Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Application of Lin− Cells into the Infarct-Related Coronary Artery
2.3. Brain-Derived Neurotrophic Factor (BDNF) and Glial-Derived Neurotrophic Factor (GDNF) Plasma Levels
2.4. Plasma Level Profiles of Angiogenic Growth Factors
2.5. Correlation between Selected Neutrotrophins and Angiogenic Factor Concentration with the Number of Administered Lin− cells
3. Discussion
4. Materials and Methods
4.1. Patients
- (a)
- under 65 years of age;
- (b)
- occurrence of a typical angina pectoris lasting at least 30 min and the appearance of chest pain up to 12 h before admission to the clinic;
- (c)
- elevation of the ST segment at point J > 0.2 mV in at least two adjacent leads from V1 to V3 or >0.1 mV in other electrocardiogram (ECG) leads;
- (d)
- first ever myocardial infarction;
- (e)
- ejection fraction (EF) ≤45% on day 0 of echocardiographic examination; and
- (f)
- single-vessel coronary disease in coronary angiography qualified for coronary angioplasty with stent implantation.
4.2. Cells
4.3. Administration of the Lin− Stem Cells Suspensio to the Infarct-Related Artery
4.4. Ultrasound Assessment of the Heart
4.5. Holter ECG Examination
4.6. Assessment of Plasma Concentration of Selected Neurotrophins, Growth, and Chemotactic Factors Using Luminex
4.7. Statistics
5. Limitations
6. Conclusions
Funding
Conflicts of Interest
Data Availability
References
- Jernberg, T. Swedeheart Annual Report 2015; Karolinska University Hospital: Huddinge, Sweden, 2016. [Google Scholar]
- Pedersenn, F.; Butrymowicz, V.; Kebarek, H.; Wachtell, K.; Helqvist, S.; Kastrup, I.; Holmvany, L.; Clemmensen, P.; Engstrom, T.; Grande, P.; et al. Short-and long term cause of death in patients treated with primary PCI for STEMI. J. Am. Coll. Cardiol. 2014, 64, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Sürder, D.; Manka, R.; Moccetti, T.; Lo Cicero, V.; Emmert, M.Y.; Klersy, C.; Soncin, S.; Turchetto, L.; Radrizzani, M.; Zuber, M.; et al. Effect of Bone Marrow-Derived Mononuclear Cell Treatment, Early or Late After Acute Myocardial Infarction: Twelve Months CMR and Long-Term Clinical Results. Circ. Res. 2016, 119, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Y.; Liu, D.; Zhong, Y.; Huang, R.C. Effects of timing on intracoronary autologous bone marrow-derived cell transplantation in acute myocardial infarction: A meta-analysis of randomized controlled trials. Stem Cell Res. Ther. 2017, 8, 231. [Google Scholar] [CrossRef] [PubMed]
- Wojakowski, W.; Jadczyk, T.; Michalewska-Włudarczyk, A.; Parma, Z.; Markiewicz, M.; Rychlik, W.; Kostkiewicz, M.; Gruszczyńska, K.; Błach, A.; Dzier Zak-Mietła, M.; et al. Effects of Transendocardial Delivery of Bone Marrow-Derived CD133+ Cells on Left Ventricle Perfusion and Function in Patients with Refractory Angina: Final Results of Randomized, Double-Blinded, Placebo-Controlled REGENT-VSEL Trial. Circ. Res. 2017, 120, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.N.; Cores, J.; Huang, K.; Cui, X.L.; Luo, L.; Zhang, J.Y.; Li, T.S.; Qian, L.; Cheng, K. Concise Review: Is Cardiac Cell Therapy Dead? Embarrassing Trial Outcomes and New Directions for the Future. Stem Cells Transl. Med. 2018, 7, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Sürder, D.; Manka, R.; Lo Cicero, V.; Moccetti, T.; Rufibach, K.; Soncin, S.; Turchetto, L.; Radrizzani, M.; Astori, G.; Schwitter, J.; et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: Effects on global left ventricular function. Circulation 2013, 127, 1968–1979. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.M.; Rabbani, R.; Copstein, L.; Sulaiman, W.; Farshidfar, F.; Kashani, H.H.; Qadar, S.M.Z.; Guan, Q.; Skidmore, B.; Kardami, E.; et al. Autologous Bone Marrow Stem Cell Therapy in Patients With ST-Elevation Myocardial Infarction: A Systematic Review and Meta-analysis. Can. J. Cardiol. 2017, 33, 1611–1623. [Google Scholar] [CrossRef] [PubMed]
- Wollert, K.C.; Meyer, G.P.; Müller-Ehmsen, J.; Tschöpe, C.; Bonarjee, V.; Larsen, A.I.; May, A.E.; Empen, K.; Chorianopoulos, E.; Tebbe, U.; et al. Intracoronary autologous bone marrow cell transfer after myocardial infarction: The BOOST-2 randomised placebo-controlled clinical trial. Eur. Heart J. 2017, 38, 2936–2943. [Google Scholar] [CrossRef]
- San Roman, J.A.; Sánchez, P.L.; Villa, A.; Sanz-Ruiz, R.; Fernandez-Santos, M.E.; Gimeno, F.; Ramos, B.; Arnold, R.; Serrador, A.; Gutiérrez, H.; et al. Comparison of Different Bone Marrow-Derived Stem Cell Approaches in Reperfused STEMI. A Multicenter, Prospective, Randomized, Open-Labeled TECAM Trial. J. Am. Coll. Cardiol. 2015, 65, 2372–2382. [Google Scholar] [CrossRef]
- Poole, J.C.; Quyyumi, A.A. Progenitor Cell Therapy to Treat Acute Myocardial Infarction: The Promise of High-Dose Autologous CD34(+) Bone Marrow Mononuclear Cells. Stem Cells Int. 2013, 2013, 658480. [Google Scholar] [CrossRef]
- Coskun, V.; Lombardo, D.M. Studying the pathophysiologic connection between cardiovascular and nervous systems using stem cells. J. Neurosci. Res. 2016, 94, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Sanganalmath, S.K.; Bolli, R. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ. Res. 2013, 113, 810–834. [Google Scholar] [CrossRef] [PubMed]
- Gnecchi, M.; Zhang, Z.; Ni, A. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 2008, 103, 1204–1219. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska, E.; Kaczyńska, K.; Pius-Sadowska, E.; Rogińska, D.; Kawa, M.; Ustianowski, P.; Safranow, K.; Celewicz, Z.; Machaliński, B. Humoral activity of cord blood-derived stem/progenitor cells: Implications for stem cell-based adjuvant therapy of neurodegenerative disorders. PLoS ONE 2013, 8, e83833. [Google Scholar] [CrossRef] [PubMed]
- Majka, M.; Janowska-Wieczorek, A.; Ratajczak, J.; Ehrenman, K.; Pietrzkowski, Z.; Kowalska, M.A.; Gewirtz, A.M.; Emerson, S.G.; Ratajczak, M.Z. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 2001, 97, 3075–3085. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, N.; Kangawa, K.; Itoh, T.; Iwase, T.; Murakami, S.; Miyahara, Y.; Fujii, T.; Uematsu, M.; Ohgushi, H.; Yamagishi, M.; et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005, 112, 1128–1135. [Google Scholar] [CrossRef]
