Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis?
Abstract
:1. Introduction
2. The Necessity of Identifying Biomarkers for ALS
3. The Role of The Immune System in ALS
4. Dysregulation of Cytokines in Biofluids
4.1. Interleukins
4.2. Tumor Necrosis Factors
4.3. Interferons (IFN)
4.4. Colony Stimulating Factors (CSFs)
4.5. Chemokines
4.6. Other Cytokines and Proteins Related to Inflammation
5. Cytokines as Biomarkers: Main Challenges
6. Design of Therapeutic Approaches Targeting Inflammation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALK-1 | Activin receptor-like kinase 1 |
ALS | Amyotrophic lateral sclerosis |
ALSFRS-R | Amyotrophic lateral sclerosis functional rating scale-revised |
bFGF | Basic fibroblast growth factor |
C9ORF72 | Chromosome 9 open reading frame 72 |
CCL | C-C motif chemokine ligand |
CSF | Cerebrospinal fluid |
CSFs | Colony stimulating factors |
CXCL | C-X-C motif chemokine ligand |
CXC5R | C-X-C motif chemokine receptor 5 |
DPR | Disease progression rate |
DTI | Diffusion tensor imaging |
FUS | Fused in sarcoma |
G-CSF | Granulocyte colony stimulating factor |
GITR | Glucocorticoid-induced TNFR-related protein |
GM-CSF | Granulocyte-macrophage colony stimulating factor |
IL | Interleukin |
IFN | Interferons |
IgG | Immunoglobulin G |
MCP-1 | Monocyte chemotactic protein-1 |
miRNAs | microRNAs |
MIP | Macrophage inflammatory protein |
MN(s) | Motor neuron(s) |
MRI | Magnetic resonance imaging |
MRS | Magnetic resonance spectroscopy |
NFs | Neurofilaments |
NFH | Neurofilament heavy chain |
NFL | Neurofilament light chain |
OND | Other non-inflammatory neurological disorders |
p75ECD | Extracellular domain of p75 neurotrophin receptor |
PDGF-BB | Platelet-derived growth factor BB |
PET | Positron emission tomography |
RANKL | Receptor activator of nuclear factor kappa-Β ligand |
ROS | Reactive oxygen species |
SOD1 | Superoxide dismutase 1 |
TDP-43 | TAR DNA binding protein 43 |
TGF-β | Transforming growth factor beta |
TG | Transgenic |
Th | T helper |
TMS | Transcranial magnetic stimulation |
TNF | Tumor necrosis factor |
TNFRSF | TNF receptor superfamily member |
TNFSF | TNF superfamily member |
Treg | Regulatory T cell |
TROY | Tumor necrosis factor receptor superfamily member 19 |
VEGF | Vascular endothelial growth factor |
WT | Wildtype |
References
- Martin, S.; Al Khleifat, A.; Al-Chalabi, A. What causes amyotrophic lateral sclerosis? F1000Res 2017, 6, 371. [Google Scholar] [CrossRef] [Green Version]
- Gurney, M.E.; Pu, H.; Chiu, A.Y.; Dal Canto, M.C.; Polchow, C.Y.; Alexander, D.D.; Caliendo, J.; Hentati, A.; Kwon, Y.W.; Deng, H.X. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994, 264, 1772–1775. [Google Scholar] [CrossRef] [PubMed]
- Al-Chalabi, A.; Hardiman, O.; Kiernan, M.C.; Chio, A.; Rix-Brooks, B.; van den Berg, L.H. Amyotrophic lateral sclerosis: Moving towards a new classification system. Lancet Neurol. 2016, 15, 1182–1194. [Google Scholar] [CrossRef]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Turner, M.R.; Hardiman, O.; Benatar, M.; Brooks, B.R.; Chio, A.; de Carvalho, M.; Ince, P.G.; Lin, C.; Miller, R.G.; Mitsumoto, H.; et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol. 2013, 12, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.R.; Kiernan, M.C.; Leigh, P.N.; Talbot, K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol. 2009, 8, 94–109. [Google Scholar] [CrossRef]
- Verber, N.S.; Shepheard, S.R.; Sassani, M.; McDonough, H.E.; Moore, S.A.; Alix, J.J.P.; Wilkinson, I.D.; Jenkins, T.M.; Shaw, P.J. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front. Neurol. 2019, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Menke, R.A.; Agosta, F.; Grosskreutz, J.; Filippi, M.; Turner, M.R. Neuroimaging Endpoints in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2017, 14, 11–23. [Google Scholar] [CrossRef]
- Mazon, M.; Vazquez Costa, J.F.; Ten-Esteve, A.; Marti-Bonmati, L. Imaging Biomarkers for the Diagnosis and Prognosis of Neurodegenerative Diseases. The Example of Amyotrophic Lateral Sclerosis. Front. Neurosci. 2018, 12, 784. [Google Scholar] [CrossRef]
