Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing
Abstract
:1. Introduction
2. Isoforms of DNA Glycosylases and Apurinic/Apyrimidinic Endonuclease
2.1. Uracil–DNA Glycosylase (UNG)
2.2. Thymine–DNA Glycosylase (TDG)
2.3. Single-Strand-Selective Monofunctional Uracil-DNA Glycosylase 1 (SMUG1)
2.4. Methyl-Binding Domain-Containing Protein 4 (MBD4)
2.5. Endonuclease III-Like Protein (NTHL1)
2.6. 8-Oxoguanine–DNA Glycosylase (OGG1)
2.7. MutY Homolog (MUTYH)
2.8. Methylpurine–DNA Glycosylase (MPG)
2.9. Endonuclease VIII-Like Proteins (NEIL1, NEIL2, and NEIL3)
2.10. Apurinic/Apyrimidinic Endonuclease (APEX1)
3. Isoforms of DNA Polymerase β
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BER | base excision repair |
AP | an abasic site |
APEX1 | AP endonuclease 1 |
dRP | 5′ deoxyribose phosphate moiety |
Pol β | DNA polymerase beta |
UNG | uracil–DNA glycosylase |
TDG | thymine–DNA glycosylase |
SMUG1 | single-strand-selective monofunctional uracil-DNA glycosylase 1 |
MBD4 | methyl-binding domain-containing protein 4 |
NTHL1 | endonuclease III-like protein |
OGG1 | 8-oxoguanine–DNA glycosylase |
MUTYH | MutY homolog |
MPG | methylpurine–DNA glycosylase |
NEIL1, NEIL2, NEIL3 | endonuclease VIII-like proteins |
PCNA | proliferating cell nuclear antigen |
RPA | replication protein A |
MTS | mitochondrial targeting sequence |
NLS | nuclear localization signal |
MMS | methyl methanesulfonate |
References
- Fortini, P.; Dogliotti, E. Base damage and single-strand break repair: Mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair 2007, 6, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Zharkov, D.O. Base excision DNA repair. Cell. Mol. Life Sci. 2008, 65, 1544–1565. [Google Scholar] [CrossRef] [PubMed]
- Krokan, H.E.; Bjørås, M. Base excision repair. Cold Spring Harb. Perspect. Biol. 2013, 5, a012583. [Google Scholar] [CrossRef] [PubMed]
- Bauer, N.C.; Corbett, A.H.; Doetsch, P.W. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res. 2015, 43, 10083–10101. [Google Scholar] [CrossRef] [PubMed]
- Ignatov, A.V.; Bondarenko, K.A.; Makarova, A.V. Non-bulky lesions in human DNA: The ways of formation, repair, and replication. Acta Naturae 2017, 9, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.V.; Makarova, A.V.; Miftakhova, R.R.; Zharkov, D.O. Base excision DNA repair deficient cells: From disease models to genotoxicity sensors. Curr. Pharm. Des. 2019, 25, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Starcevic, D.; Dalal, S.; Sweasy, J.B. Is there a link between DNA polymerase β and cancer? Cell Cycle 2004, 3, 998–1001. [Google Scholar] [CrossRef]
- Wallace, S.S.; Murphy, D.L.; Sweasy, J.B. Base excision repair and cancer. Cancer Lett. 2012, 327, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Marsden, C.G.; Dragon, J.A.; Wallace, S.S.; Sweasy, J.B. Base excision repair variants in cancer. Methods Enzymol. 2017, 591, 119–157. [Google Scholar] [CrossRef]
- Pan, Q.; Shai, O.; Lee, L.J.; Frey, B.J.; Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40, 1413–1415. [Google Scholar] [CrossRef]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponomarenko, E.A.; Poverennaya, E.V.; Ilgisonis, E.V.; Pyatnitskiy, M.A.; Kopylov, A.T.; Zgoda, V.G.; Lisitsa, A.V.; Archakov, A.I. The size of the human proteome: The width and depth. Int. J. Anal. Chem. 2016, 2016, 7436849. [Google Scholar] [CrossRef] [PubMed]
- Faustino, N.A.; Cooper, T.A. Pre-mRNA splicing and human disease. Genes Dev. 2003, 17, 419–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tazi, J.; Bakkour, N.; Stamm, S. Alternative splicing and disease. Biochim. Biophys. Acta 2009, 1792, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Lareau, L.F.; Brooks, A.N.; Soergel, D.A.; Meng, Q.; Brenner, S.E. The coupling of alternative splicing and nonsense-mediated mRNA decay. Adv. Exp. Med. Biol. 2007, 623, 190–211. [Google Scholar] [CrossRef] [PubMed]
- Krokan, H.; Wittwer, C.U. Uracil DNA-glycosylase from HeLa cells: General properties, substrate specificity and effect of uracil analogs. Nucleic Acids Res. 1981, 9, 2599–2613. [Google Scholar] [CrossRef] [PubMed]
- Olsen, L.C.; Aasland, R.; Wittwer, C.U.; Krokan, H.E.; Helland, D.E. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J. 1989, 8, 3121–3125. [Google Scholar] [CrossRef]
- Wittwer, C.U.; Bauw, G.; Krokan, H.E. Purification and determination of the NH2-terminal amino acid sequence of uracil-DNA glycosylase from human placenta. Biochemistry 1989, 28, 780–784. [Google Scholar] [CrossRef]
- Slupphaug, G.; Markussen, F.-H.; Olsen, L.C.; Aasland, R.; Aarsæther, N.; Bakke, O.; Krokan, H.E.; Helland, D.E. Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res. 1993, 21, 2579–2584. [Google Scholar] [CrossRef] [Green Version]
- Haug, T.; Skorpen, F.; Lund, H.; Krokan, H.E. Structure of the gene for human uracil-DNA glycosylase and analysis of the promoter function. FEBS Lett. 1994, 353, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Caradonna, S.; Ladner, R.; Hansbury, M.; Kosciuk, M.; Lynch, F.; Muller, S. Affinity purification and comparative analysis of two distinct human uracil-DNA glycosylases. Exp. Cell Res. 1996, 222, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Haug, T.; Skorpen, F.; Kvaløy, K.; Eftedal, I.; Lund, H.; Krokan, H.E. Human uracil-DNA glycosylase gene: Sequence organization, methylation pattern, and mapping to chromosome 12q23–q24.1. Genomics 1996, 36, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, H.; Otterlei, M.; Haug, T.; Solum, K.; Nagelhus, T.A.; Skorpen, F.; Krokan, H.E. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 1997, 25, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Wakamatsu, A.; Suzuki, Y.; Ota, T.; Nishikawa, T.; Yamashita, R.; Yamamoto, J.-I.; Sekine, M.; Tsuritani, K.; Wakaguri, H.; et al. Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 2006, 16, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shen, P.; Thiyagarajan, S.; Lin, S.; Palm, C.; Horvath, R.; Klopstock, T.; Cutler, D.; Pique, L.; Schrijver, I.; et al. Identification of rare DNA variants in mitochondrial disorders with improved array-based sequencing. Nucleic Acids Res. 2011, 39, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Haug, T.; Skorpen, F.; Aas, P.A.; Malm, V.; Skjelbred, C.; Krokan, H.E. Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase. Nucleic Acids Res. 1998, 26, 1449–1457. [Google Scholar] [CrossRef] [Green Version]
- Muller-Weeks, S.; Balzer, R.J.; Anderson, R.; Caradonna, S. Proliferation-dependent expression of nuclear uracil-DNA glycosylase is mediated in part by E2F-4. DNA Repair 2005, 4, 183–190. [Google Scholar] [CrossRef]