- Urbich, C.; Aicher, A.; Heeschen, C.; Dernbach, E.; Hofmann, W.K.; Zeiher, A.M.; Dimmeler, S. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell Cardiol. 2005, 39, 733–742. [Google Scholar] [CrossRef]
- Zhou, B.O.; Ding, L.; Morrison, S.J. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. Elife 2015, 4, e05521. [Google Scholar] [CrossRef]
- Paczkowska, E.; Piecyk, K.; Łuczkowska, K.; Kotowski, M.; Rogińska, D.; Pius-Sadowska, E.; Oronowicz, K.; Ostrowski, M.; Machaliński, B. Expression of neurotrophins and their receptors in human CD34+ bone marrow cells. J. Physiol. Pharmacol. 2016, 67, 151–159. [Google Scholar]
- Xie, Y.; Ibrahim, A.; Cheng, K.; Wu, Z.; Liang, W.; Malliaras, K.; Sun, B.; Liu, W.; Shen, D.; Cheol Cho, H.; et al. Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells 2014, 32, 2397–2406. [Google Scholar] [CrossRef]
- Brindle, N.P.J.; Saharinen, P.; Alitalo, K. Signalling and functions of angiopoietin-1 in vascular protection. Circ. Res. 2006, 98, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Ellison, G.M.; Torella, D.; Dellegrottaglie, S.; Perez-Martinez, C.; Perez de Prado, A.; Vicinanza, C.; Purushothaman, S.; Galuppo, V.; Iaconetti, C.; Waring, C.D.; et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J. Am. Coll. Cardiol. 2011, 58, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, J.; Tao, Z.; Wu, P.; Cheng, W.; Du, Y.; Zhou, N.; Ge, Y.; Yang, Z. Exogenous HGF Prevents Cardiomyocytes from Apoptosis after Hypoxia via Up-Regulating Cell Autophagy. Cell. Physiol. Biochem. 2016, 38, 2401–2413. [Google Scholar] [CrossRef] [PubMed]
- Kivelä, R.; Bry, M.; Robciuc, M.R.; Räsänen, M.; Taavitsainen, M.; Silvola, J.M.; Saraste, A.; Hulmi, J.J.; Anisimov, A.; Mäyränpää, M.I.; et al. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol. Med. 2014, 6, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Gallo, S.; Sala, V.; Gatti, S.; Crepaldi, T. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin. Sci. 2015, 129, 1173–1193. [Google Scholar] [CrossRef] [PubMed]
- Parizadeh, S.M.; Jafarzadeh-Esfehani, R.; Ghandehari, M.; Parizadeh, M.R.; Ferns, G.A.; Avan, A.; Hassanian, S.M. Stem cell therapy: A novel approach for myocardial infarction. J. Cell. Physiol. 2019, 234, 16904–16912. [Google Scholar] [CrossRef] [PubMed]
- Wernly, B.; Mirna, M.; Rezar, R.; Prodinger, C.; Jung, C.; Podesser, B.K.; Kiss, A.; Hoppe, U.C.; Lichtenauer, M. Regenerative Cardiovascular Therapies: Stem Cells and Beyond. Int. J. Mol. Sci. 2019, 20, 1420. [Google Scholar] [CrossRef] [PubMed]
- Halappa, N.G.; Thirthalli, J.; Varambally, S.; Rao, M.; Christopher, R.; Nanjundaiah, G.B. Improvement in neurocognitive functions and serum brain-derived neurotrophic factor levels in patients with depression treated with antidepressants and yoga. Indian J Psychiatry 2018, 60, 32–37. [Google Scholar] [CrossRef]