- Simon, N.G.; Turner, M.R.; Vucic, S.; Al-Chalabi, A.; Shefner, J.; Lomen-Hoerth, C.; Kiernan, M.C. Quantifying disease progression in amyotrophic lateral sclerosis. Ann. Neurol. 2014, 76, 643–657. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Agosta, F.; Riva, N.; Copetti, M.; Spinelli, E.G.; Falzone, Y.; Soraru, G.; Comi, G.; Chio, A.; Filippi, M. Multimodal structural MRI in the diagnosis of motor neuron diseases. Neuroimage Clin. 2017, 16, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Barritt, A.W.; Gabel, M.C.; Cercignani, M.; Leigh, P.N. Emerging Magnetic Resonance Imaging Techniques and Analysis Methods in Amyotrophic Lateral Sclerosis. Front. Neurol. 2018, 9, 1065. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, R.; Gaur, N.; Stubendorff, B.; Witte, O.W.; Grosskreutz, J. Developing a Neuroimaging Biomarker for Amyotrophic Lateral Sclerosis: Multi-Center Data Sharing and the Road to a “Global Cohort”. Front. Neurol. 2018, 9, 1055. [Google Scholar] [CrossRef] [PubMed]
- Huynh, W.; Dharmadasa, T.; Vucic, S.; Kiernan, M.C. Functional Biomarkers for Amyotrophic Lateral Sclerosis. Front. Neurol. 2019, 9, 1141. [Google Scholar] [CrossRef] [PubMed]
- Vucic, S.; Rutkove, S.B. Neurophysiological biomarkers in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 2018, 31, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Paya, J.J.; Rios-Diaz, J.; Medina-Mirapeix, F.; Vazquez-Costa, J.F.; Del Bano-Aledo, M.E. Monitoring Progression of Amyotrophic Lateral Sclerosis Using Ultrasound Morpho-Textural Muscle Biomarkers: A Pilot Study. Ultrasound Med. Biol. 2018, 44, 102–109. [Google Scholar] [CrossRef]
- Rios-Diaz, J.; Del Bano-Aledo, M.E.; Tembl-Ferrairo, J.I.; Chumillas, M.J.; Vazquez-Costa, J.F.; Martinez-Paya, J.J. Quantitative neuromuscular ultrasound analysis as biomarkers in amyotrophic lateral sclerosis. Eur. Radiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Tarasiuk, J.; Kulakowska, A.; Drozdowski, W.; Kornhuber, J.; Lewczuk, P. CSF markers in amyotrophic lateral sclerosis. J. Neural Transm. (Vienna) 2012, 119, 747–757. [Google Scholar] [CrossRef]
- Vu, L.T.; Bowser, R. Fluid-Based Biomarkers for Amyotrophic Lateral Sclerosis. Neurotherapeutics 2017, 14, 119–134. [Google Scholar] [CrossRef]
- Majumder, V.; Gregory, J.M.; Barria, M.A.; Green, A.; Pal, S. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: A systematic review and meta-analysis. BMC Neurol. 2018, 18, 90. [Google Scholar] [CrossRef]
- Bjornevik, K.; Zhang, Z.; O’Reilly, E.J.; Berry, J.D.; Clish, C.B.; Deik, A.; Jeanfavre, S.; Kato, I.; Kelly, R.S.; Kolonel, L.N.; et al. Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis. Neurology 2019. [Google Scholar] [CrossRef] [PubMed]
- Calvo, A.C.; Atencia Cibreiro, G.; Torre Merino, P.; Roy, J.F.; Galiana, A.; Juárez Rufián, A.; Cano, J.M.; Martín, M.A.; Moreno, L.; Larrodé, P.; et al. Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis. Aging Dis. 2019, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; de Carvalho, M. Emerging molecular biomarker targets for amyotrophic lateral sclerosis. Clin. Chim. Acta 2016, 455. [Google Scholar] [CrossRef] [PubMed]
- Floeter, M.K.; Gendron, T.F. Biomarkers for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Associated With Hexanucleotide Expansion Mutations in C9orf72. Front. Neurol. 2018, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Henderson, R.D.; David, M.; McCombe, P.A. Neurofilaments as Biomarkers for Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0164625. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.H.; Allen, K.; Oei, F.; Leoni, E.; Kuhle, J.; Tree, T.; Fratta, P.; Sharma, N.; Sidle, K.; Howard, R.; et al. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e244. [Google Scholar] [CrossRef] [Green Version]
- Beers, D.R.; Zhao, W.; Wang, J.; Zhang, X.; Wen, S.; Neal, D.; Thonhoff, J.R.; Alsuliman, A.S.; Shpall, E.J.; Rezvani, K.; et al. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight 2017, 2, e89530. [Google Scholar] [CrossRef]
- Michaelson, N.; Facciponte, D.; Bradley, W.; Stommel, E. Cytokine expression levels in ALS: A potential link between inflammation and BMAA-triggered protein misfolding. Cytokine Growth Factor Rev. 2017, 37, 81–88. [Google Scholar] [CrossRef]
- Blasco, H.; Patin, F.; Madji Hounoum, B.; Gordon, P.H.; Vourc’h, P.; Andres, C.R.; Corcia, P. Metabolomics in amyotrophic lateral sclerosis: How far can it take us? Eur. J. Neurol. 2016, 23, 447–454. [Google Scholar] [CrossRef]
