellhammer, P.F.; Feng, Z.; Semmes, O.J.; Wright, G.L., Jr. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 2002, 48, 1835–1843. [Google Scholar] [PubMed]
- Matos Do Canto, L.; Marian, C.; Varghese, R.S.; Ahn, J.; Da Cunha, P.A.; Willey, S.; Sidawy, M.; Rone, J.D.; Cheema, A.K.; Luta, G.; et al. Metabolomic profiling of breast tumors using ductal fluid. Int. J. Oncol. 2016, 49, 2245–2254. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, P.; Wang, X.; Duan, Y. The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci. Rep. 2014, 4, 6802. [Google Scholar] [CrossRef]
- Budhu, A.; Terunuma, A.; Zhang, G.; Hussain, S.P.; Ambs, S.; Wang, X.W. Metabolic profiles are principally different between cancers of the liver, pancreas and breast. Int. J. Biol Sci. 2014, 10, 966–972. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Guo, L.; Liu, L.; Wen, J.; Xu, L.; Yan, M.; Li, Z.; Zhang, X.; Nan, P.; et al. A characteristic biosignature for discrimination of gastric cancer from healthy population by high throughput gc-ms analysis. Oncotarget 2016, 7, 87496–87510. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, E.; Lesur, A.; Devis, L.; Campos, A.; Cabrera, S.; van Oostrum, J.; Matias-Guiu, X.; Gil-Moreno, A.; Reventos, J.; Colas, E.; et al. Development of a sequential workflow based on lc-prm for the verification of endometrial cancer protein biomarkers in uterine aspirate samples. Oncotarget 2016, 7, 53102–53115. [Google Scholar] [CrossRef] [PubMed]
- Banach, P.; Suchy, W.; Derezinski, P.; Matysiak, J.; Kokot, Z.J.; Nowak-Markwitz, E. Mass spectrometry as a tool for biomarkers searching in gynecological oncology. Biomed. Pharm. 2017, 92, 836–842. [Google Scholar] [CrossRef]
- Buck, A.; Aichler, M.; Huber, K.; Walch, A. In situ metabolomics in cancer by mass spectrometry imaging. Adv. Cancer Res. 2017, 134, 117–132. [Google Scholar]
- Faria, S.S.; Morris, C.F.; Silva, A.R.; Fonseca, M.P.; Forget, P.; Castro, M.S.; Fontes, W. A timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research. Front. Oncol. 2017, 7, 13. [Google Scholar] [CrossRef]
- Cawthorn, T.R.; Moreno, J.C.; Dharsee, M.; Tran-Thanh, D.; Ackloo, S.; Zhu, P.H.; Sardana, G.; Chen, J.; Kupchak, P.; Jacks, L.M.; et al. Proteomic analyses reveal high expression of decorin and endoplasmin (hsp90b1) are associated with breast cancer metastasis and decreased survival. PLoS ONE 2012, 7, e30992. [Google Scholar] [CrossRef]
- Cohen, A.; Wang, E.; Chisholm, K.A.; Kostyleva, R.; O’Connor-McCourt, M.; Pinto, D.M. A mass spectrometry-based plasma protein panel targeting the tumor microenvironment in patients with breast cancer. J. Proteom. 2013, 81, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Broker, M.E.; Lalmahomed, Z.S.; Roest, H.P.; van Huizen, N.A.; Dekker, L.J.; Calame, W.; Verhoef, C.; Ijzermans, J.N.; Luider, T.M. Collagen peptides in urine: A new promising biomarker for the detection of colorectal liver metastases. PLoS ONE 2013, 8, e70918. [Google Scholar] [CrossRef]
- Chen, Y.; Gruidl, M.; Remily-Wood, E.; Liu, R.Z.; Eschrich, S.; Lloyd, M.; Nasir, A.; Bui, M.M.; Huang, E.; Shibata, D.; et al. Quantification of beta-catenin signaling components in colon cancer cell lines, tissue sections, and microdissected tumor cells using reaction monitoring mass spectrometry. J. Proteome. Res. 2010, 9, 4215–4227. [Google Scholar] [CrossRef]
- Yin, H.R.; Zhang, L.; Xie, L.Q.; Huang, L.Y.; Xu, Y.; Cai, S.J.; Yang, P.Y.; Lu, H.J. Hyperplex-mrm: A hybrid multiple reaction monitoring method using mtraq/itraq labeling for multiplex absolute quantification of human colorectal cancer biomarker. J. Proteome. Res. 2013, 12, 3912–3919. [Google Scholar] [CrossRef]