- Rodier, M.; Quirié, A.; Prigent-Tessier, A.; Béjot, Y.; Jacquin, A.; Mossiat, C.; Marie, C.; Garnier, P. Relevance of Post-Stroke Circulating BDNF Levels as a Prognostic Biomarker of Stroke Outcome. Impact of rt-PA Treatment. PLoS ONE. 2015, 10, e0140668. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.W.; Khandekar, N.; Tong, S.F.; Yang, H.Q.; Wang, W.R.; Huang, X.F.; Song, Z.Y.; Lin, S. Reduced serum levels of oestradiol and brain derived neurotrophic factor in both diabetic women and HFD-feeding female mice. Endocrine 2017, 56, 65–72. [Google Scholar] [CrossRef]
- Pius-Sadowska, E.; Machaliński, B. BDNF—A key player in cardiovascular system. J. Mol. Cell. Cardiol. 2017, 110, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, H.; Altar, C.A.; Chen, R.; Nakamura, T.; Nakahashi, T.; Kambayashi, J.; Sun, B.; Tandon, N.N. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb. Haemost. 2002, 87, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Nofuji, Y.; Suwa, M.; Sasaki, H.; Ichimiya, A.; Nishichi, R.; Kumagai, S. Different circulating brain-derived neurotrophic factor responses to acute exercise between physically active and sedentary subjects. J. Sports Sci. Med. 2012, 11, 83–88. [Google Scholar] [PubMed]
- Araki, S.; Yamamoto, Y.; Dobashi, K.; Asayama, K.; Kusuhara, K. Decreased plasma levels of brain-derived neurotrophic factor and its relationship with obesity and birth weight in obese Japanese children. Obes. Res. Clin. Pract. 2014, 8, e63–e69. [Google Scholar] [CrossRef] [PubMed]
- Lommatzsch, M.; Niewerth, A.; Klotz, J.; Schulte-Herbrüggen, O.; Zingler, C.; Schuff-Werner, P.; Virchow, J.C. Platelet and plasma BDNF in lower respiratory tract infections of the adult. Respir. Med. 2007, 101, 1493–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manni, L.; Nikolova, V.; Vyagova, D.; Chaldakov, G.N.; Aloe, L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int. J. Cardiol. 2005, 102, 169–171. [Google Scholar] [CrossRef]
- Kermani, P.; Rafii, D.; Jin, D.K.; Whitlock, P.; Schaffer, W.; Chiang, A.; Vincent, L.; Friedrich, M.; Shido, K.; Hackett, N.R.; et al. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J. Clin. Investig. 2005, 115, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Halade, G.V.; Ma, Y.; Ramirez, T.A.; Zhang, J.; Dai, Q.; Hensler, J.G.; Lopez, E.F.; Ghasemi, O.; Jin, Y.F.; Lindsey, M.L. Reduced BDNF attenuates inflammation and angiogenesis to improve survival and cardiac function following myocardial infarction in mice. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1830–H1842. [Google Scholar] [CrossRef] [Green Version]
- Marotta, P.; Cianflone, E.; Aquila, I.; Vicinanza, C.; Scalise, M.; Marino, F.; Mancuso, T.; Torella, M.; Indolfi, C.; Torella, D. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin. Biol. Ther. 2018, 18, 409–423. [Google Scholar] [CrossRef]
- Gnecchi, M.; He, H.; Liang, O.D.; Melo, L.G.; Morello, F.; Mu, H.; Noiseux, N.; Zhang, L.; Pratt, R.E.; Ingwall, J.S.; et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 2005, 11, 367–368. [Google Scholar] [CrossRef]