- Lanznaster, D.; de Assis, D.R.; Corcia, P.; Pradat, P.F.; Blasco, H. Metabolomics Biomarkers: A Strategy Toward Therapeutics Improvement in ALS. Front. Neurol. 2018, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- Andreadou, E.; Kapaki, E.; Kokotis, P.; Paraskevas, G.P.; Katsaros, N.; Libitaki, G.; Zis, V.; Sfagos, C.; Vassilopoulos, D. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: The effect of riluzole treatment. Clin. Neurol. Neurosurg. 2008, 110, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Lawton, K.A.; Brown, M.V.; Alexander, D.; Li, Z.; Wulff, J.E.; Lawson, R.; Jaffa, M.; Milburn, M.V.; Ryals, J.A.; Bowser, R.; et al. Northeast ALS Consortium Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph. Lateral Scler. Frontotemporal Degener. 2014, 15, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Niebroj-Dobosz, I.; Janik, P.; Kwiecinski, H. Effect of Riluzole on serum amino acids in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 2002, 106, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Bozik, M.E.; Mitsumoto, H.; Brooks, B.R.; Rudnicki, S.A.; Moore, D.H.; Zhang, B.; Ludolph, A.; Cudkowicz, M.E.; van den Berg, L.H.; Mather, J.; et al. A post hoc analysis of subgroup outcomes and creatinine in the phase III clinical trial (EMPOWER) of dexpramipexole in ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 2014, 15, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Toivonen, J.M.; Manzano, R.; Olivan, S.; Zaragoza, P.; Garcia-Redondo, A.; Osta, R. MicroRNA-206: A potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS ONE 2014, 9, e89065. [Google Scholar] [CrossRef] [PubMed]
- Benigni, M.; Ricci, C.; Jones, A.R.; Giannini, F.; Al-Chalabi, A.; Battistini, S. Identification of miRNAs as Potential Biomarkers in Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients. Neuromolecular Med. 2016, 18, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Ricci, C.; Marzocchi, C.; Battistini, S. MicroRNAs as Biomarkers in Amyotrophic Lateral Sclerosis. Cells 2018, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Joilin, G.; Leigh, P.N.; Newbury, S.F.; Hafezparast, M. An Overview of MicroRNAs as Biomarkers of ALS. Front. Neurol. 2019, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Shepheard, S.R.; Wuu, J.; Cardoso, M.; Wiklendt, L.; Dinning, P.G.; Chataway, T.; Schultz, D.; Benatar, M.; Rogers, M.L. Urinary p75(ECD): A prognostic, disease progression, and pharmacodynamic biomarker in ALS. Neurology 2017, 88, 1137–1143. [Google Scholar] [CrossRef]
- McCauley, M.E.; Baloh, R.H. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol. 2018. [Google Scholar] [CrossRef]
- Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front. Immunol. 2017, 8, 1005. [Google Scholar] [CrossRef] [PubMed]
- Beers, D.R.; Appel, S.H. Immune dysregulation in amyotrophic lateral sclerosis: Mechanisms and emerging therapies. Lancet Neurol. 2019, 18, 211–220. [Google Scholar] [CrossRef]
- Zhao, W.; Beers, D.R.; Appel, S.H. Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol. 2013, 8, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and Toxic Neuroinflammation in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015, 12, 364–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdock, B.J.; Bender, D.E.; Segal, B.M.; Feldman, E.L. The dual roles of immunity in ALS: Injury overrides protection. Neurobiol. Dis. 2015, 77, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Saresella, M.; Piancone, F.; Tortorella, P.; Marventano, I.; Gatti, A.; Caputo, D.; Lunetta, C.; Corbo, M.; Rovaris, M.; Clerici, M. T helper-17 activation dominates the immunologic milieu of both amyotrophic lateral sclerosis and progressive multiple sclerosis. Clin. Immunol. 2013, 148, 79–88. [Google Scholar] [CrossRef]
- Henkel, J.S.; Beers, D.R.; Wen, S.; Rivera, A.L.; Toennis, K.M.; Appel, J.E.; Zhao, W.; Moore, D.H.; Powell, S.Z.; Appel, S.H. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med. 2013, 5, 64–79. [Google Scholar] [CrossRef]
- Beers, D.R.; Henkel, J.S.; Zhao, W.; Wang, J.; Huang, A.; Wen, S.; Liao, B.; Appel, S.H. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 2011, 134, 1293–1314. [Google Scholar] [CrossRef]
- Zondler, L.; Muller, K.; Khalaji, S.; Bliederhauser, C.; Ruf, W.P.; Grozdanov, V.; Thiemann, M.; Fundel-Clemes, K.; Freischmidt, A.; Holzmann, K.; et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. 2016, 132, 391–411. [Google Scholar] [CrossRef]
- Gasco, S.; Zaragoza, P.; Garcia-Redondo, A.; Calvo, A.C.; Osta, R. Inflammatory and non-inflammatory monocytes as novel prognostic biomarkers of survival in SOD1G93A mouse model of Amyotrophic Lateral Sclerosis. PLoS ONE 2017, 12, e0184626. [Google Scholar] [CrossRef] [PubMed]
- Kjaeldgaard, A.L.; Pilely, K.; Olsen, K.S.; Pedersen, S.W.; Lauritsen, A.O.; Moller, K.; Garred, P. Amyotrophic lateral sclerosis: The complement and inflammatory hypothesis. Mol. Immunol. 2018, 102, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.E.; Hanton, A.M.; Stefanou, S.N.; Noakes, P.G.; Woodruff, T.M.; Lee, J.D. Revisiting the role of the innate immune complement system in ALS. Neurobiol. Dis. 2019, 127, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Lall, D.; Baloh, R.H. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J. Clin. Invest. 2017, 127, 3250–3258. [Google Scholar] [CrossRef] [PubMed]
