Cell and Molecular Biology of Thyroid Disorders
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Adverse events |
ATC | Anaplastic thyroid cancer |
BRAF | B-Raf (rapidly accelerated fibrosarcoma) proto-oncogene |
cfDNA | Cell-free deoxyribonucleic acid |
DTC | Differentiated thyroid cancer |
EGFR | Epidermal growth factor receptor |
FNA | Fine needle aspiration |
FNAC | Fine needle aspiration cytology |
FTC | Follicular thyroid cancer |
HER2 | Human epidermal growth factor receptor 2 |
HO1 | Hemoxygenase 1 |
MKI | Multi-kinase inhibitors |
MTC | Medullary thyroid cancer |
miRNA | Micro-ribonucleic acid |
OPN | Osteopontin |
PTC | Papillary thyroid cancer |
PTK2/FAK1 | Focal adhesion kinase 1 |
PTM | Posttranslational modification |
PXN | Paxillin |
RAS | Rat sarcoma proto-oncogene |
RET | Ret proto-oncogene |
RPM | Random positioning machine |
TC | Thyroid cancer |
TERT | Telomerase reverse transcriptase |
TKI | Tyrosine-kinase inhibitors |
TNFSF4 | Tumour necrosis factor superfamily member 4 |
TNM | TNM Classification of malignant tumours |
TSH | Thyroid-stimulating hormone |
TTF1 | Thyroid transcription factor 1 |
VCL | Vinculin |
References
- Ghervan, C. Thyroid and parathyroid ultrasound. Med. Ultrason. 2011, 13, 80–84. [Google Scholar] [PubMed]
- Menche, N. Biologie Anatomie Physiologie; Urban & Fischer Verlag/Elsevier GmbH: Munich, Germany, 2012. [Google Scholar]
- Schmidt, R.F.; Lang, F.; Heckmann, M. Physsiologie des Menschen; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Delange, F. The disorders induced by iodine deficiency. Thyroid 1994, 4, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Streetman, D.D.; Khanderia, U. Diagnosis and treatment of graves disease. Ann. Pharmacother. 2003, 37, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Laursen, R.; Wehland, M.; Kopp, S.; Pietsch, J.; Infanger, M.; Grosse, J.; Grimm, D. Effects and role of multikinase inhibitors in thyroid cancer. Curr. Pharm. Des. 2016, 22, 5915–5926. [Google Scholar] [CrossRef]
- Ancker, O.V.; Wehland, M.; Bauer, J.; Infanger, M.; Grimm, D. The adverse effect of hypertension in the treatment of thyroid cancer with multi-kinase inhibitors. Int. J. Mol. Sci. 2017, 18, 625. [Google Scholar] [CrossRef]
- Yip, L. Molecular markers for thyroid cancer diagnosis, prognosis, and targeted therapy. J. Surg. Oncol. 2015, 111, 43–50. [Google Scholar] [CrossRef]
- Cantara, S.; Marzocchi, C.; Pilli, T.; Cardinale, S.; Forleo, R.; Castagna, M.G.; Pacini, F. Molecular signature of indeterminate thyroid lesions: Current methods to improve fine needle aspiration cytology (fnac) diagnosis. Int. J. Mol. Sci. 2017, 18, 775. [Google Scholar] [CrossRef]
- Ko, Y.S.; Hwang, T.S.; Kim, J.Y.; Choi, Y.L.; Lee, S.E.; Han, H.S.; Kim, W.S.; Kim, S.K.; Park, K.S. Diagnostic limitation of fine-needle aspiration (fna) on indeterminate thyroid nodules can be partially overcome by preoperative molecular analysis: Assessment of ret/ptc1 rearrangement in braf and ras wild-type routine air-dried fna specimens. Int. J. Mol. Sci. 2017, 18, 806. [Google Scholar] [CrossRef]
- Salvianti, F.; Giuliani, C.; Petrone, L.; Mancini, I.; Vezzosi, V.; Pupilli, C.; Pinzani, P. Integrity and quantity of total cell-free DNA in the diagnosis of thyroid cancer: Correlation with cytological classification. Int. J. Mol. Sci. 2017, 18, 1350. [Google Scholar] [CrossRef] [PubMed]
- Wojtas, B.; Pfeifer, A.; Oczko-Wojciechowska, M.; Krajewska, J.; Czarniecka, A.; Kukulska, A.; Eszlinger, M.; Musholt, T.; Stokowy, T.; Swierniak, M.; et al. Gene expression (mrna) markers for differentiating between malignant and benign follicular thyroid tumours. Int. J. Mol. Sci. 2017, 18, 1184. [Google Scholar] [CrossRef] [PubMed]