- Catenacci, D.V.; Liao, W.L.; Thyparambil, S.; Henderson, L.; Xu, P.; Zhao, L.; Rambo, B.; Hart, J.; Xiao, S.Y.; Bengali, K.; et al. Absolute quantitation of met using mass spectrometry for clinical application: Assay precision, stability, and correlation with met gene amplification in ffpe tumor tissue. PLoS ONE 2014, 9, e100586. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.Y.; Park, G.W.; Cheon, M.H.; Kwon, K.H.; Ahn, Y.H.; Moon, M.H.; Lee, H.J.; Paik, Y.K.; Yoo, J.S. Targeted mass spectrometric approach for biomarker discovery and validation with nonglycosylated tryptic peptides from n-linked glycoproteins in human plasma. Mol. Cell Proteom. 2011, 10, M111. [Google Scholar] [CrossRef] [PubMed]
- Sanda, M.; Pompach, P.; Brnakova, Z.; Wu, J.; Makambi, K.; Goldman, R. Quantitative liquid chromatography-mass spectrometry-multiple reaction monitoring (lc-ms-mrm) analysis of site-specific glycoforms of haptoglobin in liver disease. Mol. Cell Proteom. 2013, 12, 1294–1305. [Google Scholar] [CrossRef]
- Mustafa, M.G.; Petersen, J.R.; Ju, H.; Cicalese, L.; Snyder, N.; Haidacher, S.J.; Denner, L.; Elferink, C. Biomarker discovery for early detection of hepatocellular carcinoma in hepatitis c-infected patients. Mol. Cell Proteom. 2013, 12, 3640–3652. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Nomura, M.; Tojo, H.; Hamasaki, H.; Fukuda, T.; Fujii, K.; Mikami, S.; Bando, Y.; Kato, H. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (2) mrm assay for stage-related proteins upon non-metastatic lung adenocarcinoma. J. Proteom. 2010, 73, 1100–1110. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Ji, E.S.; Oh, N.R.; Kim, Y.S.; Ko, J.H.; Yoo, J.S. Differential proteomic approach for identification and verification of aberrantly glycosylated proteins in adenocarcinoma lung cancer (adlc) plasmas by lectin-capturing and targeted mass spectrometry. J. Proteom. 2014, 106, 221–229. [Google Scholar] [CrossRef]
- Welinder, C.; Jonsson, G.B.; Ingvar, C.; Lundgren, L.; Baldetorp, B.; Olsson, H.; Breslin, T.; Rezeli, M.; Jansson, B.; Fehniger, T.E.; et al. Analysis of alpha-synuclein in malignant melanoma-development of a srm quantification assay. PLoS ONE 2014, 9, e110804. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, R.; Bollinger, J.G.; Rivera, C.; Ribeiro, A.C.; Brandao, T.B.; Paes Leme, A.F.; MacCoss, M.J. A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva. Proteomics 2016, 16, 159–173. [Google Scholar] [CrossRef]
- Iuga, C.; Seicean, A.; Iancu, C.; Buiga, R.; Sappa, P.K.; Volker, U.; Hammer, E. Proteomic identification of potential prognostic biomarkers in resectable pancreatic ductal adenocarcinoma. Proteomics 2014, 14, 945–955. [Google Scholar] [CrossRef]
- Cima, I.; Schiess, R.; Wild, P.; Kaelin, M.; Schuffler, P.; Lange, V.; Picotti, P.; Ossola, R.; Templeton, A.; Schubert, O.; et al. Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 3342–3347. [Google Scholar] [CrossRef] [Green Version]
- Geisler, C.; Gaisa, N.T.; Pfister, D.; Fuessel, S.; Kristiansen, G.; Braunschweig, T.; Gostek, S.; Beine, B.; Diehl, H.C.; Jackson, A.M.; et al. Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2d-dige and ms. Biomed. Res. Int. 2015, 2015, 454256. [Google Scholar] [CrossRef]
- Vegvari, A.; Sjodin, K.; Rezeli, M.; Malm, J.; Lilja, H.; Laurell, T.; Marko-Varga, G. Identification of a novel proteoform of prostate specific antigen (snp-l132i) in clinical samples by multiple reaction monitoring. Mol. Cell Proteom. 2013, 12, 2761–2773. [Google Scholar] [CrossRef]
