Analysis of Mitochondrial DNA Polymorphisms in the Human Cell Lines HepaRG and SJCRH30
Abstract
:1. Introduction
2. Results
2.1. HepaRG mtDNA Nucleotide Variants and Heteroplasmy
2.2. SJCRH30 mtDNA Nucleotide Variants and Heteroplasmy
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. mtDNA Next-Generation Sequencing and Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
mtDNA | mitochondrial DNA |
rCRS | revised Cambridge Reference Sequence |
OXPHOS | oxidative phosphorylation |
kbp | kilobase pair |
dbSNP | The Single Nucleotide Polymorphism Database |
ND5 | NADH dehydrogenase subunit 5 gene |
References
- Calvo, S.E.; Clauser, K.R.; Mootha, V.K. MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016, 44, D1251–D1257. [Google Scholar] [CrossRef] [PubMed]
- Young, M.J.; Copeland, W.C. Human mitochondrial DNA replication machinery and disease. Curr. Opin. Genet. Dev. 2016, 38, 52–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, J.H.; Young, C.K.J.; Young, M.J. Analysis of Human Mitochondrial DNA Content by Southern Blotting and Nonradioactive Probe Hybridization. Curr. Protoc Toxicol. 2019, 80, e75. [Google Scholar] [CrossRef] [PubMed]
- Wallace, K.B. Drug-induced mitochondrial neuropathy in children: A conceptual framework for critical windows of development. J. Child Neurol. 2014, 29, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Park, C.B.; Larsson, N.G. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 2011, 193, 809–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humble, M.M.; Young, M.J.; Foley, J.F.; Pandiri, A.R.; Travlos, G.S.; Copeland, W.C. Polg2 is essential for mammalian embryogenesis and is required for mtDNA maintenance. Hum. Mol. Genet. 2013, 22, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C.; Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect Biol. 2013, 5, a021220. [Google Scholar] [CrossRef] [PubMed]
- Tann, A.W.; Boldogh, I.; Meiss, G.; Qian, W.; Van Houten, B.; Mitra, S.; Szczesny, B. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5’-EXO/endonuclease) in their repair. J. Biol. Chem. 2011, 286, 31975–31983. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.H.; Hunakova, L.; Chen, Y.; Bortner, C.; Van Houten, B. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J. Biol. Chem. 2003, 278, 1728–1734. [Google Scholar] [CrossRef]
- Young, M.J.; Humble, M.M.; DeBalsi, K.L.; Sun, K.Y.; Copeland, W.C. POLG2 disease variants: Analyses reveal a dominant negative heterodimer, altered mitochondrial localization and impaired respiratory capacity. Hum. Mol. Genet. 2015, 24, 5184–5197. [Google Scholar] [CrossRef] [PubMed]
- Young, M.J. Off-Target Effects of Drugs that Disrupt Human Mitochondrial DNA Maintenance. Front Mol. Biosci. 2017, 4, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spelbrink, J.N. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. Iubmb Life 2010, 62, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Freyer, C.; Cree, L.M.; Mourier, A.; Stewart, J.B.; Koolmeister, C.; Milenkovic, D.; Wai, T.; Floros, V.I.; Hagstrom, E.; Chatzidaki, E.E.; et al. Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nat. Genet. 2012, 44, 1282–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaprakash, A.D.; Benson, E.K.; Gone, S.; Liang, R.; Shim, J.; Lambertini, L.; Toloue, M.M.; Wigler, M.; Aaronson, S.A.; Sachidanandam, R. Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Res. 2015, 43, 2177–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Wu, J.; Dressman, D.C.; Iacobuzio-Donahue, C.; Markowitz, S.D.; Velculescu, V.E.; Diaz, L.A., Jr.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010, 464, 610–614. [Google Scholar] [CrossRef] [Green Version]
- Larman, T.C.; DePalma, S.R.; Hadjipanayis, A.G.; The Cancer Genome Atlas Research Network; Protopopov, A.; Zhang, J.; Gabriel, S.B.; Chin, L.; Seidman, C.E.; Kucherlapati, R.; et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc. Natl. Acad. Sci. USA 2012, 109, 14087–14091. [Google Scholar] [CrossRef] [Green Version]
- Herrnstadt, C.; Preston, G.; Andrews, R.; Chinnery, P.; Lightowlers, R.N.; Turnbull, D.M.; Kubacka, I.; Howell, N. A high frequency of mtDNA polymorphisms in HeLa cell sublines. Mutat. Res. 2002, 501, 19–28. [Google Scholar] [CrossRef]
