Differences in Mutational Profile between Follicular Thyroid Carcinoma and Follicular Thyroid Adenoma Identified Using Next Generation Sequencing
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients’ Characteristics and Clinicopathological Analysis
4.2. Genomic DNA Extraction
4.3. Next Generation Sequencing
4.4. Mutation Analysis
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FTA | Follicular thyroid adenoma |
FTC | Follicular thyroid cancer |
PTC | Papillary thyroid cancer |
NGS | Next-generation sequencing |
AUC | Area under curve |
NRI | Net Reclassification Improvement |
IDI | Integrated discrimination improvement |
AML | Acute myeloblastic leukocemia |
TNM | Tumor-node-metastasis |
FFPE | Formalin-fixed paraffin-embedded |
OR | Odds Ratio |
AMPCAP | Association for Molecular Pathology and College of American Pathologists |
nsSNVs | Synonymous single nucleotide variants |
CI | Confidence interval |
COSMIC | Catalogue of Somatic Mutations in Cancer |
FATHMM | Functional Analysis through Hidden Markov Models |
References
- McHenry, C.R.; Phitayakorn, R. Follicular adenoma and carcinoma of the thyroid gland. Oncologist 2011, 16, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Pstrag, N.; Ziemnicka, K.; Bluyssen, H.; Wesoly, J. Thyroid cancers of follicular origin in a genomic light: In-depth overview of common and unique molecular marker candidates. Mol. Cancer 2018, 17, 116. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Kim, M.S.; Jung, C.K.; Park, H.C.; Kim, S.Y.; Liu, J.; Bae, J.S.; Lee, S.H.; Kim, T.M.; Lee, S.H.; et al. Mutational burdens and evolutionary ages of thyroid follicular adenoma are comparable to those of follicular carcinoma. Oncotarget 2016, 7, 69638–69648. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Nikiforova, M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 2011, 7, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Borowczyk, M.; Szczepanek-Parulska, E.; Olejarz, M.; Wieckowska, B.; Verburg, F.A.; Debicki, S.; Budny, B.; Janicka-Jedynska, M.; Ziemnicka, K.; Ruchala, M. Evaluation of 167 Gene Expression Classifier (GEC) and ThyroSeq v2 Diagnostic Accuracy in the Preoperative Assessment of Indeterminate Thyroid Nodules: Bivariate/HROC Meta-analysis. Endocr. Pathol. 2018. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef]
- Gerber, T.S.; Schad, A.; Hartmann, N.; Springer, E.; Zechner, U.; Musholt, T.J. Targeted next-generation sequencing of cancer genes in poorly differentiated thyroid cancer. Endocr. Connect. 2018, 7, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Luthra, R.; Routbort, M.J.; Patel, K.P.; Cabanillas, M.E.; Broaddus, R.R.; Williams, M.D. Molecular Profile of Advanced Thyroid Carcinomas by Next-Generation Sequencing: Characterizing Tumors Beyond Diagnosis for Targeted Therapy. Mol. Cancer Ther. 2018, 17, 1575–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikiforov, Y.E.; Ohori, N.P.; Hodak, S.P.; Carty, S.E.; LeBeau, S.O.; Ferris, R.L.; Yip, L.; Seethala, R.R.; Tublin, M.E.; Stang, M.T.; et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: A prospective analysis of 1056 FNA samples. J. Clin. Endocrinol. Metab. 2011, 96, 3390–3397. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Lim, J.A.; Min, H.S.; Kim, M.J.; Choi, H.S.; Cho, S.W.; Moon, J.H.; Yi, K.H.; Park, D.J.; Cho, B.Y.; et al. Changes in the clinicopathological characteristics and genetic alterations of follicular thyroid cancer. Eur. J. Endocrinol. 2017, 177, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Topf, M.C.; Wang, Z.X.; Tuluc, M.; Pribitkin, E.A. TERT, HRAS, and EIF1AX Mutations in a Patient with Follicular Adenoma. Thyroid 2018, 28, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Wojtas, B.; Pfeifer, A.; Oczko-Wojciechowska, M.; Krajewska, J.; Czarniecka, A.; Kukulska, A.; Eszlinger, M.; Musholt, T.; Stokowy, T.; Swierniak, M.; et al. Gene Expression (mRNA) Markers for Differentiating between Malignant and Benign Follicular Thyroid Tumours. Int. J. Mol. Sci. 2017, 18, 1184. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.J.; Koo, J.S. Next-generation sequencing in thyroid cancer. J. Transl. Med. 2016, 14, 322. [Google Scholar] [CrossRef] [PubMed]