- Bharati, S.; Krokan, H.E.; Kristiansen, L.; Otterlei, M.; Slupphaug, G. Human mitochondrial uracil-DNA glycosylase preform (UNG1) is processed to two forms one of which is resistant to inhibition by AP sites. Nucleic Acids Res. 1998, 26, 4953–4959. [Google Scholar] [CrossRef] [Green Version]
- Parikh, S.S.; Mol, C.D.; Slupphaug, G.; Bharati, S.; Krokan, H.E.; Tainer, J.A. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 1998, 17, 5214–5226. [Google Scholar] [CrossRef]
- Kavli, B.; Sundheim, O.; Akbari, M.; Otterlei, M.; Nilsen, H.; Skorpen, F.; Aas, P.A.; Hagen, L.; Krokan, H.E.; Slupphaug, G. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 2002, 277, 39926–39936. [Google Scholar] [CrossRef]
- Otterlei, M.; Haug, T.; Nagelhus, T.A.; Slupphaug, G.; Lindmo, T.; Krokan, H.E. Nuclear and mitochondrial splice forms of human uracil-DNA glycosylase contain a complex nuclear localisation signal and a strong classical mitochondrial localisation signal, respectively. Nucleic Acids Res. 1998, 26, 4611–4617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svendsen, P.C.; Yee, H.A.; Winkfein, R.J.; van de Sande, J.H. The mouse uracil-DNA glycosylase gene: Isolation of cDNA and genomic clones and mapping ung to mouse chromosome 5. Gene 1997, 189, 175–181. [Google Scholar] [CrossRef]
- Nilsen, H.; Rosewell, I.; Robins, P.; Skjelbred, C.F.; Andersen, S.; Slupphaug, G.; Daly, G.; Krokan, H.E.; Lindahl, T.; Barnes, D.E. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 2000, 5, 1059–1065. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Y.; Gong, Y.; Zhang, W.; Liu, C.; Wang, Q.; Deng, H. Hydrogen peroxide mediated mitochondrial UNG1-PRDX3 interaction and UNG1 degradation. Free Radic. Biol. Med. 2016, 99, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Muller-Weeks, S.; Mastran, B.; Caradonna, S. The nuclear isoform of the highly conserved human uracil-DNA glycosylase is an Mr 36,000 phosphoprotein. J. Biol. Chem. 1998, 273, 21909–21917. [Google Scholar] [CrossRef]
- Fischer, J.A.; Muller-Weeks, S.; Caradonna, S. Proteolytic degradation of the nuclear isoform of uracil-DNA glycosylase occurs during the S phase of the cell cycle. DNA Repair 2004, 3, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.A.; Muller-Weeks, S.; Caradonna, S.J. Fluorodeoxyuridine modulates cellular expression of the DNA base excision repair enzyme uracil-DNA glycosylase. Cancer Res. 2006, 66, 8829–8837. [Google Scholar] [CrossRef]
- Lu, X.; Bocangel, D.; Nannenga, B.; Yamaguchi, H.; Appella, E.; Donehower, L.A. The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Mol. Cell 2004, 15, 621–634. [Google Scholar] [CrossRef]
- Otterlei, M.; Warbrick, E.; Nagelhus, T.A.; Haug, T.; Slupphaug, G.; Akbari, M.; Aas, P.A.; Steinsbekk, K.; Bakke, O.; Krokan, H.E. Post-replicative base excision repair in replication foci. EMBO J. 1999, 18, 3834–3844. [Google Scholar] [CrossRef]
- Andersen, S.; Heine, T.; Sneve, R.; König, I.; Krokan, H.E.; Epe, B.; Nilsen, H. Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts. Carcinogenesis 2005, 26, 547–555. [Google Scholar] [CrossRef]
- Bellacosa, A.; Drohat, A.C. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair 2015, 32, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schomacher, L.; Niehrs, C. DNA repair and erasure of 5-methylcytosine in vertebrates. BioEssays 2017, 39, 1600218. [Google Scholar] [CrossRef] [PubMed]
- Sard, L.; Tornielli, S.; Gallinari, P.; Minoletti, F.; Jiricny, J.; Lettieri, T.; Pierotti, M.A.; Sozzi, G.; Radice, P. Chromosomal localizations and molecular analysis of TDG gene-related sequences. Genomics 1997, 44, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Mammalian Gene Collection (MGC) Program Team. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA 2002, 99, 16899–16903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenberger, R.; Wei, H.; Zhang, S.; Lei, S.; Murage, J.; Fisk, G.J.; Li, Y.; Xu, C.; Fang, R.; Guegler, K.; et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat. Biotechnol. 2004, 22, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Fortna, A.; Kim, Y.; MacLaren, E.; Marshall, K.; Hahn, G.; Meltesen, L.; Brenton, M.; Hink, R.; Burgers, S.; Hernandez-Boussard, T.; et al. Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol. 2004, 2, e207. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, L.; Gallinari, P.; Gariboldi, M.; Manenti, G.; Pierotti, M.A.; Jiricny, J.; Dragani, T.A. Genetic mapping of thymine DNA glycosylase (Tdg) gene and of one pseudogene in the mouse. Mamm. Genome 1996, 7, 909–910. [Google Scholar] [CrossRef] [PubMed]
- Neddermann, P.; Gallinari, P.; Lettieri, T.; Schmid, D.; Truong, O.; Hsuan, J.J.; Wiebauer, K.; Jiricny, J. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 1996, 271, 12767–12774. [Google Scholar] [CrossRef] [PubMed]
- Um, S.; Harbers, M.; Benecke, A.; Pierrat, B.; Losson, R.; Chambon, P. Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 1998, 273, 20728–20736. [Google Scholar] [CrossRef]
- Hardeland, U.; Steinacher, R.; Jiricny, J.; Schär, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 2002, 21, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Hatakeyama, S.; Saitoh, H.; Nakayama, K.I. Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J. Biol. Chem. 2005, 280, 5611–5621. [Google Scholar] [CrossRef] [PubMed]
- Visnes, T.; Doseth, B.; Pettersen, H.S.; Hagen, L.; Sousa, M.M.L.; Akbari, M.; Otterlei, M.; Kavli, B.; Slupphaug, G.; Krokan, H.E. Uracil in DNA and its processing by different DNA glycosylases. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Yoshitomo-Nakagawa, K.; Maruyama, K.; Suyama, A.; Sugano, S. Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library. Gene 1997, 200, 149–156. [Google Scholar] [CrossRef]
- Haushalter, K.A.; Stukenberg, P.T.; Kirschner, M.W.; Verdine, G.L. Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol. 1999, 9, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Ota, T.; Suzuki, Y.; Nishikawa, T.; Otsuki, T.; Sugiyama, T.; Irie, R.; Wakamatsu, A.; Hayashi, K.; Sato, H.; Nagai, K.; et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 2004, 36, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Coulombe-Huntington, J.; Kang, S.; Sheynkman, G.M.; Hao, T.; Richardson, A.; Sun, S.; Yang, F.; Shen, Y.A.; Murray, R.R.; et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 2016, 164, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Thibaud-Nissen, F.; Souvorov, A.; Murphy, T.; DiCuccio, M.; Kitts, P. Eukaryotic genome annotation pipeline. In The NCBI Handbook, 2nd ed.; National Center for Biotechnology Information: Bethesda, MD, USA, 2018; pp. 133–156. [Google Scholar]