- Roberts, W.M.; Douglass, E.C.; Peiper, S.C.; Houghton, P.J.; Look, A.T. Amplification of the gli gene in childhood sarcomas. Cancer Res. 1989, 49, 5407–5413. [Google Scholar]
- Ohnstad, H.O.; Paulsen, E.B.; Noordhuis, P.; Berg, M.; Lothe, R.A.; Vassilev, L.T.; Myklebost, O. MDM2 antagonist Nutlin-3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines. BMC Cancer 2011, 11, 211. [Google Scholar] [CrossRef]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehar, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Morino, K.; Petersen, K.F.; Sono, S.; Choi, C.S.; Samuel, V.T.; Lin, A.; Gallo, A.; Zhao, H.; Kashiwagi, A.; Goldberg, I.J.; et al. Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes. Diabetes 2012, 61, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Civitarese, A.E.; MacLean, P.S.; Carling, S.; Kerr-Bayles, L.; McMillan, R.P.; Pierce, A.; Becker, T.C.; Moro, C.; Finlayson, J.; Lefort, N.; et al. Regulation of skeletal muscle oxidative capacity and insulin signaling by the mitochondrial rhomboid protease PARL. Cell Metab. 2010, 11, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Gripon, P.; Rumin, S.; Urban, S.; Le Seyec, J.; Glaise, D.; Cannie, I.; Guyomard, C.; Lucas, J.; Trepo, C.; Guguen-Guillouzo, C. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 2002, 99, 15655–15660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aninat, C.; Piton, A.; Glaise, D.; Le Charpentier, T.; Langouët, S.; Morel, F.; Guguen-Guillouzo, C.; Guillouzo, A. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 2006, 34, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Young, C.K.J.; Young, M.J. Comparison of HepaRG cells following growth in proliferative and differentiated culture conditions reveals distinct bioenergetic profiles. Cell Cycle (Georget. Tex) 2019, 18, 476–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamalian, L.; Douglas, O.; Jolly, C.E.; Snoeys, J.; Simic, D.; Monshouwer, M.; Williams, D.P.; Kevin Park, B.; Chadwick, A.E. The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicol Vitr. 2018, 53, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Le Guillou, D.; Bucher, S.; Begriche, K.; Hoet, D.; Lombes, A.; Labbe, G.; Fromenty, B. Drug-Induced Alterations of Mitochondrial DNA Homeostasis in Steatotic and Nonsteatotic HepaRG Cells. J. Pharm. Exp. 2018, 365, 711–726. [Google Scholar] [CrossRef]
- Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999, 23, 147. [Google Scholar] [CrossRef]
- Lott, M.T.; Leipzig, J.N.; Derbeneva, O.; Xie, H.M.; Chalkia, D.; Sarmady, M.; Procaccio, V.; Wallace, D.C. mtDNA Variation and Analysis Using Mitomap and Mitomaster. Curr. Protoc. Bioinform. 2013, 44, 1.23.1–1.23.26. [Google Scholar] [CrossRef] [Green Version]
- Heupink, T.H.; Subramanian, S.; Wright, J.L.; Endicott, P.; Westaway, M.C.; Huynen, L.; Parson, W.; Millar, C.D.; Willerslev, E.; Lambert, D.M. Ancient mtDNA sequences from the First Australians revisited. Proc. Natl. Acad. Sci. USA 2016, 113, 6892–6897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petros, J.A.; Baumann, A.K.; Ruiz-Pesini, E.; Amin, M.B.; Sun, C.Q.; Hall, J.; Lim, S.; Issa, M.M.; Flanders, W.D.; Hosseini, S.H.; et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 719–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011, 39, e118. [Google Scholar] [CrossRef] [PubMed]
- Fish, J.; Raule, N.; Attardi, G. Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science 2004, 306, 2098–2101. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.W.; Gudiseva, H.V.; Trachtman, B.; Bowman, A.S.; Sagaser, A.; Sankar, P.; Miller-Ellis, E.; Lehman, A.; Addis, V.; O’Brien, J.M. Association of primary open-angle glaucoma with mitochondrial variants and haplogroups common in African Americans. Mol. Vis. 2016, 22, 454–471. [Google Scholar] [PubMed]
- Ebner, S.; Lang, R.; Mueller, E.E.; Eder, W.; Oeller, M.; Moser, A.; Koller, J.; Paulweber, B.; Mayr, J.A.; Sperl, W.; et al. Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: A study in middle European Caucasians. PLoS ONE 2011, 6, e27192. [Google Scholar] [CrossRef]
- Rollins, B.; Martin, M.V.; Sequeira, P.A.; Moon, E.A.; Morgan, L.Z.; Watson, S.J.; Schatzberg, A.; Akil, H.; Myers, R.M.; Jones, E.G.; et al. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS ONE 2009, 4, e4913. [Google Scholar] [CrossRef]