- Martinez-Aguilar, J.; Clifton-Bligh, R.; Molloy, M.P. A multiplexed, targeted mass spectrometry assay of the s100 protein family uncovers the isoform-specific expression in thyroid tumours. BMC Cancer 2015, 15, 199. [Google Scholar] [CrossRef]
- Characiejus, D.; Jacobs, J.J.; Pašukonienė, V.; Kazlauskaitė, N.; Danilevičiūtė, V.; Mauricas, M.; Den Otter, W. Prediction of response in cancer immunotherapy. Anticancer Res. 2011, 31, 639–647. [Google Scholar]
- Villanueva, J.; Shaffer, D.R.; Philip, J.; Chaparro, C.A.; Erdjument-Bromage, H.; Olshen, A.B.; Fleisher, M.; Lilja, H.; Brogi, E.; Boyd, J.; et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Investig. 2006, 116, 271–284. [Google Scholar] [CrossRef]
- Liotta, L.A.; Ferrari, M.; Petricoin, E. Clinical proteomics: Written in blood. Nature 2003, 425, 905. [Google Scholar] [CrossRef]
- Rusch, T.; Bayry, J.; Werner, J.; Shevchenko, I.; Bazhin, A.V. Immunotherapy as an option for cancer treatment. Arch. Immunol. Exp. 2017. [Google Scholar] [CrossRef]
- Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013, 342, 1432–1433. [Google Scholar] [CrossRef]
- Karachaliou, N.; Gonzalez-Cao, M.; Sosa, A.; Berenguer, J.; Bracht, J.W.P.; Ito, M.; Rosell, R. The combination of checkpoint immunotherapy and targeted therapy in cancer. Ann. Transl Med. 2017, 5, 388. [Google Scholar] [CrossRef]
- Van Schil, P.E.; Berzenji, L.; Yogeswaran, S.K.; Hendriks, J.M.; Lauwers, P. Surgical management of stage iiia non-small cell lung cancer. Front. Oncol. 2017, 7, 249. [Google Scholar] [CrossRef]
- Dada, O.O.; Zhao, Y.; Jaya, N.; Salas-Solano, O. High-resolution capillary zone electrophoresis with mass spectrometry peptide mapping of therapeutic proteins: Peptide recovery and post-translational modification analysis in monoclonal antibodies and antibody-drug conjugates. Anal. Chem. 2017, 89, 11236–11242. [Google Scholar] [CrossRef]
- Wang, H.; Hanash, S. Mass spectrometry based proteomics for absolute quantification of proteins from tumor cells. Methods 2015, 81, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Van der Wal, L.; Bezstarosti, K.; Sap, K.A.; Dekkers, D.H.W.; Rijkers, E.; Mientjes, E.; Elgersma, Y.; Demmers, J.A.A. Improvement of ubiquitylation site detection by orbitrap mass spectrometry. J. Proteom. 2018, 172, 49–56. [Google Scholar] [CrossRef]
- Zhang, G.; Ueberheide, B.M.; Waldemarson, S.; Myung, S.; Molloy, K.; Eriksson, J.; Chait, B.T.; Neubert, T.A.; Fenyo, D. Protein quantitation using mass spectrometry. Methods Mol. Biol 2010, 673, 211–222. [Google Scholar]
- Gundry, R.L.; White, M.Y.; Murray, C.I.; Kane, L.A.; Fu, Q.; Stanley, B.A.; Van Eyk, J.E. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr. Protoc. Mol. Biol 2010, 90. [Google Scholar] [CrossRef]
- Zhang, C.; Glaros, T.; Manicke, N.E. Targeted protein detection using an all-in-one mass spectrometry cartridge. J. Am. Chem. Soc 2017, 139, 10996–10999. [Google Scholar] [CrossRef]
- Prieto, D.A.; Johann, D.J., Jr.; Wei, B.R.; Ye, X.; Chan, K.C.; Nissley, D.V.; Simpson, R.M.; Citrin, D.E.; Mackall, C.L.; Linehan, W.M.; et al. Mass spectrometry in cancer biomarker research: A case for immunodepletion of abundant blood-derived proteins from clinical tissue specimens. Biomark. Med. 2014, 8, 269–286. [Google Scholar] [CrossRef]
- Bruderer, R.; Bernhardt, O.M.; Gandhi, T.; Xuan, Y.; Sondermann, J.; Schmidt, M.; Gomez-Varela, D.; Reiter, L. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol. Cell Proteom. 2017, 16, 2296–2309. [Google Scholar] [CrossRef]
