Chromogranin-A Expression as a Novel Biomarker for Early Diagnosis of Colon Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Logistic Regression-Based Meta-Analysis Has Been Used in This Study
2.2. Data Collection
2.3. Logistic Regression
2.4. CHGA in the Diagnosis of Early-Stage Colon Cancer
2.5. Comparison of the CHGA with Other Biomarkers
2.6. Verification in RNA-Seq Data
2.7. CHGA-Related PPI Networks and Biological Explanation
2.8. Prediction for CHGA-Related Biomarkers from Expression Levels
3. Discussion
4. Materials and Methods
4.1. Data Collection, Extraction, and Normalization
4.2. Logistic Regression and Diagnostic Meta-Analysis
4.3. Verification Test
4.4. CHGA PPI Network Construction, Biological Function Analysis, and Detection for CHGA Similar Genes
4.5. Software and Tools
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Geiger, T.M.; Ricciardi, R. Screening options and recommendations for colorectal cancer. Clin. Colon Rectal Surg. 2009, 22, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Newton, K.F.; Newman, W.; Hill, J. Review of biomarkers in colorectal cancer. Colorectal Dis. 2012, 14, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.F.; Carstensen, J.M.; Zhang, H.; Stal, O.; Wingren, S.; Hatschek, T.; Nordenskjold, B. Prognostic-significance of cytoplasmic-P53 oncoprotein in colorectal adenocarcinoma. Lancet 1992, 340, 1369–1373. [Google Scholar] [CrossRef]
- Sun, X.F.; Ekberg, H.; Zhang, H.; Carstensen, J.M.; Nordenskjold, B. Overexpression of ras is an independent prognostic factor in colorectal adenocarcinoma. APMIS 1998, 106, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.F.; Bartik, Z.; Zhang, H. Bcl-2 expression is a prognostic factor in the subgroups of patients with colorectal cancer. Int. J. Oncol. 2003, 23, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, X.F.; Shen, B.; Zhang, H. Potential applications of DNA, RNA and protein biomarkers in diagnosis, therapy and prognosis for colorectal cancer: A study from databases to AI-assisted verification. Cancers 2019, 11, 172. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.F.; Cao, Y.; Ye, B.; Peng, Q.; Liu, X.; Shen, B.; Zhang, H. CBD: A biomarker database for colorectal cancer. Database 2018. [Google Scholar] [CrossRef] [PubMed]
- Takiyyuddin, M.A.; Cervenka, J.H.; Sullivan, P.A.; Pandian, M.R.; Parmer, R.J.; Barbosa, J.A.; O’Connor, D.T. Is physiologic sympathoadrenal catecholamine release exocytotic in humans? Circulation 1990, 81, 185–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahapatra, N.R.; O’Connor, D.T.; Vaingankar, S.M.; Hikim, A.P.; Mahata, M.; Ray, S.; Staite, E.; Wu, H.; Gu, Y.; Dalton, N.; et al. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J. Clin. Investig. 2005, 115, 1942–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleist, B.; Poetsch, M. Neuroendocrine differentiation: The mysterious fellow of colorectal cancer. World J. Gastroenterol. 2015, 21, 11740–11747. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.J.; Lai, W.; Liu, L.; Wu, H.; Luo, X.X.; Wang, J.; Chu, Z.H. Prognostic significance of neuroendocrine differentiation in colorectal adenocarcinoma after radical operation: A meta-analysis. J. Gastrointest Surg. 2014, 18, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Dost Gunay, F.S.; Kirmizi, B.A.; Ensari, A.; Icli, F.; Akbulut, H. Tumor-associated macrophages and neuroendocrine differentiation decrease the efficacy of bevacizumab plus chemotherapy in patients with advanced colorectal cancer. Clin. Colorectal Cancer 2018, 18, e244–e250. [Google Scholar] [CrossRef]