- Rusinek, D.; Chmielik, E.; Krajewska, J.; Jarzab, M.; Oczko-Wojciechowska, M.; Czarniecka, A.; Jarzab, B. Current advances in thyroid cancer management. Are we ready for the epidemic rise of diagnoses? Int. J. Mol. Sci. 2017, 18, 1817. [Google Scholar] [CrossRef] [PubMed]
- Camargo Barros-Filho, M.; Barreto Menezes de Lima, L.; Bisarro Dos Reis, M.; Bette Homem de Mello, J.; Moraes Beltrami, C.; Lopes Pinto, C.A.; Kowalski, L.P.; Rogatto, S.R. Pfkfb2 promoter hypomethylation as recurrence predictive marker in well-differentiated thyroid carcinomas. Int. J. Mol. Sci. 2019, 20, 1334. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, G.; Dolcimascolo, A.; Torrisi, F.; Zappala, A.; Gulino, R.; Parenti, R. Mir-19a overexpression in ftc-133 cell line induces a more de-differentiated and aggressive phenotype. Int. J. Mol. Sci. 2018, 19, 3944. [Google Scholar] [CrossRef] [PubMed]
- Rusinek, D.; Pfeifer, A.; Krajewska, J.; Oczko-Wojciechowska, M.; Handkiewicz-Junak, D.; Pawlaczek, A.; Zebracka-Gala, J.; Kowalska, M.; Cyplinska, R.; Zembala-Nozynska, E.; et al. Coexistence of tert promoter mutations and the braf v600e alteration and its impact on histopathological features of papillary thyroid carcinoma in a selected series of polish patients. Int. J. Mol. Sci. 2018, 19, 2647. [Google Scholar] [CrossRef]
- Lee, W.K.; Lee, S.G.; Yim, S.H.; Kim, D.; Kim, H.; Jeong, S.; Jung, S.G.; Jo, Y.S.; Lee, J. Whole exome sequencing identifies a novel hedgehog-interacting protein g516r mutation in locally advanced papillary thyroid cancer. Int. J. Mol. Sci. 2018, 19, 2867. [Google Scholar] [CrossRef]
- Ferreira, L.B.; Lima, R.T.; Bastos, A.; Silva, A.M.; Tavares, C.; Pestana, A.; Rios, E.; Eloy, C.; Sobrinho-Simoes, M.; Gimba, E.R.P.; et al. Opna overexpression is associated with matrix calcification in thyroid cancer cell lines. Int. J. Mol. Sci. 2018, 19, 2990. [Google Scholar] [CrossRef]
- Milling, R.V.; Grimm, D.; Krüger, M.; Grosse, J.; Kopp, S.; Bauer, J.; Infanger, M.; Wehland, M. Pazopanib, cabozantinib, and vandetanib in the treatment of progressive medullary thyroid cancer with a special focus on the adverse effects on hypertension. Int. J. Mol. Sci. 2018, 19, 3258. [Google Scholar] [CrossRef]
- Bauer, J.; Wehland, M.; Infanger, M.; Grimm, D.; Gombocz, E. Semantic analysis of posttranslational modification of proteins accumulated in thyroid cancer cells exposed to simulated microgravity. Int. J. Mol. Sci. 2018, 19, 2257. [Google Scholar] [CrossRef]
- Krüger, M.; Melnik, D.; Kopp, S.; Buken, C.; Sahana, J.; Bauer, J.; Wehland, M.; Hemmersbach, R.; Corydon, T.J.; Infanger, M.; et al. Fighting thyroid cancer with microgravity research. Int. J. Mol. Sci. 2019, 20, 2553. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Auletta, L.; Orlandella, F.M.; Iervolino, P.L.C.; Klain, M.; Salvatore, G.; Mancini, M. Preclinical imaging for the study of mouse models of thyroid cancer. Int. J. Mol. Sci. 2017, 18, 2731. [Google Scholar] [CrossRef] [PubMed]
- Zabczynska, M.; Kozlowska, K.; Pochec, E. Glycosylation in the thyroid gland: Vital aspects of glycoprotein function in thyrocyte physiology and thyroid disorders. Int. J. Mol. Sci. 2018, 19, 2792. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.S.; Hsu, Y.C.; Lee, J.J.; Chen, M.J.; Huang, S.Y.; Cheng, S.P. Heme oxygenase-1 inhibitors induce cell cycle arrest and suppress tumor growth in thyroid cancer cells. Int. J. Mol. Sci. 2018, 19, 2502. [Google Scholar] [CrossRef]