- Giordano, T.J. Follicular cell thyroid neoplasia: Insights from genomics and The Cancer Genome Atlas research network. Curr. Opin. Oncol. 2016, 28, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Lee, S.H.; Jung, C.K.; Park, G.; Lee, K.Y.; Choi, H.J.; Min, K.O.; Kim, T.J.; Lee, E.J.; Lee, Y.S. Use of the Ion AmpliSeq Cancer Hotspot Panel in clinical molecular pathology laboratories for analysis of solid tumours: With emphasis on validation with relevant single molecular pathology tests and the Oncomine Focus Assay. Pathol. Res. Pract. 2018, 214, 713–719. [Google Scholar] [CrossRef]
- Butler, K.S.; Young, M.Y.; Li, Z.; Elespuru, R.K.; Wood, S.C. Performance characteristics of the AmpliSeq Cancer Hotspot panel v2 in combination with the Ion Torrent Next Generation Sequencing Personal Genome Machine. Regul. Toxicol. Pharmacol. 2016, 74, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Dom, G.; Frank, S.; Floor, S.; Kehagias, P.; Libert, F.; Hoang, C.; Andry, G.; Spinette, A.; Craciun, L.; de Saint Aubin, N.; et al. Thyroid follicular adenomas and carcinomas: Molecular profiling provides evidence for a continuous evolution. Oncotarget 2018, 9, 10343–10359. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Dasyam, A.K.; Carty, S.E.; Nikiforova, M.N.; Ohori, N.P.; Armstrong, M.; Yip, L.; LeBeau, S.O.; McCoy, K.L.; Coyne, C.; et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J. Clin. Endocrinol. Metab. 2013, 98, E914–E922. [Google Scholar] [CrossRef]
- Karger, S.; Krause, K.; Engelhardt, C.; Weidinger, C.; Gimm, O.; Dralle, H.; Sheu-Grabellus, S.Y.; Schmid, K.W.; Fuhrer, D. Distinct pattern of oxidative DNA damage and DNA repair in follicular thyroid tumours. J. Mol. Endocrinol. 2012, 48, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.; Prawitt, S.; Eszlinger, M.; Ihling, C.; Sinz, A.; Schierle, K.; Gimm, O.; Dralle, H.; Steinert, F.; Sheu, S.Y.; et al. Dissecting molecular events in thyroid neoplasia provides evidence for distinct evolution of follicular thyroid adenoma and carcinoma. Am. J. Pathol. 2011, 179, 3066–3074. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Dohner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Kindler, T.; Lipka, D.B.; Fischer, T. FLT3 as a therapeutic target in AML: Still challenging after all these years. Blood 2010, 116, 5089–5102. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.C.; Wang, Q.; Chin, C.S.; Salerno, S.; Damon, L.E.; Levis, M.J.; Perl, A.E.; Travers, K.J.; Wang, S.; Hunt, J.P.; et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012, 485, 260–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeifer, A.; Wojtas, B.; Oczko-Wojciechowska, M.; Kukulska, A.; Czarniecka, A.; Eszlinger, M.; Musholt, T.; Stokowy, T.; Swierniak, M.; Stobiecka, E.; et al. Molecular differential diagnosis of follicular thyroid carcinoma and adenoma based on gene expression profiling by using formalin-fixed paraffin-embedded tissues. BMC Med. Genomics 2013, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, N.G.; Murtha, T.D.; Dong, W.; Paulsson, J.O.; Choi, J.; Barbieri, A.L.; Brown, T.C.; Kunstman, J.W.; Larsson, C.; Prasad, M.L.; et al. Comprehensive Genetic Analysis of Follicular Thyroid Carcinoma Predicts Prognosis Independent of Histology. J. Clin. Endocrinol. Metab. 2018, 103, 2640–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, F.; Farsetti, A.; Soddu, S.; Misiti, S.; Crescenzi, M.; Filetti, S.; Andreoli, M.; Sacchi, A.; Pontecorvi, A. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene 1997, 14, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Pita, J.M.; Figueiredo, I.F.; Moura, M.M.; Leite, V.; Cavaco, B.M. Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J. Clin. Endocrinol. Metab. 2014, 99, E497–E507. [Google Scholar] [CrossRef]