- Oberg, K. Biochemical diagnosis of neuroendocrine GEP tumor. Yale J. Biol. Med. 1997, 70, 501–508. [Google Scholar]
- Tomassetti, P.; Migliori, M.; Simoni, P.; Casadei, R.; De Iasio, R.; Corinaldesi, R.; Gullo, L. Diagnostic value of plasma chromogranin A in neuroendocrine tumours. Eur. J. Gastroenterol. Hepatol. 2001, 13, 55–58. [Google Scholar] [CrossRef]
- Yang, S.; Chung, H.C. Novel biomarker candidates for gastric cancer. Oncol. Rep. 2008, 19, 675–680. [Google Scholar] [CrossRef]
- Ma, Z.; Tsuchiya, N.; Yuasa, T.; Huang, M.; Obara, T.; Narita, S.; Horikawa, Y.; Tsuruta, H.; Saito, M.; Satoh, S.; et al. Clinical significance of polymorphism and expression of chromogranin A and endothelin-1 in prostate cancer. J. Urol. 2010, 184, 1182–1188. [Google Scholar] [CrossRef]
- Weisbrod, A.B.; Zhang, L.; Jain, M.; Barak, S.; Quezado, M.M.; Kebebew, E. Altered PTEN, ATRX, CHGA, CHGB, and TP53 expression are associated with aggressive VHL-associated pancreatic neuroendocrine tumors. Horm. Cancer 2013, 4, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 2008, 359, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.R.; Rowan, A.; Smith, M.E.F.; Kerr, I.B.; Bodmer, W.F.; Gannon, J.V.; Lane, D.P. P53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA 1990, 87, 7555–7559. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Li, J.; Jin, L.; Wang, D.; Zhang, J.H.; Wang, J.; Zhao, X.M.; Wu, G.C.; Yao, H.W.; Zhang, Z.T. Independent correlation between Ki67 index and circulating tumor cells in the diagnosis of colorectal cancer. Anticancer Res. 2017, 37, 4693–4700. [Google Scholar] [CrossRef] [PubMed]
- Heidari, Z.; Mahmoudzadeh-Sagheb, H.; Jahantigh, M.; Gorgich, E.A.C. Immunohistochemical expression of Ki67 and HER2 in colorectal cancer compared to adenomatous and normal samples. Int. J. Cancer Manag. 2017, 10. [Google Scholar] [CrossRef]
- Larranaga, P.; Calvo, B.; Santana, R.; Bielza, C.; Galdiano, J.; Inza, I.; Lozano, J.A.; Armananzas, R.; Santafe, G.; Perez, A.; et al. Machine learning in bioinformatics. Brief. Bioinform. 2006, 7, 86–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, X.F.; Shen, B.; Zhang, H. Machine learning based biomarker discovery for colon cancer from protein-protein interaction network. (unpublished, manuscript in preparation).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Tang, Z.F.; Li, C.W.; Kang, B.X.; Gao, G.; Li, C.; Zhang, Z.M. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Peng, Q.; Zhang, X.; Min, M.; Zou, L.; Shen, P.; Zhu, Y. The clinical role of microRNA-21 as a promising biomarker in the diagnosis and prognosis of colorectal cancer: A systematic review and meta-analysis. Oncotarget 2017, 8, 44893–44909. [Google Scholar] [CrossRef]
- Xu, L.H.; Guo, Y.; Zhang, X.; Chen, J.J.; Hu, S.Y. Blood-based circulating microRNAs are potential diagnostic biomarkers for leukemia: Result from a meta-analysis. Cell. Physiol. Biochem. 