- Bai, R.K.; Leal, S.M.; Covarrubias, D.; Liu, A.; Wong, L.J. Mitochondrial genetic background modifies breast cancer risk. Cancer Res. 2007, 67, 4687–4694. [Google Scholar] [CrossRef]
- Singh, K.K.; Modica-Napolitano, J.S. Special Issue: Mitochondria in Cancer. Semin Cancer Biol. 2017, 47, iv–vi. [Google Scholar] [CrossRef]
- Singh, B.; Modica-Napolitano, J.S.; Singh, K.K. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol. 2017, 47, 1–17. [Google Scholar] [CrossRef]
- Schmitt, M.W.; Kennedy, S.R.; Salk, J.J.; Fox, E.J.; Hiatt, J.B.; Loeb, L.A. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl. Acad. Sci. USA 2012, 109, 14508–14513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Pursell, Z.F.; Copeland, W.C.; Longley, M.J.; Kunkel, T.A.; Mathews, C.K. DNA percursor asymmetries in mammalian tissue mitochondrial and possible contribution to mitochondrial mutagenesis through reduced replication fidleity. Proc. Natl. Acad. Sci. USA 2005, 102, 4990–4995. [Google Scholar] [CrossRef] [PubMed]
- Modrich, P. DNA mismatch correction. Ann. Rev. Biochem. 1987, 56, 435–466. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, T.J.; Minczuk, M. In D-loop: 40 years of mitochondrial 7S DNA. Exp. Gerontol. 2014, 56, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Uphoff, C.C.; Drexler, H.G. Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines. Vitr. Cell Dev. Biol. Anim 2002, 38, 79–85. [Google Scholar] [CrossRef]
MtDNA nt. Change a | Location b | Coverage c | %Variant d | %Freq in H15a1 e | Remarks f |
---|---|---|---|---|---|
A16T | CR: 7S | 37,783 | 94 | 0 | SNV |
T55C | CR: 7S | 57,845 | 90 | 80.65 | SNV |
T57C | CR: 7S, HVS2, OH57 | 57,847 | 90 | 61.29 | SNV |
A263G | CR: HVS2, OH | 4,879 | 98 | 96.77 | SNV g |
315insC | CR:HVS2, OH | 5,392 | 42 | 4.84 | Insertion of C |
A750G | RNR1 | 48,180 | 88 | 100 | SNV g |
A1438G | RNR1 | 70,033 | 95 | 100 | Benign g |
A4769G | ND2/M100 | 14,223 | 90 | 96.77 | Synonymous variant, ATA > ATG g |
T6253C | COX1/M117T | 58,704 | 95 | 100 | Missense variant, ATA > ACA; prostate cancer associated h |
A8860G | ATP6/T112A | 39,614 | 95 | 96.77 | Missense variant, ACA > GCA g |
T11410C | ND4/P217 | 28,048 | 92 | 100 | Synonymous variant, CCT > CCC |
G13633A | ND5/G433S | 43,013 | 33 | 0 | Missense variant, GGT > AGT |
C14953T | CYB/I69 | 61,411 | 89 | 98.39 | Synonymous variant, ATC > ATT |
A15326G | CYB/T194A | 62,038 | 93 | 100 | Missense variant, ACA > GCA g |
MtDNA nt. Change a | Location b | Coverage c | %Variant d | %Freq in H27c e | Remarks f |
---|---|---|---|---|---|
T195C | CR: HVS2, OH | 127 | 100 | 0 | Melanoma-associated g |
A263G | CR: HVS2, OH | 60 | 100 | 100 | SNV h |
315insC | CR: HVS2, OH | 24 | 75 | 0 | Insertion of C |
A750G | RNR1 | 117 | 100 | 100 | SNV h |
A1438G | RNR1 | 193 | 100 | 100 | Benign h |
A4769G | ND2/M100 | 79 | 100 | 100 | Synonymous variant, ATA > ATG h |
T4838C | ND2/P123 | 141 | 91 | 100 | Synonymous variant, CCT > CCC |
A8860G | ATP6/T112A | 149 | 100 | 100 | Missense variant, ACA > GCA h |
G11719A | ND4/G320 | 121 | 97 | 100 | SNV, synonymous variant, GGG > GGA |
T14634C | ND6/M14V | 136 | 90 | 0 | Missense variant, ATG > GTG i |
A15326G | CYB/T194A | 129 | 95 | 100 | Missense variant, ACA > GCA h |
G16129A | CR: HVS1, TAS2, 7S | 154 | 95 | 100 | SNV |
A16316G | CR: HVS1, 7S | 120 | 90 | 100 | SNV |
T16519C | CR: 7S | 162 | 100 | 100 | Associated with breast cancer risk j |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, M.J.; Jayaprakash, A.D.; Young, C.K.J. Analysis of Mitochondrial DNA Polymorphisms in the Human Cell Lines HepaRG and SJCRH30. Int. J. Mol. Sci. 2019, 20, 3245. https://doi.org/10.3390/ijms20133245
Young MJ, Jayaprakash AD, Young CKJ. Analysis of Mitochondrial DNA Polymorphisms in the Human Cell Lines HepaRG and SJCRH30. International Journal of Molecular Sciences. 2019; 20(13):3245. https://doi.org/10.3390/ijms20133245
Chicago/Turabian StyleYoung, Matthew J., Anitha D. Jayaprakash, and Carolyn K. J. Young. 2019. "Analysis of Mitochondrial DNA Polymorphisms in the Human Cell Lines HepaRG and SJCRH30" International Journal of Molecular Sciences 20, no. 13: 3245. https://doi.org/10.3390/ijms20133245
APA StyleYoung, M. J., Jayaprakash, A. D., & Young, C. K. J. (2019). Analysis of Mitochondrial DNA Polymorphisms in the Human Cell Lines HepaRG and SJCRH30. International Journal of Molecular Sciences, 20(13), 3245. https://doi.org/10.3390/ijms20133245