- Hendrich, B.; Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 1998, 18, 6538–6547. [Google Scholar] [CrossRef]
- Bellacosa, A.; Cicchillitti, L.; Schepis, F.; Riccio, A.; Yeung, A.T.; Matsumoto, Y.; Golemis, E.A.; Genuardi, M.; Neri, G. MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc. Natl. Acad. Sci. USA 1999, 96, 3969–3974. [Google Scholar] [CrossRef] [Green Version]
- Hendrich, B.; Abbott, C.; McQueen, H.; Chambers, D.; Cross, S.; Bird, A. Genomic structure and chromosomal mapping of the murine and human Mbd1, Mbd2, Mbd3, and Mbd4 genes. Mamm. Genome 1999, 10, 906–912. [Google Scholar] [CrossRef]
- Tomarev, S.I.; Wistow, G.; Raymond, V.; Dubois, S.; Malyukova, I. Gene expression profile of the human trabecular meshwork: NEIBank sequence tag analysis. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2588–2596. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yamashita, R.; Shirota, M.; Sakakibara, Y.; Chiba, J.; Mizushima-Sugano, J.; Nakai, K.; Sugano, S. Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions. Genome Res. 2004, 14, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.M.; Baker, R.D.; Bader, S.; Dunlop, M.G.; Nicholl, I.D. The identification of a novel alternatively spliced form of the MBD4 DNA glycosylase. Oncol. Rep. 2007, 17, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Qiu, C.; Sohail, A.; Zhang, X.; Bhagwat, A.S.; Cheng, X. Mismatch repair in methylated DNA: Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4. J. Biol. Chem. 2003, 278, 5285–5291. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Zhang, X.; Cheng, X. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: Structural basis and implications for active DNA demethylation. Nucleic Acids Res. 2012, 40, 8276–8284. [Google Scholar] [CrossRef] [PubMed]
- Moréra, S.; Grin, I.; Vigouroux, A.; Couvé, S.; Henriot, V.; Saparbaev, M.; Ishchenko, A.A. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Res. 2012, 40, 9917–9926. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Mobuchon, L.; Houy, A.; Fiévet, A.; Gardrat, S.; Barnhill, R.L.; Popova, T.; Servois, V.; Rampanou, A.; Mouton, A.; et al. Outlier response to anti-PD1 in uveal melanoma reveals germline MBD4 mutations in hypermutated tumors. Nat. Commun. 2018, 9, 1866. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Evans, K.; Hayden, M.; Heywood, S.; Hussain, M.; Phillips, A.D.; Cooper, D.N. The Human Gene Mutation Database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 2017, 136, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Rivera, B.; Castellsagué, E.; Bah, I.; van Kempen, L.C.; Foulkes, W.D. Biallelic NTHL1 mutations in a woman with multiple primary tumors. N. Engl. J. Med. 2015, 373, 1985–1986. [Google Scholar] [CrossRef] [PubMed]
- Morak, M.; Massdorf, T.; Sykora, H.; Kerscher, M.; Holinski-Feder, E. First evidence for digenic inheritance in hereditary colorectal cancer by mutations in the base excision repair genes. Eur. J. Cancer 2011, 47, 1046–1055. [Google Scholar] [CrossRef]
- Ali, K.; Mahjabeen, I.; Sabir, M.; Mehmood, H.; Kayani, M.A. OGG1 Mutations and risk of female breast cancer: Meta-analysis and experimental data. Dis. Markers 2015, 2015. [Google Scholar] [CrossRef]
- Dallosso, A.R.; Dolwani, S.; Jones, N.; Jones, S.; Colley, J.; Maynard, J.; Idziaszczyk, S.; Humphreys, V.; Arnold, J.; Donaldson, A.; et al. Inherited predisposition to colorectal adenomas caused by multiple rare alleles of MUTYH but not OGG1, NUDT1, NTH1 or NEIL 1, 2 or 3. Gut 2008, 57, 1252–1255. [Google Scholar] [CrossRef] [PubMed]
- Colley, J.; Jones, S.; Dallosso, A.R.; Maynard, J.H.; Humphreys, V.; Dolwani, S.; Sampson, J.R.; Cheadle, J.P. Rapid recognition of aberrant dHPLC elution profiles using the Transgenomic Navigator™ software. Hum. Mutat. 2005, 26, 165. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, T.P.; Chaung, W.; Boorstein, R.J.; Cunningham, R.P.; Teebor, G.W. Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. J. Biol. Chem. 1997, 272, 6733–6740. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, S.; Biswas, T.; Roy, R.; Izumi, T.; Boldogh, I.; Kurosky, A.; Sarker, A.H.; Seki, S.; Mitra, S. Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III: Direct identification of Lys-212 as the active nucleophilic residue. J. Biol. Chem. 1998, 273, 21585–21593. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, T.P.; Boorstein, R.J.; Kung, H.C.; Bolton, P.H.; Xing, D.; Cunningham, R.P.; Teebor, G.W. Purification of a mammalian homologue of Escherichia coli endonuclease III: Identification of a bovine pyrimidine hydrate-thymine glycol DNA-glycosylase/AP lyase by irreversible cross linking to a thymine glycol-containing oligodeoxynucleotide. Biochemistry 1996, 35, 2505–2511. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Sarker, A.H.; Akiyama, K.; Ikeda, S.; Yao, M.; Tsutsui, K.; Shohmori, T.; Seki, S. Genomic structure and sequence of a human homologue (NTHL1/NTH1) of Escherichia coli endonuclease III with those of the adjacent parts of TSC2 and SLC9A3R2 genes. Gene 1998, 222, 287–295. [Google Scholar] [CrossRef]
- Sarker, A.H.; Ikeda, S.; Nakano, H.; Terato, H.; Ide, H.; Imai, K.; Akiyama, K.; Tsutsui, K.; Bo, Z.; Kubo, K.; et al. Cloning and characterization of a mouse homologue (mNthl1) of Escherichia coli endonuclease III. J. Mol. Biol. 1998, 282, 761–774. [Google Scholar] [CrossRef]
- Luna, L.; Bjørås, M.; Hoff, E.; Rognes, T.; Seeberg, E. Cell-cycle regulation, intracellular sorting and induced overexpression of the human NTH1 DNA glycosylase involved in removal of formamidopyrimidine residues from DNA. Mutat. Res. 2000, 460, 95–104. [Google Scholar] [CrossRef]
- Takao, M.; Aburatani, H.; Kobayashi, K.; Yasui, A. Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res. 1998, 26, 2917–2922. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, S.; Kohmoto, T.; Tabata, R.; Seki, Y. Differential intracellular localization of the human and mouse endonuclease III homologs and analysis of the sorting signals. DNA Repair 2002, 1, 847–854. [Google Scholar] [CrossRef]
- Nakabeppu, Y.; Sakumi, K.; Sakamoto, K.; Tsuchimoto, D.; Tsuzuki, T.; Nakatsu, Y. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol. Chem. 2006, 387, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, B.; Markkanen, E.; Hübscher, U. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair 2010, 9, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Aburatani, H.; Hippo, Y.; Ishida, T.; Takashima, R.; Matsuba, C.; Kodama, T.; Takao, M.; Yasui, A.; Yamamoto, K.; Asano, M.; et al. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 1997, 57, 2151–2156. [Google Scholar] [PubMed]