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140, 918–934. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Kawano, Y.; Tateishi, T.; Kikuchi, H.; Osoegawa, M.; Ohyagi, Y.; Kira, J. Increased IL-13-producing T cells in ALS: Positive correlations with disease severity and progression rate. J. Neuroimmunol. 2007, 182, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Lindberg, R.L.; Regeniter, A.; Mehling, M.; Steck, A.J.; Kappos, L.; Czaplinski, A. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur. J. Neurol. 2009, 16, 771–774. [Google Scholar] [CrossRef]
- Mitchell, R.M.; Freeman, W.M.; Randazzo, W.T.; Stephens, H.E.; Beard, J.L.; Simmons, Z.; Connor, J.R. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 2009, 72, 14–19. [Google Scholar] [CrossRef]
- Fiala, M.; Chattopadhay, M.; La Cava, A.; Tse, E.; Liu, G.; Lourenco, E.; Eskin, A.; Liu, P.T.; Magpantay, L.; Tse, S.; et al. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J. Neuroinflamm. 2010, 7, 76. [Google Scholar] [CrossRef]
- Tateishi, T.; Yamasaki, R.; Tanaka, M.; Matsushita, T.; Kikuchi, H.; Isobe, N.; Ohyagi, Y.; Kira, J. CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis. J. Neuroimmunol. 2010, 222, 76–81. [Google Scholar] [CrossRef]
- Furukawa, T.; Matsui, N.; Fujita, K.; Miyashiro, A.; Nodera, H.; Izumi, Y.; Shimizu, F.; Miyamoto, K.; Takahashi, Y.; Kanda, T.; et al. Increased proinflammatory cytokines in sera of patients with multifocal motor neuropathy. J. Neurol. Sci. 2014, 346, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Italiani, P.; Carlesi, C.; Giungato, P.; Puxeddu, I.; Borroni, B.; Bossu, P.; Migliorini, P.; Siciliano, G.; Boraschi, D. Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis. J. Neuroinflamm. 2014, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Ehrhart, J.; Smith, A.J.; Kuzmin-Nichols, N.; Zesiewicz, T.A.; Jahan, I.; Shytle, R.D.; Kim, S.H.; Sanberg, C.D.; Vu, T.H.; Gooch, C.L.; et al. Humoral factors in ALS patients during disease progression. J. Neuroinflamm. 2015, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.; Matsui, N.; Fujita, K.; Nodera, H.; Shimizu, F.; Miyamoto, K.; Takahashi, Y.; Kanda, T.; Kusunoki, S.; Izumi, Y.; et al. CSF cytokine profile distinguishes multifocal motor neuropathy from progressive muscular atrophy. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2, e138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, S.T.; Steyn, F.J.; Huang, L.; Mantovani, S.; Pfluger, C.M.; Woodruff, T.M.; O’Sullivan, J.D.; Henderson, R.D.; McCombe, P.A. Altered expression of metabolic proteins and adipokines in patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 2015, 357, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Blasco, H.; Garcon, G.; Patin, F.; Veyrat-Durebex, C.; Boyer, J.; Devos, D.; Vourc’h, P.; Andres, C.R.; Corcia, P. Panel of Oxidative Stress and Inflammatory Biomarkers in ALS: A Pilot Study. Can. J. Neurol. Sci. 2017, 44, 90–95. [Google Scholar] [CrossRef]
- Guo, J.; Yang, X.; Gao, L.; Zang, D. Evaluating the levels of CSF and serum factors in ALS. Brain Behav. 2017, 7, e00637. [Google Scholar] [CrossRef]
- Hu, Y.; Cao, C.; Qin, X.Y.; Yu, Y.; Yuan, J.; Zhao, Y.; Cheng, Y. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: A meta-analysis study. Sci. Rep. 2017, 7, 9094. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Y.; Cao, Z.; Liu, Q.; Cheng, Y. Cerebrospinal Fluid Inflammatory Cytokine Aberrations in Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Front. Immunol. 2018, 9, 2122. [Google Scholar] [CrossRef]
- Prado, L.G.R.; Rocha, N.P.; de Souza, L.C.; Bicalho, I.C.S.; Gomez, R.S.; Vidigal-Lopes, M.; Braz, N.F.T.; Vieira, E.L.M.; Teixeira, A.L. Longitudinal assessment of clinical and inflammatory markers in patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 2018, 394, 69–74. [Google Scholar] [CrossRef]