2016, 38, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Xue, D.; Li, Y.W.; Pan, X.Y.; Zhang, X.Y.; Kuang, B.; Zhou, M.; Li, X.L.; Xiong, W.; Li, G.Y.; et al. The Long Noncoding RNA MALAT-1 is a novel biomarker in various cancers: A meta-analysis based on the GEO database and literature. J. Cancer 2016, 7, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Long, N.P.; Jung, K.H.; Anh, N.H.; Yan, H.H.; Nghi, T.D.; Park, S.; Yoon, S.J.; Min, J.E.; Kim, H.M.; Lim, J.H.; et al. An integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer. Cancers 2019, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.C.; Jacobson, G.M.; Walker, L.E.; Blake, N.W.; Marshall, E.; Coulson, J.M. SCG3 transcript in peripheral blood is a prognostic biomarker for REST-deficient small cell lung cancer. Clin. Cancer Res. 2009, 15, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Sun, T.; He, Z.; Xiong, B. Identification of two novel biomarkers of rectal carcinoma progression and prognosis via co-expression network analysis. Oncotarget 2017, 8, 69594–69609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuaroqueaux, V.; Dutour, A.; Briard, N.; Monges, G.; Grino, M.; Oliver, C.; Ouafik, L. No loss of sst receptors gene expression in advanced stages of colorectal cancer. Eur. J. Endocrinol. 1999, 140, 362–366. [Google Scholar] [CrossRef]
- Crnic, I.; Strittmatter, K.; Cavallaro, U.; Kopfstein, L.; Jussila, L.; Alitalo, K.; Christofori, G. Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res. 2004, 64, 8630–8638. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, H.; Wang, W.D.; Wang, L.; Liu, W.J.; Wang, J.H.; Geng, Q.R.; Lu, Y. ENO2 Promotes Cell Proliferation, Glycolysis, and Glucocorticoid-Resistance in Acute Lymphoblastic Leukemia. Cell. Physiol. Biochem. 2018, 46, 1525–1535. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, T.C.; Chen, W.Q.; Zhou, L.J.; Wu, Y.; Zeng, L.; Pei, H.P. Screening for differentially expressed genes between left- and right-sided colon carcinoma by microarray analysis. Oncol. Lett. 2013, 6, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Raja, S.A.; Abbas, S.; Shah, S.T.A.; Tariq, A.; Bibi, N.; Yousuf, A.; Khawaja, A.; Nawaz, M.; Mehmood, A.; Khan, M.J.; et al. Increased expression levels of syntaxin 1A and synaptobrevin 2/vesicle-associated membrane protein-2 are associated with the progression of bladder cancer. Genet. Mol. Biol. 2019, 42, 40–47. [Google Scholar] [CrossRef]
- Ooi, A.T.; Gomperts, B.N. Molecular pathways: Targeting cellular energy metabolism in cancer via inhibition of SLC2A1 and LDHA. Clin. Cancer Res. 2015, 21, 2440–2444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zang, Y.; Yang, Y.; Xiang, J.; Chen, Z. Candidate genes involved in metastasis of colon cancer identified by integrated analysis. Cancer Med. 2019, 8, 2338–2347. [Google Scholar] [CrossRef] [PubMed]
- Santasusagna, S.; Moreno, I.; Navarro, A.; Munoz, C.; Martinez, F.; Hernandez, R.; Castellano, J.J.; Monzo, M. miR-328 mediates a metabolic shift in colon cancer cells by targeting SLC2A1/GLUT1. Clin. Transl. Oncol. 2018, 20, 1161–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, N.N.; Huynh, T.T.; Lin, Y.C. Hyperpolarization-activated cyclic nucleotide-gated gene signatures and poor clinical outcome of cancer patient. Transl. Cancer Res. 2017, 6, 698–708. [Google Scholar] [CrossRef]
Datasets | Sample Number | Stage | Region | Source | Expression | Platform | PMID* |
---|---|---|---|---|---|---|---|
GSE44076 | 98/148 | PCC | Barcelona | Tissue | Array | GPL13667 | 25215506 |
GSE74602 | 30/30 | PCC | Singapore | Tissue | Array | GPL6104 | NA |
GSE10972 | 24/24 | PCC | Singapore | Cell | Array | GPL6104 | 18538736 |
GSE23878 | 35/24 | PCC | Riydh | Tissue | Array | GPL570 | 21281787 |
Datasets | TP | FP | FN | TN* |
---|---|---|---|---|
GSE44076 (1) | 92 | 1 | 6 | 49 |
GSE44076 (2) | 87 | 5 | 10 | 93 |
GSE74602 | 25 | 5 | 6 | 24 |