- Ishida, T.; Hippo, Y.; Nakahori, Y.; Matsushita, I.; Kodama, T.; Nishimura, S.; Aburatani, H. Structure and chromosome location of human OGG1. Cytogenet. Genome Res. 1999, 85, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Dhénaut, A.; Boiteux, S.; Radicella, J.P. Characterization of the hOGG1 promoter and its expression during the cell cycle. Mutat. Res. 2000, 461, 109–118. [Google Scholar] [CrossRef]
- Arai, K.; Morishita, K.; Shinmura, K.; Kohno, T.; Kim, S.-R.; Nohmi, T.; Taniwaki, M.; Ohwada, S.; Yokota, J. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 1997, 14, 2857–2861. [Google Scholar] [CrossRef] [PubMed]
- Bjørås, M.; Luna, L.; Johnsen, B.; Hoff, E.; Haug, T.; Rognes, T.; Seeberg, E. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 1997, 16, 6314–6322. [Google Scholar] [CrossRef] [Green Version]
- Kuo, F.C.; Sklar, J. Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J. Exp. Med. 1997, 186, 1547–1556. [Google Scholar] [CrossRef]
- Lu, R.; Nash, H.M.; Verdine, G.L. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 1997, 7, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Radicella, J.P.; Dherin, C.; Desmaze, C.; Fox, M.S.; Boiteux, S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1997, 94, 8010–8015. [Google Scholar] [CrossRef]
- Roldán-Arjona, T.; Wei, Y.-F.; Carter, K.C.; Klungland, A.; Anselmino, C.; Wang, R.-P.; Augustus, M.; Lindahl, T. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. USA 1997, 94, 8016–8020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenquist, T.A.; Zharkov, D.O.; Grollman, A.P. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl. Acad. Sci. USA 1997, 94, 7429–7434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohno, T.; Shinmura, K.; Tosaka, M.; Tani, M.; Kim, S.-R.; Sugimura, H.; Nohmi, T.; Kasai, H.; Yokota, J. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 1998, 16, 3219–3225. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, K.; Ohtsubo, T.; Oda, H.; Fujiwara, T.; Kang, D.; Sugimachi, K.; Nakabeppu, Y. Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell 1999, 10, 1637–1652. [Google Scholar] [CrossRef] [PubMed]
- Shinmura, K.; Kohno, T.; Takeuchi-Sasaki, M.; Maeda, M.; Segawa, T.; Kamo, T.; Sugimura, H.; Yokota, J. Expression of the OGG1-type 1a (nuclear form) protein in cancerous and non-cancerous human cells. Int. J. Oncol. 2000, 16, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-H.; Yang, J.O.; Hahn, Y.; Kim, M.-R.; Byun, S.-S.; Jeon, Y.-J.; Kim, J.-M.; Song, K.-S.; Noh, S.-M.; Kim, S.; et al. Transcriptome analysis of human gastric cancer. Mamm. Genome 2005, 16, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Bruner, S.D.; Norman, D.P.G.; Verdine, G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000, 403, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Lia, D.; Reyes, A.; de Melo Campos, J.T.A.; Piolot, T.; Baijer, J.; Radicella, J.P.; Campalans, A. Mitochondrial maintenance under oxidative stress depends on mitochondrially localised α-OGG1. J. Cell Sci. 2018, 131, jcs213538. [Google Scholar] [CrossRef]
- Audebert, M.; Charbonnier, J.B.; Boiteux, S.; Radicella, J.P. Mitochondrial targeting of human 8-oxoguanine DNA glycosylase hOGG1 is impaired by a somatic mutation found in kidney cancer. DNA Repair 2002, 1, 497–505. [Google Scholar] [CrossRef]
- Hashiguchi, K.; Stuart, J.A.; de Souza-Pinto, N.C.; Bohr, V.A. The C-terminal αO helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: The mitochondrial β-Ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Res. 2004, 32, 5596–5608. [Google Scholar] [CrossRef]
- Ogawa, A.; Watanabe, T.; Shoji, S.; Furihata, C. Enzyme kinetics of an alternative splicing isoform of mitochondrial 8-oxoguanine DNA glycosylase, OGG1-1b, and compared with the nuclear OGG1-1a. J. Biochem. Mol. Toxicol. 2015, 29, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Croteau, D.L.; ap Rhys, C.M.J.; Hudson, E.K.; Dianov, G.L.; Hansford, R.G.; Bohr, V.A. An oxidative damage-specific endonuclease from rat liver mitochondria. J. Biol. Chem. 1997, 272, 27338–27344. [Google Scholar] [CrossRef] [PubMed]
- De Souza-Pinto, N.C.; Eide, L.; Hogue, B.A.; Thybo, T.; Stevnsner, T.; Seeberg, E.; Klungland, A.; Bohr, V.A. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res. 2001, 61, 5378–5381. [Google Scholar] [PubMed]
- Matouschek, A.; Pfanner, N.; Voos, W. Protein unfolding by mitochondria: The Hsp70 import motor. EMBO Rep. 2000, 1, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, N.; Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 2017, 86, 685–714. [Google Scholar] [CrossRef] [PubMed]
- Panduri, V.; Liu, G.; Surapureddi, S.; Kondapalli, J.; Soberanes, S.; de Souza-Pinto, N.C.; Bohr, V.A.; Budinger, G.R.S.; Schumacker, P.T.; Weitzman, S.A.; et al. Role of mitochondrial hOGG1 and aconitase in oxidant-induced lung epithelial cell apoptosis. Free Radic. Biol. Med. 2009, 47, 750–759. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-H.; Lee, Y.-L.; Chen, S.-F.; Lee, Y.-P.; Hsieh, Y.-H.; Tsai, J.-H.; Hsu, J.-L.; Tian, W.-T.; Huang, W. Essential role of β-human 8-oxoguanine DNA glycosylase 1 in mitochondrial oxidative DNA repair. Environ. Mol. Mutagens. 2013, 54, 54–64. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Youn, H.-G.; Wang, H.-J.; Yoon, G. Decreased mitochondrial OGG1 expression is linked to mitochondrial defects and delayed hepatoma cell growth. Mol. Cells 2013, 35, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Monden, Y.; Arai, T.; Asano, M.; Ohtsuka, E.; Aburatani, H.; Nishimura, S. Human MMH (OGG1) type 1a protein is a major enzyme for repair of 8-hydroxyguanine lesions in human cells. Biochem. Biophys. Res. Commun. 1999, 258, 605–610. [Google Scholar] [CrossRef]
- Hirano, T.; Kudo, H.; Doi, Y.; Nishino, T.; Fujimoto, S.; Tsurudome, Y.; Ootsuyama, Y.; Kasai, H. Detection of a smaller, 32-kDa 8-oxoguanine DNA glycosylase 1 in 3′-methyl-4-dimethylamino-azobenzene-treated mouse liver. Cancer Sci. 2004, 95, 118–122. [Google Scholar] [CrossRef]
- Hirano, T.; Kawai, K.; Ootsuyama, Y.; Orimo, H.; Kasai, H. Detection of a mouse OGG1 fragment during caspase-dependent apoptosis: Oxidative DNA damage and apoptosis. Cancer Sci. 2004, 95, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Fukae, J.; Takanashi, M.; Kubo, S.-I.; Nishioka, K.-I.; Nakabeppu, Y.; Mori, H.; Mizuno, Y.; Hattori, N. Expression of 8-oxoguanine DNA glycosylase (OGG1) in Parkinson’s disease and related neurodegenerative disorders. Acta Neuropathol. 2005, 109, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Dorszewska, J.; Kempisty, B.; Jaroszewska-Kolecka, J.; Rózycka, A.; Florczak, J.; Lianeri, M.; Jagodzinski, P.P.; Kozubski, W. Expression and polymorphisms of gene 8-oxoguanine glycosylase 1 and the level of oxidative DNA damage in peripheral blood lymphocytes of patients with Alzheimer’s disease. DNA Cell Biol. 2009, 28, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, F.; Viel, A.; Bignami, M. Role of MUTYH in human cancer. Mutat. Res. 2013, 743, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Banda, D.M.; Nuñez, N.N.; Burnside, M.A.; Bradshaw, K.M.; David, S.S. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Free Radic. Biol. Med. 2017, 107, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Slupska, M.M.; Baikalov, C.; Luther, W.M.; Chiang, J.-H.; Wei, Y.-F.; Miller, J.H. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol. 1996, 178, 3885–3892. [Google Scholar] [CrossRef]