- Bonhomme, B.; Godbert, Y.; Perot, G.; Al Ghuzlan, A.; Bardet, S.; Belleannee, G.; Criniere, L.; Do Cao, C.; Fouilloux, G.; Guyetant, S.; et al. Molecular Pathology of Anaplastic Thyroid Carcinomas: A Retrospective Study of 144 Cases. Thyroid 2017, 27, 682–692. [Google Scholar] [CrossRef]
- Howell, G.M.; Hodak, S.P.; Yip, L. RAS mutations in thyroid cancer. Oncologist 2013, 18, 926–932. [Google Scholar] [CrossRef]
- Yoo, S.K.; Lee, S.; Kim, S.J.; Jee, H.G.; Kim, B.A.; Cho, H.; Song, Y.S.; Cho, S.W.; Won, J.K.; Shin, J.Y.; et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016, 12, e1006239. [Google Scholar] [CrossRef]
- Angell, T.E. RAS-positive thyroid nodules. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Vasko, V.; Ferrand, M.; Di Cristofaro, J.; Carayon, P.; Henry, J.F.; de Micco, C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 2003, 88, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Fukahori, M.; Yoshida, A.; Hayashi, H.; Yoshihara, M.; Matsukuma, S.; Sakuma, Y.; Koizume, S.; Okamoto, N.; Kondo, T.; Masuda, M.; et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: New insights from a single center and a large patient cohort. Thyroid 2012, 22, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Puzziello, A.; Guerra, A.; Murino, A.; Izzo, G.; Carrano, M.; Angrisani, E.; Zeppa, P.; Marotta, V.; Faggiano, A.; Vitale, M. Benign thyroid nodules with RAS mutation grow faster. Clin. Endocrinol. (Oxf.) 2016, 84, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Swierniak, M.; Pfeifer, A.; Stokowy, T.; Rusinek, D.; Chekan, M.; Lange, D.; Krajewska, J.; Oczko-Wojciechowska, M.; Czarniecka, A.; Jarzab, M.; et al. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol. Cell Endocrinol. 2016, 433, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, S.M.; Griffith, O.L.; Gown, A.; Walker, B.; Jones, S.J. Immunophenotyping of thyroid tumors identifies molecular markers altered during transformation of differentiated into anaplastic carcinoma. Am. J. Surg. 2011, 201, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Giordano, T.J.; Beaudenon-Huibregtse, S.; Shinde, R.; Langfield, L.; Vinco, M.; Laosinchai-Wolf, W.; Labourier, E. Molecular testing for oncogenic gene mutations in thyroid lesions: A case-control validation study in 413 postsurgical specimens. Hum. Pathol. 2014, 45, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, M.N.; Wald, A.I.; Roy, S.; Durso, M.B.; Nikiforov, Y.E. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J. Clin. Endocrinol. Metab. 2013, 98, E1852–E1860. [Google Scholar] [CrossRef]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef]
- Szczepanek-Parulska, E.; Hernik, A.; Ruchala, M. Anemia in thyroid diseases. Pol. Arch. Intern. Med. 2017, 127, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek-Parulska, E.; Zybek, A.; Biczysko, M.; Majewski, P.; Ruchala, M. What might cause pain in the thyroid gland? Report of a patient with subacute thyroiditis of atypical presentation. Endokrynol. Pol. 2012, 63, 138–142. [Google Scholar] [PubMed]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef] [PubMed]