GSE10972 | 21 | 10 | 3 | 14 |
GSE23878 | 30 | 3 | 5 | 21 |
Biomarker | Sensitivity | Specificity | PLR | NLR | DOR | AUC | Q Value | I2* |
---|---|---|---|---|---|---|---|---|
CHGA | 0.89 | 0.89 | 46.94 | 0.14 | 57.27 | 0.9370 | 0.8736 | 0.205 |
MKI67 | 0.86 | 0.81 | 4.60 | 0.18 | 27.65 | 0.9270 | 0.8615 | 0.527 |
TP53 | 0.78 | 0.54 | 1.81 | 0.64 | 2.36 | 0.7732 | 0.7129 | 0.78 |
KRAS | 0.82 | 0.77 | 2.83 | 0.30 | 9.78 | 0.8745 | 0.8050 | 0.812 |
(A) | ||||
GO ID | Pathway | Count | FDR* | Matching Genes |
GO:0010646 | regulation of cell communication | 9 | 0.0018 | CHGA, CHGB, GAST, NCAM1, SCG2, SST, STX1A, SYP, SYT1 |
GO:0023051 | regulation of signaling | 9 | 0.0018 | CHGA, CHGB, GAST, NCAM1, SCG2, SST, STX1A, SYP, SYT1 |
GO:0050433 | regulation of catecholamine secretion | 3 | 0.0018 | CHGA, STX1A, SYT1 |
GO:0048583 | regulation of response to stimulus | 9 | 0.0022 | CHGA, CHGB, GAST, NCAM1, SCG2, SST, STX1A, SYP, SYT1 |
GO:0009966 | regulation of signal transduction | 8 | 0.0028 | CHGA, CHGB, GAST, NCAM1, SCG2, SST, STX1A, SYP |
GO:0032940 | secretion by cell | 5 | 0.0064 | CHGA, SCG2, SCG3, STX1A, SYT1 |
GO:0070887 | cellular response to chemical stimulus | 7 | 0.0083 | CHGA, NCAM1, SCG2, SST, STX1A, SYP, SYT1 |
GO:0010469 | regulation of signaling receptor activity | 4 | 0.0084 | CHGB, GAST, SCG2, SST |
GO:0042221 | response to chemical | 8 | 0.0127 | CHGA, GAST, NCAM1, SCG2, SST, STX1A, SYP, SYT1 |
GO:0045055 | regulated exocytosis | 4 | 0.014 | CHGA, SCG3, STX1A, SYT1 |
(B) | ||||
GO ID | Pathway | Count | FDR* | Matching Genes |
GO:0030658 | transport vesicle membrane | 5 | 4.82 × 10⁻6 | CHGA, SCG3, STX1A, SYP, SYT1 |
GO:0099503 | secretory vesicle | 7 | 1.33 × 10⁻5 | CHGA, CHGB, SCG2, SCG3, STX1A, SYP, SYT1 |
GO:0030141 | secretory granule | 6 | 8.41 × 10⁻5 | CHGA, CHGB, SCG2, SCG3, STX1A, SYT1 |
GO:0005576 | extracellular region | 8 | 0.00024 | CHGA, CHGB, GAST, NCAM1, SCG2, SCG3, SST, STX1A |
GO:0042583 | chromaffin granule | 2 | 0.00024 | CHGA, SYT1 |
GO:0098588 | bounding membrane of organelle | 6 | 0.0019 | CHGA, NCAM1, SCG3, STX1A, SYP, SYT1 |
GO:0012505 | endomembrane system | 8 | 0.003 | CHGA, CHGB, NCAM1, SCG2, SCG3, STX1A, SYP, SYT1 |
GO:0005615 | extracellular space | 4 | 0.0125 | CHGA, GAST, SCG2, SST |
(C) | ||||
GO ID | Pathway | Count | FDR* | Matching Genes |
GO:1901214 | regulation of neuron death | 3 | 0.0023 | CHGA, TP53, KRAS |
GO:0060548 | negative regulation of cell death | 3 | 0.0449 | CHGA, TP53, KRAS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, H.; Shen, B.; Sun, X.-F. Chromogranin-A Expression as a Novel Biomarker for Early Diagnosis of Colon Cancer Patients. Int. J. Mol. Sci. 2019, 20, 2919. https://doi.org/10.3390/ijms20122919
Zhang X, Zhang H, Shen B, Sun X-F. Chromogranin-A Expression as a Novel Biomarker for Early Diagnosis of Colon Cancer Patients. International Journal of Molecular Sciences. 2019; 20(12):2919. https://doi.org/10.3390/ijms20122919
Chicago/Turabian StyleZhang, Xueli, Hong Zhang, Bairong Shen, and Xiao-Feng Sun. 2019. "Chromogranin-A Expression as a Novel Biomarker for Early Diagnosis of Colon Cancer Patients" International Journal of Molecular Sciences 20, no. 12: 2919. https://doi.org/10.3390/ijms20122919
APA StyleZhang, X., Zhang, H., Shen, B., & Sun, X. -F. (2019). Chromogranin-A Expression as a Novel Biomarker for Early Diagnosis of Colon Cancer Patients. International Journal of Molecular Sciences, 20(12), 2919. https://doi.org/10.3390/ijms20122919