- Takao, M.; Zhang, Q.-M.; Yonei, S.; Yasui, A. Differential subcellular localization of human MutY homolog (hMYH) and the functional activity of adenine: 8-oxoguanine DNA glycosylase. Nucleic Acids Res. 1999, 27, 3638–3644. [Google Scholar] [CrossRef]
- Ohtsubo, T.; Nishioka, K.; Imaiso, Y.; Iwai, S.; Shimokawa, H.; Oda, H.; Fujiwara, T.; Nakabeppu, Y. Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 2000, 28, 1355–1364. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Shinmura, K.; Saitoh, T.; Takenoshita, S.; Kuwano, H.; Yokota, J. A single nucleotide polymorphism at the splice donor site of the human MYH base excision repair genes results in reduced translation efficiency of its transcripts. Genes Cells 2002, 7, 461–474. [Google Scholar] [CrossRef]
- Ichinoe, A.; Behmanesh, M.; Tominaga, Y.; Ushijima, Y.; Hirano, S.; Sakai, Y.; Tsuchimoto, D.; Sakumi, K.; Wake, N.; Nakabeppu, Y. Identification and characterization of two forms of mouse MUTYH proteins encoded by alternatively spliced transcripts. Nucleic Acids Res. 2004, 32, 477–487. [Google Scholar] [CrossRef] [Green Version]
- De Belle, I.; Wu, J.-X.; Sperandio, S.; Mercola, D.; Adamson, E.D. In Vivo cloning and characterization of a new growth suppressor protein TOE1 as a direct target gene of Egr1. J. Biol. Chem. 2003, 278, 14306–14312. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Lee, H.M.; Englander, E.W. N-terminus of the rat adenine glycosylase MYH affects excision rates and processing of MYH-generated abasic sites. Nucleic Acids Res. 2004, 32, 4332–4339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, A.; Gu, Y.; Mahoney, W.; Lee, S.-H.; Singh, K.K.; Lu, A.-L. Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J. Biol. Chem. 2001, 276, 5547–5555. [Google Scholar] [CrossRef] [PubMed]
- Englander, E.W.; Hu, Z.; Sharma, A.; Lee, H.-M.; Wu, Z.-H.; Greeley, G.H. Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria. J. Neurochem. 2002, 83, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Hu, Z.; Ma, H.; Greeley, G.H., Jr.; Wang, C.; Englander, E.W. Developmental changes in expression and subcellular localization of the DNA repair glycosylase, MYH, in the rat brain. J. Neurochem. 2004, 88, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Al-Tassan, N.; Chmiel, N.H.; Maynard, J.; Fleming, N.; Livingston, A.L.; Williams, G.T.; Hodges, A.K.; Davies, D.R.; David, S.S.; Sampson, J.R.; et al. Inherited variants of MYH associated with somatic G:C → T:A mutations in colorectal tumors. Nat. Genet. 2002, 30, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Shinmura, K.; Hanaoka, T.; Natsukawa, S.; Shaura, K.; Koizumi, Y.; Kasuga, Y.; Ozawa, T.; Tsujinaka, T.; Li, Z.; et al. A novel splice-site variant of the base excision repair gene MYH is associated with production of an aberrant mRNA transcript encoding a truncated MYH protein not localized in the nucleus. Carcinogenesis 2004, 25, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Olschwang, S.; Blanché, H.; de Moncuit, C.; Thomas, G. Similar colorectal cancer risk in patients with monoallelic and biallelic mutations in the MYH gene identified in a population with adenomatous polyposis. Genet. Test. 2007, 11, 315–320. [Google Scholar] [CrossRef]
- Sampson, J.R.; Dolwani, S.; Jones, S.; Eccles, D.; Ellis, A.; Evans, D.G.; Frayling, I.; Jordan, S.; Maher, E.R.; Mak, T.; et al. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 2003, 362, 39–41. [Google Scholar] [CrossRef]
- Isidro, G.; Laranjeira, F.; Pires, A.; Leite, J.; Regateiro, F.; Castro e Sousa, F.; Soares, J.; Castro, C.; Giria, J.; Brito, M.J.; et al. Germline MUTYH (MYH) mutations in Portuguese individuals with multiple colorectal adenomas. Hum. Mutat. 2004, 24, 353–354. [Google Scholar] [CrossRef]
- Grandval, P.; Fabre, A.J.; Gaildrat, P.; Baert-Desurmont, S.; Blayau, M.; Buisine, M.P.; Coulet, F.; Maugard, C.; Pinson, S.; Remenieras, A.; et al. Genomic variations integrated database for MUTYH-associated adenomatous polyposis. J. Med. Genet. 2015, 52, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Aretz, S.; Uhlhaas, S.; Goergens, H.; Siberg, K.; Vogel, M.; Pagenstecher, C.; Mangold, E.; Caspari, R.; Propping, P.; Friedl, W. MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int. J. Cancer. 2006, 119, 807–814. [Google Scholar] [CrossRef] [PubMed]
- LaDuca, H.; Farwell, K.D.; Vuong, H.; Lu, H.M.; Mu, W.; Shahmirzadi, L.; Tang, S.; Chen, J.; Bhide, S.; Chao, E.C. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels. PLoS ONE 2017, 12, e0170843. [Google Scholar] [CrossRef] [PubMed]
- Schrader, K.A.; Cheng, D.T.; Joseph, V.; Prasad, M.; Walsh, M.; Zehir, A.; Ni, A.; Thomas, T.; Benayed, R.; Ashraf, A.; et al. Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA. JAMA Oncol. 2016, 2, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Hes, F.J.; Nagengast, F.M.; Weiss, M.M.; Mathus-Vliegen, E.M.; Morreau, H.; Breuning, M.H.; Wijnen, J.T.; Tops, C.M.; Vasen, H.F. Germline mutations in APC and MUTYH are responsible for the majority of families with attenuated familial adenomatous polyposis. Clin. Genet. 2007, 71, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Out, A.A.; Tops, C.M.; Nielsen, M.; Weiss, M.M.; van Minderhout, I.J.; Fokkema, I.F.; Buisine, M.P.; Claes, K.; Colas, C.; Fodde, R.; et al. Leiden Open Variation Database of the MUTYH Gene. Hum. Mutat. 2010, 31, 1205–1215. [Google Scholar] [CrossRef]
- Jian, W.; Shao, K.; Qin, Q.; Wang, X.; Song, S.; Wang, X. Clinical and genetic characterization of hereditary breast cancer in a Chinese population. Hered. Cancer Clin. Pract. 2017, 15, 19. [Google Scholar] [CrossRef]
- Eliason, K.; Hendrickson, B.C.; Judkins, T.; Norton, M.; Leclair, B.; Lyon, E.; Ward, B.; Noll, W.; Scholl, T. The potential for increased clinical sensitivity in genetic testing for polyposis colorectal cancer through the analysis of MYH mutations in North American patients. J. Med. Genet. 2005, 42, 95–96. [Google Scholar] [CrossRef]