- Gnecchi, M.; He, H.; Noiseux, N.; Liang, O.D.; Zhang, L.; Morello, F.; Mu, H.; Melo, L.G.; Pratt, R.E.; Ingwall, J.S.; et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006, 20, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Shafei, A.E.; Ali, M.A.; Ghanem, H.G.; Shehata, A.I.; Abdelgawad, A.A.; Handal, H.R.; Talaat, K.A.; Ashaal, A.E.; El-Shal, A.S. Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. J. Gene Med. 2017, 19, e2995. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zuo, S.; He, Z.; Yang, Y.; Pasha, Z.; Wang, Y.; Xu, M. Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Burchfield, J.S.; Dimmeler, S. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair 2008, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Yokoyama, M.; Toko, H.; Tateno, K.; Moriya, J.; Shimizu, I.; Nojima, A.; Ito, T.; Yoshida, Y.; Kobayashi, Y.; et al. Brain-derived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system-mediated pathway. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Hang, P.; Zhao, J.; Cai, B.; Tian, S.; Huang, W.; Guo, J.; Sun, C.; Li, Y.; Du, Z. Brain-derived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents. Int. J. Biol. Sci. 2015, 11, 536–545. [Google Scholar] [CrossRef]
- Hang, P.; Sun, C.; Guo, J.; Zhao, J.; Du, Z. BDNF-mediates Down-regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats. Int. J. Biol. Sci. 2016, 12, 979–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miwa, K.; Lee, J.K.; Takagishi, Y.; Opthof, T.; Fu, X.; Hirabayashi, M.; Watabe, K.; Jimbo, Y.; Kodama, I.; Komuro, I. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF). PLoS ONE 2013, 8, e65202. [Google Scholar] [CrossRef]
- Ishida, H.; Saba, R.; Kokkinopoulos, I.; Hashimoto, M.; Yamaguchi, O.; Nowotschin, S.; Shiraishi, M.; Ruchaya, P.; Miller, D.; Harmer, S.; et al. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway. Cell Rep. 2016, 16, 1026–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Mizuno, S.; Matsumoto, K.; Sawa, Y.; Matsuda, H.; Nakamura, T. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J. Clin. Investig. 2000, 106, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Gavard, J.; Patel, V.; Gutkind, J.S. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell 2008, 14, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Jayasankar, V.; Woo, Y.J.; Pirolli, T.J.; Bish, L.T.; Berry, M.F.; Burdick, J.; Gardner, T.J.; Sweeney, H.L. Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemic heart failure. J. Card. Surg. 2005, 20, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Matsumori, A.; Shioi, T.; Furukawa, Y.; Sasayama, S. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model. Circulation 1997, 95, 2552–2558. [Google Scholar] [CrossRef] [PubMed]
- Kardami, E.; Detillieux, K.; Ma, X.; Jiang, Z.; Santiago, J.J.; Jimenez, S.K.; Cattini, P.A. Fibroblast growth factor-2 and cardioprotection. Heart Fail. Rev. 2007, 12, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, X.; Guan, J. A thermosensitive hydrogel capable of releasing bFGF for enhanced differentiation of mesenchymal stem cell into cardiomyocyte-like cells under ischemic conditions. Biomacromolecules 2012, 13, 1956–1964. [Google Scholar] [CrossRef]