- Zhong, W.B.; Tsai, Y.C.; Chin, L.H.; Tseng, J.H.; Tang, L.W.; Horng, S.; Fan, Y.C.; Hsu, S.P. A synergistic anti-cancer effect of troglitazone and lovastatin in a human anaplastic thyroid cancer cell line and in a mouse xenograft model. Int. J. Mol. Sci. 2018, 19, 1834. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Tsai, Y.C.; Tseng, J.H.; Liou, J.J.; Horng, S.; Wen, H.C.; Fan, Y.C.; Zhong, W.B.; Hsu, S.P. Simvastatin inhibits cell proliferation and migration in human anaplastic thyroid cancer. Int. J. Mol. Sci. 2017, 18, 2690. [Google Scholar] [CrossRef] [PubMed]
- Caria, P.; Tronci, L.; Dettori, T.; Murgia, F.; Santoru, M.L.; Griffin, J.L.; Vanni, R.; Atzori, L. Metabolomic alterations in thyrospheres and adherent parental cells in papillary thyroid carcinoma cell lines: A pilot study. Int. J. Mol. Sci. 2018, 19, 2948. [Google Scholar] [CrossRef] [PubMed]
- Wächter, S.; Wunderlich, A.; Greene, B.H.; Roth, S.; Elxnat, M.; Fellinger, S.A.; Verburg, F.A.; Luster, M.; Bartsch, D.K.; Di Fazio, P. Selumetinib activity in thyroid cancer cells: Modulation of sodium iodide symporter and associated mirnas. Int. J. Mol. Sci. 2018, 19, 2077. [Google Scholar] [CrossRef] [PubMed]
- Starenki, D.; Sosonkina, N.; Hong, S.K.; Lloyd, R.V.; Park, J.I. Mortalin (grp75/hspa9) promotes survival and proliferation of thyroid carcinoma cells. Int. J. Mol. Sci. 2019, 20, 2069. [Google Scholar] [CrossRef] [PubMed]
- Alfadda, A.A.; Benabdelkamel, H.; Masood, A.; Jammah, A.A.; Ekhzaimy, A.A. Differences in the plasma proteome of patients with hypothyroidism before and after thyroid hormone replacement: A proteomic analysis. Int. J. Mol. Sci. 2018, 19, 88. [Google Scholar] [CrossRef]
- Pietsch, J.; Sickmann, A.; Weber, G.; Bauer, J.; Egli, M.; Wildgruber, R.; Infanger, M.; Grimm, D. Metabolic enzyme diversity in different human thyroid cell lines and their sensitivity to gravitational forces. Proteomics 2012, 12, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Pietsch, J.; Wehland, M.; Schulz, H.; Saar, K.; Hübner, N.; Bauer, J.; Braun, M.; Schwarzwälder, A.; Segerer, J.; et al. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J. 2014, 28, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Wehland, M.; Pietsch, J.; Sickmann, A.; Weber, G.; Grimm, D. Annotated gene and proteome data support recognition of interconnections between the results of different experiments in space research. Microgravity Sci. Technol. 2016, 28, 357–365. [Google Scholar] [CrossRef]
- Romero-Chapman, N.; Lee, J.; Tinker, D.; Uriu-Hare, J.Y.; Keen, C.L.; Rucker, R.R. Purification, properties and influence of dietary copper on accumulation and functional activity of lysyl oxidase in rat skin. Biochem. J. 1991, 275 Pt 3, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Corydon, T.J.; Kopp, S.; Wehland, M.; Braun, M.; Schütte, A.; Mayer, T.; Hülsing, T.; Oltmann, H.; Schmitz, B.; Hemmersbach, R.; et al. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci. Rep. 2016, 6, 20043. [Google Scholar] [CrossRef] [PubMed]
Author | Title | Topics | Type | Reference |
---|---|---|---|---|
Rusinek et al. | Current advances in thyroid cancer management. are we ready for the epidemic rise of diagnoses? | Diagnosis of TC | Review | [15] |
Chen et al. | Simvastatin inhibits cell proliferation and migration in human anaplastic thyroid cancer | ATC: Drug testing in vitro | Research article | [28] |
Greco et al. | Preclinical imaging for the study of mouse models of thyroid cancer | Imaging techniques used for diagnosis in TC mouse models | Review | [24] |
Alfadda et al. | Differences in the plasma proteome of patients with hypothyroidism before and after thyroid hormone replacement: a proteomic analysis | Plasma proteome-hypothyroid vs. euthyroid state | Research Article | [32] |