Genomics | Transcriptomics | Proteomics | Metabolomics | |
---|---|---|---|---|
Definition | Is relying on the studies of the structure; function and expression of the entire gene in an organism (coding and noncoding genes - miRNAs; siRNAs; piRNAs; snoRNAs; snRNAs; exRNAs; scaRNAs; lncRNAs; circRNAs). | Is relying on gene expression profiling; the evaluation of the mRNAs profiling that is present in a specific biological sample. | Focuses on proteins study and discovery; to understand the amount (quality and quantity) and functioning of proteins in biological systems. | Represent the measurement of all the metabolites in a biological sample-system. |
Sample Sources | Genomic DNA and RNAs from all types of tissues. | mRNAs from all types of tissues. | All types of tissues and bio-fluids; most common used fluid is plasma. | Bio-fluids such as urine or plasma; tissue extract; in vitro cultures and supernatants. |
Techniques | The methods used is sequencing of DNA segments that contain methylated fragments after DNA modification with sodium bisulfate or by genotyping using ‘genome-wide’ oligonucleotide arrays. | The most commonly used technique is Microarray that associates differences in mRNAs profiling from different groups of individuals to phenotype differences between the groups. This technique provides information about gene expression. Also; another important tool used is RNASeq that is used to study gene expression and identify new RNA species. | Identification of peptides/proteins can be determined using MS/MS based strategies. MS rely on three approaches: selection of protein spots from gels through 2-dimensional electrophoresis; gather abundance proteins and separate the less abundance by combining chromatographic approach; adsorb proteins using matrixes of immobilized chemicals based on charge; hydrophobicity; affinity; binding to specific ions following by desorption and MS/MS analysis. | MS –based techniques used to identify or determine the metabolites present are high-performance liquid chromatography; ultra-performance liquid chromatography; or gas chromatography. |
Analysis | Bioinformatics methods (such as Annovar; Circos; DNAnexus; Galaxy; GenomeQuest; Ingenuity Variant Analysis; VAAST) are used to detect disease—association of gene; and genome analysis involved hierarchical clustering. | clustering is used to identify the gene sets and the data analysis used for gene interpretation can integrate microarray data with prior knowledge on the implication of genes in biological processes are needed (Gene spring; Feature extraction; R; Oncomine; Ingenuity Pathway Analysis, Hierarchical, DAVID Bioinformatics Resources; Panther). | Protein identification and analysis are performed by a variety of bioinformatic tools (such as Mascot; Progenesis; MaxQuant; Proteios; PEAKS CMD; PEAKS Studio; OpenMS; Predict Protein; Rosetta); which are available to researchers. Measurement (random) and systematic (bias) errors are necessary components of proteomic analysis. | To generate and interpret the metabolic profile of the sample; data generated are combined with multivariate data analysis such as partial least square; clustering; discriminant analyses (examples of metabolomic software; BioCyc -Omics Viewer; iPath; KaPPA-View; KEGG; MapMan; MetPa; Metscape; MGV; Paintomics; Pathos; Pathvisio; ProMetra). |
Mass Analyzer | Ionization Method | Applications (Examples) | Introducing the Sample | Technical Features of the System (Major Advantages/ Disadvantages) |
---|---|---|---|---|