- Moreno-Martínez, L.; de la Torre, M.; Toivonen, J.M.; Zaragoza, P.; García-Redondo, A.; Calvo, A.C.; Osta, R. Circulating Cytokines Could Not Be Good Prognostic Biomarkers in a Mouse Model of Amyotrophic Lateral Sclerosis. Front. Immunol. 2019, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Andres-Benito, P.; Moreno, J.; Dominguez, R.; Aso, E.; Povedano, M.; Ferrer, I. Inflammatory Gene Expression in Whole Peripheral Blood at Early Stages of Sporadic Amyotrophic Lateral Sclerosis. Front. Neurol. 2017, 8, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlam, L.; Stam, M.; de Jager, W.; Cats, E.A.; van den Berg, L.H.; van der Pol, W.L. Cytokine profiles in multifocal motor neuropathy and progressive muscular atrophy. J. Neuroimmunol. 2015, 286, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Merino, L.; Iridoy, M.; Galbete, A.; Roldan, M.; Rivero, A.; Acha, B.; Irun, P.; Canosa, C.; Pocovi, M.; Mendioroz, M.; et al. Evaluation of Chitotriosidase and CC-Chemokine Ligand 18 as Biomarkers of Microglia Activation in Amyotrophic Lateral Sclerosis. Neurodegener Dis. 2018, 18, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 2014, 1843, 2563–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortarolo, M.; Lo Coco, D.; Veglianese, P.; Vallarola, A.; Giordana, M.T.; Marcon, G.; Beghi, E.; Poloni, M.; Strong, M.J.; Iyer, A.M.; et al. Amyotrophic Lateral Sclerosis, a Multisystem Pathology: Insights into the Role of TNFalpha. Mediators Inflamm. 2017, 2017, 2985051. [Google Scholar] [CrossRef]
- Liu, J.; Gao, L.; Zang, D. Elevated Levels of IFN-gamma in CSF and Serum of Patients with Amyotrophic Lateral Sclerosis. PLoS ONE 2015, 10, e0136937. [Google Scholar]
- Mitchell, R.M.; Simmons, Z.; Beard, J.L.; Stephens, H.E.; Connor, J.R. Plasma biomarkers associated with ALS and their relationship to iron homeostasis. Muscle Nerve 2010, 42, 95–103. [Google Scholar] [CrossRef]
- Yang, X.; Gao, L.; Wu, X.; Zhang, Y.; Zang, D. Increased levels of MIP-1alpha in CSF and serum of ALS. Acta Neurol. Scand. 2016, 134, 94–100. [Google Scholar] [CrossRef]
- Martinez, H.R.; Escamilla-Ocanas, C.E.; Camara-Lemarroy, C.R.; Gonzalez-Garza, M.T.; Moreno-Cuevas, J.; Garcia Sarreon, M.A. Increased cerebrospinal fluid levels of cytokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1beta (MIP-1beta) in patients with amyotrophic lateral sclerosis. Neurologia 2017. [Google Scholar]
- Gao, L.; Zhou, S.; Cai, H.; Gong, Z.; Zang, D. VEGF levels in CSF and serum in mild ALS patients. J. Neurol. Sci. 2014, 346, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Devos, D.; Moreau, C.; Lassalle, P.; Perez, T.; De Seze, J.; Brunaud-Danel, V.; Destee, A.; Tonnel, A.B.; Just, N. Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology 2004, 62, 2127–2129. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, M.; De Carvalho, M.; Peixoto, C.; Alves, P.; Barreto, C.; Oliva, A.; Pinto, S.; Laborinho-Pronto, A.; Gromicho, M.; Costa, J. Phosphoneurofilament heavy chain and vascular endothelial growth factor as cerebrospinal fluid biomarkers for ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 2017, 18, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Zubiri, I.; Lombardi, V.; Bremang, M.; Mitra, V.; Nardo, G.; Adiutori, R.; Lu, C.H.; Leoni, E.; Yip, P.; Yildiz, O.; et al. Tissue-enhanced plasma proteomic analysis for disease stratification in amyotrophic lateral sclerosis. Mol. Neurodegener 2018, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Edri-Brami, M.; Sharoni, H.; Hayoun, D.; Skutelsky, L.; Nemirovsky, A.; Porgador, A.; Lichtenstein, R.G. Development of stage-dependent glycans on the Fc domains of IgG antibodies of ALS animals. Exp. Neurol. 2015, 267, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; Streich, L.; Pinto, S.; Pronto-Laborinho, A.; Nimtz, M.; Conradt, H.S.; de Carvalho, M. Exploring Cerebrospinal Fluid IgG N-Glycosylation as Potential Biomarker for Amyotrophic Lateral Sclerosis. Mol. Neurobiol. 2019. [Google Scholar] [CrossRef]
- von Neuhoff, N.; Oumeraci, T.; Wolf, T.; Kollewe, K.; Bewerunge, P.; Neumann, B.; Brors, B.; Bufler, J.; Wurster, U.; Schlegelberger, B.; et al. Monitoring CSF proteome alterations in amyotrophic lateral sclerosis: Obstacles and perspectives in translating a novel marker panel to the clinic. PLoS ONE 2012, 7, e44401. [Google Scholar] [CrossRef]
- Robelin, L.; Gonzalez De Aguilar, J.L. Blood biomarkers for amyotrophic lateral sclerosis: Myth or reality? Biomed. Res. Int. 2014, 2014, 525097. [Google Scholar] [CrossRef]
- Su, X.W.; Simmons, Z.; Mitchell, R.M.; Kong, L.; Stephens, H.E.; Connor, J.R. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. JAMA Neurol. 2013, 70, 1505–1511. [Google Scholar] [CrossRef]
- Martinez, H.R.; Escamilla-Ocanas, C.E.; Tenorio-Pedraza, J.M.; Gomez-Almaguer, D.; Jaime-Perez, J.C.; Olguin-Ramirez, L.A.; Salazar-Marioni, S.; Gonzalez-Garza, M.T. Altered CSF cytokine network in amyotrophic lateral sclerosis patients: A pathway-based statistical analysis. Cytokine 2017, 90, 1–5. [Google Scholar] [CrossRef]