- Yanaru-Fujisawa, R.; Matsumoto, T.; Ushijima, Y.; Esaki, M.; Hirahashi, M.; Gushima, M.; Yao, T.; Nakabeppu, Y.; Iida, M. Genomic and functional analyses of MUTYH in Japanese patients with adenomatous polyposis. Clin. Genet. 2008, 73, 545–553. [Google Scholar] [CrossRef]
- Ricci, M.T.; Miccoli, S.; Turchetti, D.; Bondavalli, D.; Viel, A.; Quaia, M.; Giacomini, E.; Gismondi, V.; Sanchez-Mete, L.; Stigliano, V.; et al. Type and frequency of MUTYH variants in Italian patients with suspected MAP: A retrospective multicenter study. J. Hum. Genet. 2017, 62, 309–315. [Google Scholar] [CrossRef]
- Yurgelun, M.B.; Kulke, M.H.; Fuchs, C.S.; Allen, B.A.; Uno, H.; Hornick, J.L.; Ukaegbu, C.I.; Brais, L.K.; McNamara, P.G.; Mayer, R.J.; et al. Cancer Susceptibility Gene Mutations in Individuals with Colorectal Cancer. J. Clin. Oncol. 2017, 35, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Choudhury, S.; Mitra, P.S.; Dubash, J.J.; Sajankila, S.P.; Roy, R. Targeting base excision repair for chemosensitization. Anticancer Agents Med. Chem. 2008, 8, 351–357. [Google Scholar] [CrossRef]
- O’Connor, T.R. Purification and characterization of human 3-methyladenine-DNA glycosylase. Nucleic Acids Res. 1993, 21, 5561–5569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, M.A.; Vyas, P.; Harris, P.C.; Simmons, D.L.; Higgs, D.R. Structure of the human 3-methyladenine DNA glycosylase gene and localization close to the 16p telomere. Proc. Natl. Acad. Sci. USA 1993, 90, 3437–3441. [Google Scholar] [CrossRef] [PubMed]
- Izumi, T.; Tatsuka, M.; Tano, K.; Asano, M.; Mitra, S. Molecular cloning and characterization of the promoter of the human N-methylpurine-DNA glycosylase (MPG) gene. Carcinogenesis 1997, 18, 1837–1839. [Google Scholar] [CrossRef]
- Pendlebury, A.; Frayling, I.M.; Santibanez Koref, M.F.; Margison, G.P.; Rafferty, J.A. Evidence for the simultaneous expression of alternatively spliced alkylpurine N-glycosylase transcripts in human tissues and cells. Carcinogenesis 1994, 15, 2957–2960. [Google Scholar] [CrossRef]
- Bonanno, K.; Wyrzykowski, J.; Chong, W.; Matijasevic, Z.; Volkert, M.R. Alkylation resistance of E. coli cells expressing different isoforms of human alkyladenine DNA glycosylase (hAAG). DNA Repair 2002, 1, 507–516. [Google Scholar] [CrossRef]
- Liu, M.; Doublié, S.; Wallace, S.S. Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutat. Res. 2013, 743, 4–11. [Google Scholar] [CrossRef]
- Dutta, A.; Yang, C.; Sengupta, S.; Mitra, S.; Hegde, M.L. New paradigms in the repair of oxidative damage in human genome: Mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell. Mol. Life Sci. 2015, 72, 1679–1698. [Google Scholar] [CrossRef]
- Fleming, A.M.; Burrows, C.J. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic. Biol. Med. 2017, 107, 35–52. [Google Scholar] [CrossRef]
- Hazra, T.K.; Izumi, T.; Boldogh, I.; Imhoff, B.; Kow, Y.W.; Jaruga, P.; Dizdaroglu, M.; Mitra, S. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc. Natl. Acad. Sci. USA 2002, 99, 3523–3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takao, M.; Kanno, S.-I.; Kobayashi, K.; Zhang, Q.-M.; Yonei, S.; van der Horst, G.T.J.; Yasui, A. A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J. Biol. Chem. 2002, 277, 42205–42213. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Yamamoto, M.; Kusaka, H.; Masatsugu, H.; Matsuyama, S.; Tajima, T.; Ide, H.; Kubo, K. NEIL1 mRNA splicing variants are expressed in normal mouse organs. J. Radiat. Res. 2012, 53, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Ohtsubo, T.; Matsuda, O.; Iba, K.; Terashima, I.; Sekiguchi, M.; Nakabeppu, Y. Molecular cloning of AtMMH, an Arabidopsis thaliana ortholog of the Escherichia coli mutM gene, and analysis of functional domains of its product. Mol. Gen. Genet. 1998, 259, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.-J.; Murphy, T.M. Alternative forms of formamidopyrimidine-DNA glycosylase from Arabidopsis thaliana. Photochem. Photobiol. 2001, 73, 128–134. [Google Scholar] [CrossRef]
- Murphy, T.M.; Gao, M.-J. Multiple forms of formamidopyrimidine-DNA glycosylase produced by alternative splicing in Arabidopsis thaliana. J. Photochem. Photobiol. B Biol. 2001, 61, 87–93. [Google Scholar] [CrossRef]
- Bandaru, V.; Sunkara, S.; Wallace, S.S.; Bond, J.P. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair 2002, 1, 517–529. [Google Scholar] [CrossRef]
- Hazra, T.K.; Kow, Y.W.; Hatahet, Z.; Imhoff, B.; Boldogh, I.; Mokkapati, S.K.; Mitra, S.; Izumi, T. Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem. 2002, 277, 30417–30420. [Google Scholar] [CrossRef] [PubMed]
- Morland, I.; Rolseth, V.; Luna, L.; Rognes, T.; Bjørås, M.; Seeberg, E. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: An alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res. 2002, 30, 4926–4936. [Google Scholar] [CrossRef]
- Demple, B.; Sung, J.-S. Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair 2005, 4, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Demple, B.; Herman, T.; Chen, D.S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: Definition of a family of DNA repair enzymes. Proc. Natl. Acad. Sci. USA 1991, 88, 11450–11454. [Google Scholar] [CrossRef] [PubMed]
- Robson, C.N.; Hickson, I.D. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res. 1991, 19, 5519–5523. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Bunville, J.; Patterson, T.A. Nucleotide sequence of a cDNA for an apurinic/apyrimidinic endonuclease from HeLa cells. Nucleic Acids Res. 1992, 20, 370. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.; Ascione, G.; Menninger, J.C.; Ward, D.C.; Demple, B. Human apurinic endonuclease gene (APE): Structure and genomic mapping (chromosome 1 4q11.2–12). Hum. Mol. Genet. 1992, 1, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Robson, C.N.; Hochhauser, D.; Craig, R.; Rack, K.; Bukie, V.J.; Hickson, I.D. Structure of the human DNA repair gene HAP1 and its localisation to chromosome 14q 11.2–12. Nucleic Acids Res. 1992, 20, 4417–4421. [Google Scholar] [CrossRef] [PubMed]
- Seki, S.; Hatsushika, M.; Watanabe, S.; Akiyama, K.; Nagao, K.; Tsutsui, K. cDNA cloning, sequencing, expression and possible domain structure of human APEX nuclease homologous to Escherichia coli exonuclease III. Biochim. Biophys. Acta 1992, 1131, 287–299. [Google Scholar] [CrossRef]
- Xanthoudakis, S.; Miao, G.; Wang, F.; Pan, Y.-C.E.; Curran, T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992, 11, 3323–3335. [Google Scholar] [CrossRef]
- Zhao, B.; Grandy, D.K.; Hagerup, J.M.; Magenis, R.E.; Smith, L.; Chauhan, B.C.; Hennee, W.D. The human gene fro apurinic/apyrimidinic endonuclease (HAP1): Sequence and localization to chromosome 14 band q12. Nucleic Acids Res. 1992, 20, 4097–4098. [Google Scholar] [CrossRef]