Zhong et al. | A synergistic anti-cancer effect of troglitazone and lovastatin in a human anaplastic thyroid cancer cell line and in a mouse xenograft model | ATC: Drug testing in vitro | Research Article | [27] |
Yang et al. | Heme oxygenase-1 inhibitors induce cell cycle arrest and suppress tumor growth in thyroid cancer cells | FTC, undifferentiated TC: Drug testing in vitro | Research Article | [26] |
Wächter et al. | Selumetinib activity in thyroid cancer cells: modulation of sodium iodide symporter and associated miRNAs | ATC, PTC and undifferentiated TC: Drug testing in vitro | Research Article | [30] |
Bauer et al. | Semantic analysis of posttranslational modification of proteins accumulated in thyroid cancer cells exposed to simulated microgravity | FTC: Proteomics | Research Article | [22] |
Rusinek et al. | Coexistence of TERT Promoter mutations and the BRAF V600E alteration and its impact on histopathological features of papillary thyroid carcinoma in a selected series of Polish patients | PTC: diagnosis | Research Article | [18] |
Ząbczyńska et al. | Glycosylation in the thyroid gland: vital aspects of glycoprotein function in thyrocyte physiology and thyroid disorders | Changes in protein glycosylation profiles lead to thyroid disorders | Review | [25] |
Vilsbøll Milling et al. | Pazopanib, cabozantinib, and vandetanib in the treatment of progressive medullary thyroid cancer with a special focus on the adverse effects on hypertension | ATC: Therapy | Review | [21] |
Lee et al. | Whole exome sequencing identifies a novel hedgehog-interacting protein g516r mutation in locally advanced papillary thyroid cancer | Whole Exome Sequencing for advanced PTC | Research Article | [19] |
Ferreira et al. | OPNa overexpression is associated with matrix calcification in thyroid cancer cell lines | PTC: diagnosis | Research Article | [20] |
Caria P. et al. | Metabolomic alterations in thyrospheres and adherent parental cells in papillary thyroid carcinoma cell lines: a pilot study | PTC: in vitro study | Research Article | [29] |
Calabrese et al. | miR-19a overexpression in FTC-133 cell line induces a more de-differentiated and aggressive phenotype | FTC: in vitro study | Research Article | [17] |
Barros-Filho et al. | PFKFB2 promoter hypomethylation as recurrence predictive marker in well-differentiated thyroid carcinomas | DTC: Recurrence Predictive Marker | Research Article | [16] |
Starenki et al. | Mortalin (GRP75/HSPA9) promotes survival and proliferation of thyroid carcinoma cells | PTC, FTC, ATC express high mortalin | Research Article | [31] |
Krüger et al. | Fighting thyroid cancer with microgravity research | Microgravity alters apoptosis, adhesion, proliferation, the cytoskeleton and the extracellular matrix. FTC cells grown in space were shifted towards a less-malignant phenotype. | Review | [23] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimm, D. Cell and Molecular Biology of Thyroid Disorders. Int. J. Mol. Sci. 2019, 20, 2895. https://doi.org/10.3390/ijms20122895
Grimm D. Cell and Molecular Biology of Thyroid Disorders. International Journal of Molecular Sciences. 2019; 20(12):2895. https://doi.org/10.3390/ijms20122895
Chicago/Turabian StyleGrimm, Daniela. 2019. "Cell and Molecular Biology of Thyroid Disorders" International Journal of Molecular Sciences 20, no. 12: 2895. https://doi.org/10.3390/ijms20122895
APA StyleGrimm, D. (2019). Cell and Molecular Biology of Thyroid Disorders. International Journal of Molecular Sciences, 20(12), 2895. https://doi.org/10.3390/ijms20122895