- Garbuzova-Davis, S.; Ehrhart, J.; Sanberg, P.R.; Borlongan, C.V. Potential Role of Humoral IL-6 Cytokine in Mediating Pro-Inflammatory Endothelial Cell Response in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2018, 19, 423. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar] [PubMed]
- Moreau, C.; Devos, D.; Brunaud-Danel, V.; Defebvre, L.; Perez, T.; Destee, A.; Tonnel, A.B.; Lassalle, P.; Just, N. Elevated IL-6 and TNF-alpha levels in patients with ALS: Inflammation or hypoxia? Neurology 2005, 65, 1958–1960. [Google Scholar] [CrossRef] [PubMed]
- Selmaoui, B.; Sackett-Lundeen, L.; Haus, E.; Touitou, Y. Large intra-individual variability of plasma cytokines in healthy young men: A two 24-h study over a month. Biol. Rhythm Res. 2016, 47, 267–273. [Google Scholar] [CrossRef]
- Barschke, P.; Oeckl, P.; Steinacker, P.; Ludolph, A.; Otto, M. Proteomic studies in the discovery of cerebrospinal fluid biomarkers for amyotrophic lateral sclerosis. Expert Rev. Proteomics 2017, 14, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.; Bowser, R.; Turner, M.; Berry, J.; Brettschneider, J.; Connor, J.; Costa, J.; Cudkowicz, M.; Glass, J.; Jahn, O.; et al. Volcano Group Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotroph. Lateral Scler. 2012, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mitsumoto, H.; Factor-Litvak, P.; Andrews, H.; Goetz, R.R.; Andrews, L.; Rabkin, J.G.; McElhiney, M.; Nieves, J.; Santella, R.M.; Murphy, J.; et al. ALS COSMOS Study Group ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS): Study methodology, recruitment, and baseline demographic and disease characteristics. Amyotroph. Lateral Scler. Frontotemporal Degener. 2014, 15, 192–203. [Google Scholar] [CrossRef]
- Calvo, A.; Moglia, C.; Lunetta, C.; Marinou, K.; Ticozzi, N.; Ferrante, G.D.; Scialo, C.; Soraru, G.; Trojsi, F.; Conte, A.; et al. Factors predicting survival in ALS: A multicenter Italian study. J. Neurol. 2017, 264, 54–63. [Google Scholar] [CrossRef]
- D’hulst, L.; Van Weehaeghe, D.; Chio, A.; Calvo, A.; Moglia, C.; Canosa, A.; Cistaro, A.; Willekens, S.M.; De Vocht, J.; Van Damme, P.; et al. Multicenter validation of [(18)F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls. Amyotroph. Lateral Scler. Frontotemporal Degener. 2018, 19, 570–577. [Google Scholar] [CrossRef]
- Pollari, E.; Savchenko, E.; Jaronen, M.; Kanninen, K.; Malm, T.; Wojciechowski, S.; Ahtoniemi, T.; Goldsteins, G.; Giniatullina, R.; Giniatullin, R.; et al. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis. J. Neuroinflamm. 2011, 8, 74. [Google Scholar] [CrossRef]
- Rando, A.; Gasco, S.; de la Torre, M.; Garcia-Redondo, A.; Zaragoza, P.; Toivonen, J.M.; Osta, R. Granulocyte Colony-Stimulating Factor Ameliorates Skeletal Muscle Dysfunction in Amyotrophic Lateral Sclerosis Mice and Improves Proliferation of SOD1-G93A Myoblasts in vitro. Neurodegener Dis. 2017, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Johannesen, S.; Budeus, B.; Peters, S.; Iberl, S.; Meyer, A.L.; Kammermaier, T.; Wirkert, E.; Bruun, T.H.; Samara, V.C.; Schulte-Mattler, W.; et al. Biomarker Supervised G-CSF (Filgrastim) Response in ALS Patients. Front. Neurol. 2018, 9, 971. [Google Scholar] [CrossRef] [PubMed]
- Otsmane, B.; Aebischer, J.; Moumen, A.; Raoul, C. Cerebrospinal fluid-targeted delivery of neutralizing anti-IFNgamma antibody delays motor decline in an ALS mouse model. Neuroreport 2014, 25, 49–54. [Google Scholar] [PubMed]
- Korhonen, P.; Pollari, E.; Kanninen, K.M.; Savchenko, E.; Lehtonen, S.; Wojciechowski, S.; Pomeshchik, Y.; Van Den Bosch, L.; Goldsteins, G.; Koistinaho, J.; et al. Long-term interleukin-33 treatment delays disease onset and alleviates astrocytic activation in a transgenic mouse model of amyotrophic lateral sclerosis. IBRO Rep. 2019, 6, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Kiaei, M.; Petri, S.; Kipiani, K.; Gardian, G.; Choi, D.K.; Chen, J.; Calingasan, N.Y.; Schafer, P.; Muller, G.W.; Stewart, C.; et al. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci. 2006, 26, 2467–2473. [Google Scholar] [CrossRef] [PubMed]
- Neymotin, A.; Petri, S.; Calingasan, N.Y.; Wille, E.; Schafer, P.; Stewart, C.; Hensley, K.; Beal, M.F.; Kiaei, M. Lenalidomide (Revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 2009, 220, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Stommel, E.W.; Cohen, J.A.; Fadul, C.E.; Cogbill, C.H.; Graber, D.J.; Kingman, L.; Mackenzie, T.; Channon Smith, J.Y.; Harris, B.T. Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: A phase II open label clinical trial. Amyotroph Lateral Scler. 2009, 10, 393–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Ripley, B.; Serada, S.; Naka, T.; Fujimoto, M. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation. PLoS ONE 2016, 11, e0153399. [Google Scholar] [CrossRef] [PubMed]