- Baumert, B.; Grymuła, K.; Pietruszka, D.; Kotowski, M.; Mielczarek, M.; Dziedziejko, V.; Hałasa, M.; Czerny, B.; Walczak, M.; Machaliński, B. An optimization of hematopoietic stem and progenitor cell isolation for scientific and clinical purposes by the application of a new parameter determining the hematopoietic graft efficacy. Folia Histochem. Cytobiol. 2008, 46, 299–305. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Lin− Group (n = 15) | Control Group (n = 19) | p Value |
---|---|---|---|
Age (y) median (IQR) | 54.5 (11.3) | 52 (11.5) | 0.78 |
Cardiovascular Risk Factors | |||
Hypertension n (%) | 5 (33.3) | 6 (31.6) | 0.91 |
Smoking n (%) | 8 (53.3) | 10 (52.6) | 0.97 |
Diabetes mellitus n (%) | 0 (0.0) | 0 (0.0) | — |
Family history of coronary artery disease (CAD) n (%) | 7 (46.7) | 10 (52.6) | 0.73 |
Quantitative parameters | Median (IQR) | Median (IQR) | p value |
Creatine kinase muscle-brain (CKMB) (U/L) | 173.5 (245.3) | 379.0 (312.5) | 0.15 |
Troponin I (TN-I) (µg/L) | 9.9 (16.3) | 19.9 (10.3) | 0.23 |
Brain natriuretic peptide (BNP) (pg/mL) | 1210.0 (1437.3) | 1602.5 (1247.3) | 0.78 |
Lipid profile: | |||
Total cholesterol (mg/dL) | 236.0 (61.5) | 211.5 (79.0) | 0.10 |
Low-density lipoprotein (LDL) cholesterol (mg/dL) | 142.5 (60.5) | 140.0 (65.8) | 0.56 |
High-density lipoprotein (HDL) cholesterol (mg/dL) | 46.5 (15.3) | 40.0 (9.8) | 0.17 |
Triglycerides (mg/dL) | 149.0 (90.0) | 117.5 (87.0) | 0.02 |
Left ventricular end-systolic volume (LVESV) (mL) | 74.0 (22.3) | 90.5 (16.0) | 0.04 |
Ejection fraction (EF) (%) | 40.0 (5.8) | 35.0 (3.8) | 0.05 |
Left ventricular end-diastolic volume (LVEDV) (mL) | 128.5 (39.3) | 151.5 (31.8) | 0.03 |
Qualitative parameters | n (%) | n (%) | p value |
Infarction site: | |||
Anterior n (%) | 10 (66.7) | 14 (73.7) | 0.20 |
Inferior n (%) | 4 (26.7) | 4 (21.1) | |
Lateral n (%) | 1 (6.7) | 1 (5.3) | |
Coronary artery: | |||
Left anterior descending (LAD) n (%) | 10 (66.7) | 14 (73.7) | 0.71 |
Right coronary artery (RCA) n (%) | 3 (20.0) | 4 (21.1) | |
Left circumflex artery (LCX) n (%) | 2 (13.3) | 1 (5.3) |
Cell Population | Phenotypic Characterization | Function |
---|---|---|
Lin+ cells | CD2+, CD3+, CD11b+, CD14+, CD15+, CD16+, CD19+, CD56+, CD123+, CD235a+ (Glycophorin A) | Mature hematopoietic cells such as T cells, B cells, NK cells, dendritic cells, monocytes, granulocytes, erythroid cells, and their committed precursors. |
Lin– cells | CD2–, CD3–, CD11b–, CD14–, CD15–, CD16–, CD19–, CD56–, CD123–, CD235a– (Glycophorin A) | The fraction does not contain any morphotic elements exhibiting mature phenotypes. The depletion of lineage-positive cells results in the enrichment of precursor cells, progenitor cells, and stem cells such as CD34+ and CD133+ cells. |
Groups | 0 Day | 1st Day | 3rd Day | 7th Day | 1st Month | 3rd Month | 6th Month | 12th Month |
---|---|---|---|---|---|---|---|---|
EF (%) | ||||||||
Lin− group | 40.0 (5,8) | 40.0 * (6.0) | 41.0 * (9.0) | 44.0 * (10.5) | 46.0 * (10.8) | 49.0 * (14.5) | 49.0 * (15.8) | 49.5 * (18.0) |
Control group | 35.0 (3.8) | 39.5 * (5.0) | 40.5 * (4.3) | 43.0 * (6.3) | 42.0 * (8.0) | 44.5 * (10.0) | 45.0 * (14.0) | 46.0 * (15.5) |