TOF | MALDI EI; APCI; APPI | Protein identification using database library Peptide mapping Nucleotides | Solid matrix | No limit for mass determination and fast data acquisition Resolution better than; but sensitivity (quantitation) not as good as quadrupoles Exact masses with internal calibration |
SELDI | Protein mixtures analysis | Solid matrix | Is using chip surfaces Specific for low molecular weight of proteins (<20 kDaltons) | |
MALDI | Proteins; peptides; lipids; small molecules from tissue (MALDI imaging) | Solid matrix | Detect a large amount of interest compound in a single run keeping intact the sample Major contributions in diagnostics; prognostics; drug delivery | |
Hybrid Quadrupole -TOF | ESI, APCI | Non-covalent interactions | LC or syringe | Exact masses with internal calibration Most sensitive full scan |
Quadrupole | ESI; EI; APCI; MALDI | Scanning of parent-ion Study of ion-molecule reactions | LC or syringe | Nominal mass range: 0–4000 m/z Scan speed slow |
Ion trap | ESI; APCI; MALDI | To acquire ions for subsequent analysis | LC or syringe | Lower costs and high accuracy in m/z determination Full scan medium |
FTMS | ESI; APCI; EI | Label-free protein quantification | LC or syringe | Exact masses without internal calibration |
Type of Cancer | Methodology | Type of Biological Samples | Validated Targeted Proteins | References |
---|---|---|---|---|
Breast | iTRAQ shotgun proteomics/SID-SRM and LF-SRM | tissue | Yes | [158] |
Transcriptomics/LRP-SRM | plasma | No | [159] | |
Colon | LF shotgun peptidomics/SID-SRM | urine | Yes | [160] |
SID-SRM | tissue | Yes | [161] | |
Hyper-tex-SRM | tissue | Yes | [162] | |
Gastric | SID-SRM | tissue | Yes | [163] |
Liver | LF shotgun peptidomics/SID-SRM | plasma | Yes | [164,165] |
Gel-based Proteomics/SID-SRM | serum | Yes | [166] | |
Lung | LF shotgun proteomics/SRM | Tissue | Yes | [167] |
SID-SRM | Plasma | Yes | [168] | |
Melanoma | SID-SRM | tissue | Yes | [169] |
Oral | LRP-SRM | saliva | Yes | [170] |
Pancreas | LF shotgun proteomics/LRP-SRM | tissue | Yes | [171] |
Prostate | LF shotgun glycoproteomics/SID-SRM | Serum; tissue | Yes | [172] |
2D-DIGE-MS/SID-SRM | urine | Yes | [173] | |
SID-SRM | Seminal liquid; blood plasma | Yes | [174] | |
Thyroid | LF- SRM; SID-SRM | tissue | Yes | [175] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciocan-Cartita, C.A.; Jurj, A.; Buse, M.; Gulei, D.; Braicu, C.; Raduly, L.; Cojocneanu, R.; Pruteanu, L.L.; Iuga, C.A.; Coza, O.; et al. The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer “Omics”. Int. J. Mol. Sci. 2019, 20, 2576. https://doi.org/10.3390/ijms20102576
Ciocan-Cartita CA, Jurj A, Buse M, Gulei D, Braicu C, Raduly L, Cojocneanu R, Pruteanu LL, Iuga CA, Coza O, et al. The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer “Omics”. International Journal of Molecular Sciences. 2019; 20(10):2576. https://doi.org/10.3390/ijms20102576
Chicago/Turabian StyleCiocan-Cartita, Cristina Alexandra, Ancuța Jurj, Mihail Buse, Diana Gulei, Cornelia Braicu, Lajos Raduly, Roxana Cojocneanu, Lavinia Lorena Pruteanu, Cristina Adela Iuga, Ovidiu Coza, and et al. 2019. "The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer “Omics”" International Journal of Molecular Sciences 20, no. 10: 2576. https://doi.org/10.3390/ijms20102576
APA StyleCiocan-Cartita, C. A., Jurj, A., Buse, M., Gulei, D., Braicu, C., Raduly, L., Cojocneanu, R., Pruteanu, L. L., Iuga, C. A., Coza, O., & Berindan-Neagoe, I. (2019). The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer “Omics”. International Journal of Molecular Sciences, 20(10), 2576. https://doi.org/10.3390/ijms20102576