- Shihab, H.A.; Rogers, M.F.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.M.; Gaunt, T.R.; Campbell, C. An Integrative Approach to Predicting the Functional Consequences of Non-coding and Coding Sequence Variation. Bioinformatics 2015, 31, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Pencina, M.J.; D’Agostino, R.B., Sr.; D’Agostino, R.B., Jr.; Vasan, R.S. Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat. Med. 2008, 27, 157–172; discussion 207–112. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Follicular Thyroid Adenomas n = 35 | Follicular Thyroid Carcinomas n = 35 | p-Value | OR (95%CI) |
---|---|---|---|---|
Presence of any mutation, n (%) | 14 (40.0%) | 24 (68.6%) | 0.030 | 3.27 (1.22–8.75) |
Presence of any mutation found in COSMIC database, n (%) | 8 (22.9%) | 9 (25.7%) | 0.780 | 1.17 (0.39–3.49) |
Number of mutated genes, n (%) | 13 (37.1%) | 18 (51.4%) | 0.229 | 1.79 (0.69–4.65) |
Mutations found in both groups of patients | ||||
APC, n (%) | 1 (2.9%) | 4 (11.4%) | 0.356 | 4.39 (0.46–41.40) |
CSFR1, n (%) | 7 (20.0%) | 6 (17.1%) | 0.759 | 0.83 (0.25–2.77) |
ERBB4, n (%) | 2 (5.7%) | 3 (8.6%) | 1.000 | 1.55 (0.24–9.88) |
FGFR3, n (%) | 7 (20.0%) | 7 (20.0%) | 1.000 | 1.00 (0.31–3.23) |
FLT3, n (%) | 10 (28.6%) | 18 (51.4%) | 0.051 | 2.65 (0.99–7.11) |
HRAS, n (%) | 7 (20.0%) | 6 (17.1%) | 0.759 | 0.83 (0.25–2.77) |
IDH1, n (%) | 1 (2.9%) | 1 (2.9%) | 1.000 | 1.00 (0.06–16.65) |
KDR, n (%) | 2 (5.7%) | 4 (11.4%) | 0.673 | 2.13 (0.36–12.46) |
MET, n (%) | 2 (5.7%) | 2 (5.7%) | 1.000 | 1.00 (1.13–7.53) |
PDGFRA, n (%) | 5 (14.3%) | 5 (14.3%) | 1.000 | 1.00 (0.26–3.81) |
RET, n (%) | 11 (31.4%) | 11 (31.4%) | 1.000 | 1.00 (0.36–2.74) |
COSMIC mutations found in both groups of patients | ||||
HRAS (COSM249860), n (%) | 7 (20.0%) | 5 (14.3%) | 0.526 | 0.67 (0.19–2.35) |
PDGFRA (COSM22413), n (%) | 2 (5.7%) | 2 (5.7%) | 1.000 | 1.00 (1.13–7.53) |
Mutations found in only one group of patients | ||||
SMAD4, n (%) | 1 (2.9%) | 0 (0.0%) | 1.000 | 0.32 (0.01–8.23) |
STK11, n (%) | 1 (2.9%) | 0 (0.0%) | 1.000 | 0.32 (0.01–8.23) |
FBXW7, n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
JAK3, n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
KIT, n (%) | 0 (0.0%) | 4 (11.4%) | 0.114 | 10.14 (0.53–195.91) |
NRAS, n (%) | 0 (0.0%) | 2 (5.7%) | 1.000 | 5.30 (0.25–114.47) |
PIK3CA, n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
SMARCB1, n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
TP53, n(%) | 0 (0.0%) | 10 (28.6%) | 0.001 | 29.24 (1.64–522.00) |
COSMIC mutations found in only one group of patients | ||||
IDH1 (COSM105), n (%) | 1 (2.9%) | 0 (0.0%) | 1.000 | 0.32 (0.01–8.23) |
JAK3 (COSM34213), n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
KIT (COSM21983), n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
KIT (COSM28026), n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
MET (COSM710), n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
NRAS (COSM584), n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
SMARCB1 (COSM1090), n (%) | 0 (0.0%) | 1 (2.9%) | 1.000 | 3.09 (0.12–78.41) |
Mutations | p-Value * | β Coefficient * |
---|---|---|
Model 1 | ||
intercept | 0.206 | −0.33 |
TP53 | 0.028 | 3.38 |
Model 2 | ||
intercept | 0.095 | −0.57 |
FLT3 | 0.023 | 2.19 |
RET | 0.058 | −1.93 |
TP53 | 0.029 | 3.34 |
Measures of Prediction Accuracy | Mutations in Logistic Regression Models | Models Comparison | |
---|---|---|---|
Model 1 (TP53 Only) | Model 2 (FLT3 + TP53 + RET) | p-Value | |
AUC (95%CI) | 0.64 (0.57–0.72) | 0.76 (0.65–0.86) | 0.016 |
IDI (95%CI) | 0.11 (0.04–0.19) | 0.003 | |
categorial NRI (95%CI) | 0.23 (0.06–0.40) | 0.007 | |
categorial NRI [FTC] | 0.171 | ||
categorial NRI [FTA] | 0.057 |
Characteristics | TP53+ or TP53-, FLT3+, RET- n = 16 | Other Mutational Status n = 19 | p-Value |