- Patin, F.; Baranek, T.; Vourc’h, P.; Nadal-Desbarats, L.; Goossens, J.F.; Marouillat, S.; Dessein, A.F.; Descat, A.; Hounoum, B.M.; Bruno, C.; et al. Combined Metabolomics and Transcriptomics Approaches to Assess the IL-6 Blockade as a Therapeutic of ALS: Deleterious Alteration of Lipid Metabolism. Neurotherapeutics 2016, 13, 905–917. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Oh, K.W.; Jin, H.K.; Bae, J.S. Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases. BMB Rep. 2018, 51, 545–546. [Google Scholar] [CrossRef] [Green Version]
- Sheean, R.K.; McKay, F.C.; Cretney, E.; Bye, C.R.; Perera, N.D.; Tomas, D.; Weston, R.A.; Scheller, K.J.; Djouma, E.; Menon, P.; et al. Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis: A Study of Humans and a Transgenic Mouse Model. JAMA Neurol. 2018, 75, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Thonhoff, J.R.; Beers, D.R.; Zhao, W.; Pleitez, M.; Simpson, E.P.; Berry, J.D.; Cudkowicz, M.E.; Appel, S.H. Expanded autologous regulatory T-lymphocyte infusions in ALS: A phase I, first-in-human study. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e465. [Google Scholar] [CrossRef] [PubMed]
Cytokine | Subject | Biofluid | Significance | Reference |
---|---|---|---|---|
IL-1Ra | Patients | Blood | Higher in ALS patients than in OND | [61] |
IL-1β | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [26,60,68] |
IL-2 | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Negative correlation with longevity | [71] | |||
Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [26,58,67,69,70] | |
Blood | Lower in ALS than healthy controls | [63] | ||
Predictor of poor survival | [26] | |||
IL-4 | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [26,64] |
CSF | Higher levels associated with slower disease progression | [64] | ||
IL-5 | Patients | Blood | Higher in ALS patients than healthy controls | [26] |
Lower in ALS patients than healthy controls | [63] | |||
IL-6 | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Negative correlation with longevity | [71] | |||
Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [26,47,58,63,65,66,67,68,70] | |
Blood | Lower in ALS patients than controls | [72] | ||
Blood | Rising levels associated with disease progression | [26] | ||
IL-7 | Patients | CSF | Higher in ALS patients than in OND | [60,64] |
IL-8 | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [26,57,63,65,66,68,70] |
IL-9 | Patients | CSF | Higher in ALS patients than in OND | [60] |
IL-10 | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Patients | Blood | Higher in ALS patients than controls | [26,67] | |
CSF, blood | Lower in ALS patients than controls and/or OND | [58,72] | ||
CSF | Higher levels associated with milder symptoms | [64] | ||
IL-12p70 | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [26,60] |
IL-13 | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Patients | Blood | Higher in ALS patients than controls | [26,56] | |
Negative correlation with ALSFRS-R score | [56] | |||
Positive correlation with the DPR | [56] | |||
IL-15 | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [58,67,69] |
IL-17 | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [47,58,60,64,67,69] |
IL-17A | Patients | Blood | Higher in ALS than controls | [59] |
IL-17B R | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Higher levels associated with shorter survival | [71] | |||
IL-18 | Patients | Blood | Higher in ALS patients than controls | [62] |
IL-21 | Patients | Blood | Higher in ALS patients than controls | [47] |
Cytokine | Subject | Biofluid | Significance | Reference |
---|---|---|---|---|
TNF-α | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [26,60,65,68,69] |
Blood | Lower in ALS patients than controls | [72] | ||
TNFRSF1 (CD120) | Patients | Blood | Higher in ALS patients than controls | [68,72] |
TNFRSF8 L (CD30 L) | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
TNFRSF18 (GITR) | Mouse model | Blood | Lower in TG mice than WT mice | [71] |
Higher levels associated with shorter survival | [71] | |||
TNFRSF19 (TROY) | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Negative correlation with longevity | [71] | |||
TNFSF11 (RANKL) | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Cytokine | Subject | Biofluid | Significance | Reference |