- Akiyama, K.; Seki, S.; Oshida, T.; Yoshida, M.C. Structure, promoter analysis and chromosomal assignment of the human APEX gene. Biochim. Biophys. Acta 1994, 1219, 15–25. [Google Scholar] [CrossRef]
- Yu, W.; Andersson, B.; Worley, K.C.; Muzny, D.M.; Ding, Y.; Liu, W.; Ricafrente, J.Y.; Wentland, M.A.; Lennon, G.; Gibbs, R.A. Large-scale concatenation cDNA sequencing. Genome Res. 1997, 7, 353–358. [Google Scholar] [CrossRef]
- Wang, A.-G.; Yoon, S.Y.; Oh, J.-H.; Jeon, Y.-J.; Kim, M.; Kim, J.-M.; Byun, S.-S.; Yang, J.O.; Kim, J.H.; Kim, D.-G.; et al. Identification of intrahepatic cholangiocarcinoma related genes by comparison with normal liver tissues using expressed sequence tags. Biochem. Biophys. Res. Commun. 2006, 345, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Sobol, R.W.; Horton, J.K.; Kühn, R.; Gu, H.; Singhal, R.K.; Prasad, R.; Rajewsky, K.; Wilson, S.H. Requirement of mammalian DNA polymerase-β in base-excision repair. Nature 1996, 379, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Beard, W.A.; Wilson, S.H. Structure and mechanism of DNA polymerase β. Chem. Rev. 2006, 106, 361–382. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Çağlayan, M.; Dai, D.-P.; Nadalutti, C.A.; Zhao, M.-L.; Gassman, N.R.; Janoshazi, A.K.; Stefanick, D.F.; Horton, J.K.; Krasich, R.; et al. DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair 2017, 60, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017, 37, e00237-17. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Beard, W.A.; Strauss, P.R.; Wilson, S.H. Human DNA polymerase β deoxyribose phosphate lyase: Substrate specificity and catalytic mechanism. J. Biol. Chem. 1998, 273, 15263–15270. [Google Scholar] [CrossRef] [PubMed]
- Dianov, G.L.; Prasad, R.; Wilson, S.H.; Bohr, V.A. Role of DNA polymerase β in the excision step of long patch mammalian base excision repair. J. Biol. Chem. 1999, 274, 13741–13743. [Google Scholar] [CrossRef]
- Podlutsky, A.J.; Dianova, I.I.; Podust, V.N.; Bohr, V.A.; Dianov, G.L. Human DNA polymerase β initiates DNA synthesis during long-patch repair of reduced AP sites in DNA. EMBO J. 2001, 20, 1477–1482. [Google Scholar] [CrossRef]
- Sukhanova, M.V.; Khodyreva, S.N.; Lebedeva, N.A.; Prasad, R.; Wilson, S.H.; Lavrik, O.I. Human base excision repair enzymes apurinic/apyrimidinic endonuclease 1 (APE1), DNA polymerase β and poly(ADP-ribose) polymerase 1: Interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res. 2005, 33, 1222–1229. [Google Scholar] [CrossRef]
- Chyan, Y.-J.; Ackerman, S.; Shepherd, N.S.; McBride, O.W.; Widen, S.G.; Wilson, S.H.; Wood, T.G. The human DNA polymerase β gene structure. Evidence of alternative splicing in gene expression. Nucleic Acids Res. 1994, 22, 2719–2725. [Google Scholar] [CrossRef]
- SenGupta, D.N.; Zmudzka, B.Z.; Kumar, P.; Cobianchi, F.; Skowronski, J.; Wilson, S.H. Sequence of human DNA polymerase β mRNA obtained through cDNA cloning. Biochem. Biophys. Res. Commun. 1986, 136, 341–347. [Google Scholar] [CrossRef]
- Zmudzka, B.Z.; SenGupta, D.; Matsukage, A.; Cobianchi, F.; Kumar, P.; Wilson, S.H. Structure of rat DNA polymerase β revealed by partial amino acid sequencing and cDNA cloning. Proc. Natl. Acad. Sci. USA 1986, 83, 5106–5110. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Beard, W.A.; Chyan, J.Y.; Maciejewski, M.W.; Mullen, G.P.; Wilson, S.H. Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase β as revealed by site-directed mutagenesis: DNA binding and 5′-deoxyribose phosphate lyase activities. J. Biol. Chem. 1998, 273, 11121–11126. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Batra, V.K.; Yang, X.-P.; Krahn, J.M.; Pedersen, L.C.; Beard, W.A.; Wilson, S.H. Structural insight into the DNA polymerase β deoxyribose phosphate lyase mechanism. DNA Repair 2005, 4, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Zmudzka, B.Z.; Fomace, A.; Collins, J.; Wilson, S.H. Characterization of DNA polymerase β mRNA: Cell-cycle and growth response in cultured human cells. Nucleic Acids Res. 1988, 16, 9587–9596. [Google Scholar] [CrossRef]
- Chyan, Y.-J.; Strauss, P.R.; Wood, T.G.; Wilson, S.H. Identification of novel mRNA isoforms for human DNA polymerase β. DNA Cell. Biol. 1996, 15, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Chen, H.-C.; Comhair, S.; Erzurum, S.C.; Banerjee, S. Variant forms of DNA polymerase β in primary lung carcinomas. DNA Cell. Biol. 1999, 18, 549–554. [Google Scholar] [CrossRef]
- Thompson, T.E.; Rogan, P.K.; Risinger, J.I.; Taylor, J.A. Splice variants but not mutations of DNA polymerase β are common in bladder cancer. Cancer Res. 2002, 62, 3251–3256. [Google Scholar]
- Skandalis, A.; Uribe, E. A survey of splice variants of the human hypoxanthine phosphoribosyl transferase and DNA polymerase beta genes: Products of alternative or aberrant splicing? Nucleic Acids Res. 2004, 32, 6557–6564. [Google Scholar] [CrossRef]
- Disher, K.; Skandalis, A. Evidence of the modulation of mRNA splicing fidelity in humans by oxidative stress and p53. Genome 2007, 50, 946–953. [Google Scholar] [CrossRef]
- Simonelli, V.; D’Errico, M.; Palli, D.; Prasad, R.; Wilson, S.H.; Dogliotti, E. Characterization of DNA polymerase β splicing variants in gastric cancer: The most frequent exon 2-deleted isoform is a non-coding RNA. Mutat. Res. 2009, 670, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Skandalis, A.; Frampton, M.; Seger, J.; Richards, M.H. The adaptive significance of unproductive alternative splicing in primates. RNA 2010, 16, 2014–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skandalis, A. Estimation of the minimum mRNA splicing error rate in vertebrates. Mutat. Res. 2016, 784, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Chen, H.-C.; Grundfest-Broniatowski, S.; Banerjee, S. Alteration of hMSH2 and DNA polymerase β genes in breast carcinomas and fibroadenomas. Biochem. Biophys. Res. Commun. 1999, 259, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-C.; Bhattacharyya, N.; Wang, L.; Recupero, A.J.; Klein, E.A.; Harter, M.L.; Banerjee, S. Defective DNA repair genes in a primary culture of human renal cell carcinoma. J. Cancer Res. Clin. Oncol. 2000, 126, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.M.; Zheng, N.G.; Wu, J.L.; Li, S.K.; Wang, Y.L. Difference in expression level and localization of DNA polymerase beta among human esophageal cancer focus, adjacent and corresponding normal tissues. Dis. Esophagus 2006, 19, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Patel, U.; Ghosh, L.; Banerjee, S. DNA polymerase β mutations in human colorectal cancer. Cancer Res. 1992, 52, 4824–4827. [Google Scholar]