---|---|---|---|
Male/female, n (%) | 2/14 (12.5%/87.5%) | 2/17 (10.5%/89.5%) | 1.0000 |
Median age at diagnosis, years (range) | 50 (27–81) | 56 (27–82) | 0.4560 |
Age group (≤60 years/>60 years), n (%) | 3/13 (18.75%/81.25%) | 7/12 (36.8%/63.2%) | 0.2853 |
Median length of follow-up, months (range) | 108 (17–130) | 116 (28–144) | 0.5674 |
Multifocality, n (%) | 2 (12.5%) | 2 (10.5%) | 1.0000 |
Capsule invasion, n (%) | 5 (31) | 9 (47) | 0.3322 |
Extracapsular extension, n (%) | 9 (56.3%) | 9 (47.4%) | 0.6005 |
Nodal (N) involvement, n (%) | 1 (6.3%) | 3 (15.8%) | 0.6081 |
Mean tumor size, mm (range) | 32 (7–75) | 29 (12–18) | 0.6737 |
Tumor diameter ≤10 mm, n (%) | 1 (6.3%) | 1 (5.3%) | 1.0000 |
Localization in the right/left/both lobes, n (%) | 7/2/7 (43.8%/12.5%/43.8%) | 10/1/8 (52.6%/5.3%/42.1%) | 0.8844 |
Chronic lymphocytic thyroiditis n (%) | 2 (12.5%) | 5 (26.3%) | 0.4150 |
Radioactive iodine-refractoriness n (%) | 0 (0.0%) | 2 (10.5%) | 0.4891 |
Characteristics | Follicular Thyroid Adenomas n = 35 | Follicular Thyroid Carcinomas n = 35 | p-Value |
---|---|---|---|
Male/female, n (%) | 27/8 (77.1%/22.9%) | 31/4 (88.6%/11.4%) | 0.205 |
Median age at diagnosis, years (range) | 55 (29–81) | 52 (27–82) | 0.549 |
Age group (≤60 years/>60 years), n (%) | 24/11 (68.6%/31.4%) | 23/12 (65.7%/34.3%) | 0.799 |
Median length of follow-up, months (range) | 89 (18–122) | 112 (17–144) | 0.687 |
Multifocality, n (%) | 0 (0.0%) | 4 (11.4%) | 0.114 |
Capsule invasion, n (%) | NA | 14 (40.0%) | NA |
Extracapsular extension, n (%) | NA | 18 (51.4%) | NA |
Nodal (N) involvement, n (%) | NA | 3 (8.6%) | NA |
Mean tumor size, mm (range) | 23 (6–50) | 30 (7–80) | 0.112 |
Tumor diameter ≤10 mm, n (%) | 5 (14.3%) | 2 (5.7%) | 0.428 |
Localization in the right/left/both lobes, n (%) | 18/16/1 (51.43%/45.7%/2.9%) | 17/15/3 (48.6%/42.9%/8.6%) | 0.739 |
Chronic lymphocytic thyroiditis n (%) | 2 (5.7%) | 7 (20.0%) | 0.151 |
Radioactive iodine-refractoriness n (%) | NA | 2 (5.7%) | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowczyk, M.; Szczepanek-Parulska, E.; Dębicki, S.; Budny, B.; Verburg, F.A.; Filipowicz, D.; Więckowska, B.; Janicka-Jedyńska, M.; Gil, L.; Ziemnicka, K.; et al. Differences in Mutational Profile between Follicular Thyroid Carcinoma and Follicular Thyroid Adenoma Identified Using Next Generation Sequencing. Int. J. Mol. Sci. 2019, 20, 3126. https://doi.org/10.3390/ijms20133126
Borowczyk M, Szczepanek-Parulska E, Dębicki S, Budny B, Verburg FA, Filipowicz D, Więckowska B, Janicka-Jedyńska M, Gil L, Ziemnicka K, et al. Differences in Mutational Profile between Follicular Thyroid Carcinoma and Follicular Thyroid Adenoma Identified Using Next Generation Sequencing. International Journal of Molecular Sciences. 2019; 20(13):3126. https://doi.org/10.3390/ijms20133126
Chicago/Turabian StyleBorowczyk, Martyna, Ewelina Szczepanek-Parulska, Szymon Dębicki, Bartłomiej Budny, Frederik A. Verburg, Dorota Filipowicz, Barbara Więckowska, Małgorzata Janicka-Jedyńska, Lidia Gil, Katarzyna Ziemnicka, and et al. 2019. "Differences in Mutational Profile between Follicular Thyroid Carcinoma and Follicular Thyroid Adenoma Identified Using Next Generation Sequencing" International Journal of Molecular Sciences 20, no. 13: 3126. https://doi.org/10.3390/ijms20133126
APA StyleBorowczyk, M., Szczepanek-Parulska, E., Dębicki, S., Budny, B., Verburg, F. A., Filipowicz, D., Więckowska, B., Janicka-Jedyńska, M., Gil, L., Ziemnicka, K., & Ruchała, M. (2019). Differences in Mutational Profile between Follicular Thyroid Carcinoma and Follicular Thyroid Adenoma Identified Using Next Generation Sequencing. International Journal of Molecular Sciences, 20(13), 3126. https://doi.org/10.3390/ijms20133126