---|---|---|---|---|
IFN-γ | Patients | CSF, blood | Higher in ALS than controls and/or OND patients | [47,60,67,77] |
Lower in ALS than controls or OND patients | [26,58] | |||
Positive correlation with DPR | [67,77] | |||
CSF | Higher levels associated with shorter overall survival. | [67] |
Cytokine | Subject | Biofluid | Significance | Reference |
---|---|---|---|---|
G-CSF | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [58,60,64,67,69] |
GM-CSF | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [58,67] |
Blood | Negative correlation with duration of symptoms | [78] |
Cytokine | Subject | Biofluid | Significance | Reference |
---|---|---|---|---|
CCL2 (MCP-1) | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [57,58,60,67,69,78,80] |
Negative correlation with ALSFRS-R score | [60,67] | |||
Positive correlation with DPR | [67] | |||
Blood | Negative correlation with duration of symptoms | [78] | ||
CCL3 (MIP-1α) | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Negative correlation with longevity | [71] | |||
Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [58,67,69,79] | |
Positive correlation with disease duration and negative correlation with DPR | [67,79] | |||
CCL4 (MIP-1β) | Patients | CSF | Higher in ALS patients than controls and OND | [58,60,67,80] |
Positive correlation with ALSFRS-R and disease duration, and negative correlations with DPR | [60] | |||
CCL5 (RANTES) | Patients | CSF | Higher in ALS patients than in OND | [60] |
Blood | Lower in ALS patients than controls | [72] | ||
CCL11 (Eotaxin-1) | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Higher levels associated with shorter survival and negative correlation with longevity | [71] | |||
Patients | CSF, blood | Higher in ALS patients than in OND | [57,60,64] | |
CSF | Higher levels with slower DPR | [64] | ||
CCL19 (MIP-3β) | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
CCL21 (6Ckine) | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
CXC5R | Patients | Blood | Lower in ALS patients than controls | [72] |
CXCL8 | Patients | CSF | Higher in ALS patients than in OND | [60] |
Negative correlation with ALSFRS-R score | [60] | |||
CXCL10 | Patients | CSF | Higher in ALS patients than in OND | [60] |
Negative correlation with DPR | [60] |
Protein | Subject | Biofluid | Significance | Reference |
---|---|---|---|---|
ALK-1 | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Higher levels associated with shorter survival | [71] | |||
bFGF | Patients | CSF, blood | Higher in ALS patients than controls and/or OND | [58,64,67] |
Positive correlation with disease duration | [67] | |||
Blood | Negative correlation with DPR | [67] | ||
Galectin-1 | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
Higher levels associated with shorter survival and negative correlation with longevity | [71] | |||
Galectin-3 | Mouse model | Blood | Lower in fast-progressing TG mice at pre-symptomatic and symptomatic than in WT mice | [84] |
IgG | Patients | CSF | Increased level of galactosylated structures | [86] |
PDGF-BB | Patients | CSF | Higher in ALS patients than in OND | [64] |
TGF-β | Mouse model | Blood | Higher in slow-progressing TG mice and lower in fast-progressing TG mice at pre-symptomatic and symptomatic than in WT mice | [84] |
VEGF | Patients | CSF | Low levels at early stages of ALS | [82] |
CSF, blood | Higher in ALS patients than controls and/or OND | [58,60,67,68,69] | ||
Positive correlation with ALSFRS-R score and disease duration | [60,67,81] | |||
Negative correlation with DPR | [81] | |||
VEGF-D | Mouse model | Blood | Higher in TG mice than WT mice | [71] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Martinez, L.; Calvo, A.C.; Muñoz, M.J.; Osta, R. Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis? Int. J. Mol. Sci. 2019, 20, 2759. https://doi.org/10.3390/ijms20112759
Moreno-Martinez L, Calvo AC, Muñoz MJ, Osta R. Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis? International Journal of Molecular Sciences. 2019; 20(11):2759. https://doi.org/10.3390/ijms20112759
Chicago/Turabian StyleMoreno-Martinez, Laura, Ana Cristina Calvo, María Jesús Muñoz, and Rosario Osta. 2019. "Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis?" International Journal of Molecular Sciences 20, no. 11: 2759. https://doi.org/10.3390/ijms20112759
APA StyleMoreno-Martinez, L., Calvo, A. C., Muñoz, M. J., & Osta, R. (2019). Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis? International Journal of Molecular Sciences, 20(11), 2759. https://doi.org/10.3390/ijms20112759