- Sadakane, Y.; Maeda, K.; Kuroda, Y.; Hori, K. Identification of mutations in DNA polymerase β mRNAs from patients with Werner syndrome. Biochem. Biophys. Res. Commun. 1994, 200, 219–225. [Google Scholar] [CrossRef]
- Wang, L.; Banerjee, S. Mutations in DNA polymerase β occur in breast, prostate and colorectal tumors. Int. J. Oncol. 1995, 6, 459–463. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Banerjee, S. A variant of DNA polymerase β acts as a dominant negative mutant. Proc. Natl. Acad. Sci. USA 1997, 94, 10324–10329. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Banerjee, T.; Patel, U.; Banerjee, S. Impaired repair activity of a truncated DNA polymerase β protein. Life Sci. 2001, 69, 271–280. [Google Scholar] [CrossRef]
- Wang, L.; Bhattacharyya, N.; Rabi, T.; Wang, L.; Banerjee, S. Mammary carcinogenesis in transgenic mice expressing a dominant-negative mutant of DNA polymerase β in their mammary glands. Carcinogenesis 2007, 28, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Banerjee, S. A novel role of XRCC1 in the functions of a DNA polymerase β variant. Biochemistry 2001, 40, 9005–9013. [Google Scholar] [CrossRef] [PubMed]
- Khanra, K.; Bhattacharya, C.; Bhattacharyya, N. Association of a newly identified variant of DNA polymerase beta (polβΔ63-123, 208-304) with the risk factor of ovarian carcinoma in India. Asian Pac. J. Cancer Prev. 2012, 13, 1999–2002. [Google Scholar] [CrossRef]
- Khanra, K.; Chakraborty, A.; Bhattacharyya, N. HeLa cells containing a truncated form of DNA polymerase beta are more sensitized to alkylating agents than to agents inducing oxidative stress. Asian Pac. J. Cancer Prev. 2015, 16, 8177–8186. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Chen, H.-C.; Wang, L.; Banerjee, S. Heterogeneity in expression of DNA polymerase β and DNA repair activity in human tumor cell lines. Gene Expr. 2002, 10, 115–123. [Google Scholar] [CrossRef]
- Casas-Finet, J.R.; Kumar, A.; Karpel, R.L.; Wilson, S.H. Mammalian DNA polymerase β: Characterization of a 16-kDa transdomain fragment containing the nucleic acid-binding activities of the native enzyme. Biochemistry 1992, 31, 10272–10280. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Bieganowski, P.; Konopiński, R.; Siedlecki, J.A. Alternative splicing of DNA polymerase β mRNA is not tumor-specific. Int. J. Cancer 1996, 68, 199–202. [Google Scholar] [CrossRef]
- Grosso, A.R.; Martins, S.; Carmo-Fonseca, M. The emerging role of splicing factors in cancer. EMBO Rep. 2008, 9, 1087–1093. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.J.; Cooper, T.A. The pathobiology of splicing. J. Pathol. 2010, 220, 152–163. [Google Scholar] [CrossRef]
Gene | mRNA Experimentally Confirmed/Additionally Predicted * | Polypeptides Translated from Experimentally Confirmed/Additionally Predicted mRNA |
---|---|---|
UNG | 2/0 | 2/0 |
TDG | 2/1 | 2/1 |
SMUG1 | 32/8 | 5/0 |
MBD4 | 5/1 | 5/1 |
NTHL1 | 3/1 | 3/1 |
MUTYH | 13/23 | 9/8 |
OGG1 | 13/7 | 13/6 |
MPG | 3/1 | 3/0 |
NEIL1 | 4/16 | 4/8 |
NEIL2 | 8/0 | 3/0 |
NEIL3 | 1/1 | 1/1 |
APEX1 | 4/0 | 1/0 |
POLB | 60/16 | 2/2 |
HGMD Accession | Genomic Coordinates and Human Genome Variation Nomenclature | Variant Class | Phenotype | Reference |
---|---|---|---|---|
MBD4 | ||||
CS187177 | c.335+1G>A | DM? | Glioblastoma | [67] |
CS187176 | c.1562-1G>T | DM? | Uveal melanoma | [67] |
NTHL1 | ||||
CS1512540 | c.709+1G>A | DM | Nth endonuclease III-like 1 deficiency | [69] |
OGG1 | ||||
CM024572 | c.137G>A | DM | Colorectal cancer | [70] |
CS1515648 | c.898+2T>G | DP | Breast cancer, in women, association with | [71] |
CS1515649 | c.948+2T>G | DP | Breast cancer, in women, association with | [71] |
NEIL1 | ||||
CS088022 | c.434+2T>C | DFP | Altered splicing | [72] |
NEIL2 | ||||
CS053476 | c.492-8C>T | DM? | Multiple colorectal adenoma | [73] |
HGMD Accession | Genomic Coordinates and HGVS Nomenclature | Variant Class | Phenotype | Reference |
---|---|---|---|---|
CS031780 | c.389-1G>A | DM | Colorectal cancer | [130] |
CS042821 | c.389-1G>C | DM | MUTYH-associated polyposis | [131] |
CS150026 | c.462G>A | DM | MUTYH-associated polyposis | [132] |
CS065596 | c.463-1G>C | DM | MUTYH-associated polyposis | [133] |
CS1717140 | c.504+2T>C | DM | Cancer | [134] |
CS1620236 | c.577-2A>G | DM | Ovarian carcinoma | [135] |
CS083952 | c.690G>A | DM | Multiple colorectal adenomas | [72] |
CS072232 | c.691-1G>A | DM | Adenomatous polyposis coli, attenuated | [136] |
CS150027 | c.788+3A>G | DM | MUTYH-associated polyposis | [132] |
CS031781 | c.933+3A>C | DM | Colorectal cancer | [130] |
CS042822 | c.934-2A>G | DM | Gastric cancer | [128] |
CS107266 | c.998-13T>G | DM | Colon cancer | [137] |
CS077659 | c.998-1G>T | DM | Adenomatous polyposis coli | [129] |
CS077658 | c.1038G>A | DM | Adenomatous polyposis coli | [129] |
CS1717138 | c.1186+1G>A | DM | Cancer | [134] |
CS1723999 | c.1186+2T>C | DM | Breast cancer | [138] |
CS050108 | c.1187-2A>G | DM | Colorectal cancer | [139] |
CS065595 | c.1518+2T>C | DM | MUTYH-associated polyposis | [133] |
CS083951 | c. Not yet available | DM | Adenomatous polyposis coli | [140] |
CS024315 | c. Not yet available | FP | Reduced translation efficiency | [120] |
CS171407 | c.348+20G>A | DM? | MUTYH-associated polyposis | [141] |
CS171414 | c.388+56G>A | DM? | MUTYH-associated polyposis | [141] |
CS171412 | c.690+21C>A | DM? | MUTYH-associated polyposis | [141] |
CS171415 | c.997+5G>A | DM? | MUTYH-associated polyposis | [141] |
CS171411 | c.1187-27C>T | DM? | MUTYH-associated polyposis | [141] |
CS171409 | c.1477-28G>A | DM? | MUTYH-associated polyposis | [141] |
CS1711315 | c.1477-17C>G | DM? | Susceptibility to colorectal cancer | [142] |
CS1711316 | c.1519-14C>G | DM? | Susceptibility to colorectal cancer | [142] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boldinova, E.O.; Khairullin, R.F.; Makarova, A.V.; Zharkov, D.O. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int. J. Mol. Sci. 2019, 20, 3279. https://doi.org/10.3390/ijms20133279
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. International Journal of Molecular Sciences. 2019; 20(13):3279. https://doi.org/10.3390/ijms20133279
Chicago/Turabian StyleBoldinova, Elizaveta O., Rafil F. Khairullin, Alena V. Makarova, and Dmitry O. Zharkov. 2019. "Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing" International Journal of Molecular Sciences 20, no. 13: 3279. https://doi.org/10.3390/ijms20133279
APA StyleBoldinova, E. O., Khairullin, R. F., Makarova, A. V., & Zharkov, D. O. (2019). Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. International Journal of Molecular Sciences, 20(13), 3279. https://doi.org/10.3390/ijms20133279