p value | 0.047 | 0.147 | 0.560 | 0.471 | 0.410 | 0.430 | 0.584 | 1.000 |
LVEDV (mL) | ||||||||
Lin− group | 128.5 (39.3) | 128.0 (36.8) | 129.0 (35.0) | 122.5 (34.3) | 125.5 (25.3) | 113.5 (38.3) | 119.5 (47.5) | 114.5 (42.5) |
Control group | 151.5 (31.8) | 146.5 * (41.8) | 136.5 * (41.8) | 131.0 * (44.3) | 130.5 * (36.8) | 129.0 * (43.3) | 123.5 * (37.5) | 124.0 * (39.3) |
p value | 0.025 | 0.071 | 0.286 | 0.215 | 0.242 | 0.372 | 0.758 | 0.732 |
LVESV (mL) | ||||||||
Lin− group | 74.0 (22.3) | 72.0 * (10.3) | 70.0 (26.5) | 64.5 * (21.5) | 62.0 * (21.3) | 55.5 * (37.3) | 48.5 * (41.5) | 49.5 (41.0) |
Control group | 90.5 (16.0) | 85.0 * (20.5) | 79.5 * (20.3) | 73.5 * (17.5) | 72.5 * (22.5) | 70.5 *(25.3) | 66.0 * (25.5) | 64.5 * (30.0) |
p value | 0.043 | 0.025 | 0.157 | 0.157 | 0.256 | 0.256 | 0.632 | 0.681 |
LVIDD (mm) | ||||||||
Lin− group | 51.0 (4.0) | 51.0 (6.8) | 52.5 (7.3) | 54.0 (8.3) | 55.0 (7.3) | 52.5 (8.8) | 49.5 (9.8) | 53.0 (9.5) |
Control group | 56.0 (4.0) | 55.0 (6.0) | 53.5 * (7.0) | 54.5 * (7.3) | 54.5 (9.8) | 58.0 (7.3) | 55.5 (10.3) | 58.0 (9.0) |
p value | 0.007 | 0.047 | 0.302 | 0.864 | 0.784 | 0.167 | 0.051 | 0.051 |
Diameter of the aortic bulb (mm) | ||||||||
Lin− group | 34.0 (3.3) | 33.0 (4.8) | 34.0 (7.3) | 35.0 (5.3) | 34.5 (6.0) | 34.0 (5.3) | 35.5 (5.0) | 33.0 (5.8) |
Control group | 36.5 (6.0) | 36.5 (6.0) | 35.0 (5.8) | 36.0 (5.8) | 36.0 (3.8) | 36.0 (5.3) | 37.0 (5.5) | 35.0 (5.0) |
p value | 0.157 | 0.043 | 0.354 | 0.372 | 0.410 | 0.111 | 0.066 | 0.071 |
Groups | 0 Day | 2nd Day | 4th Day | 7th Day | 1st Month | 3rd Month | Friedmann ANOVA p Value |
---|---|---|---|---|---|---|---|
BDNF (pg/mL) | |||||||
Lin− group | 882 (1774) | 2319 (3400) | 2094 (2898) | 1809 (2402) | 1099 (2621) | 1530 (1462) | 0.075 |
Control group | 2444 (2312) | 1201 (2188) | 1464 (1871) | 1614 (3461) | 1331 (2785) | 1427 (2259) | 0.088 |
p value | 0.019 | 0.120 | 0.336 | 0.811 | 0.656 | 0.732 | |
GDNF (pg/mL) | |||||||
Lin− group | 0.96 (0.14) | 0.96 (0.18) | 0.96 (0.11) | 0.96 (0.18) | 0.96 (0.02) | 0.96 (0.07) | 0.63 |
Control group | 0.60 (0.60) | 0.60 (0.22) | 0.60 (0.40) | 0.60 (0.24) | 0.64 (0.33) | 0.60 (0.48) | 0.28 |
p value | 0.030 | 0.003 | 0.005 | 0.001 | 0.015 | 0.025 | |
VEGF (pg/mL) | |||||||
Lin− group | 7.6 (7.6) | 17.2 (18.8) | 20.3 * (23.4) | 15.7 (20.8) | 9.4 (10.2) | 10.6 (14.6) | 0.01 |
Control group | 18.3 (15.6) | 9.8 (10.3) | 15.0 (19.1) | 17.6 (37.3) | 9.2 * (11.6) | 9.0 (14.1) | 0.001 |
p value | 0.033 | 0.120 | 0.354 | 0.372 | 0.837 | 1.000 | |
Angiopoietin-1 (pg/mL) | |||||||
Lin− group | 1159 (1211) | 3714 (3135) | 3165 * (3999) | 2539 (4839) | 1122 (2958) | 1502 (1637) | 0.03 |
Control group | 2868 (2529) | 1965 * (1454) | 2450 (3172) | 3799 (5003) | 1437 * (2314) | 1783 (2022) | 0.005 |
p value | 0.012 | 0.060 | 0.147 | 0.537 | 1.000 | 1.000 | |
HGF (pg/mL) | |||||||
Lin− group | 182 (178) | 170 * (136) | 141 * (61) | 130 * (103) | 112 * (40) | 105 * (58) | 0.00001 |
Control group | 310 (556) | 214 * (250) | 151 * (136) | 124 * (108) | 93 * (59) | 86 * (46) | 0.00001 |
p value | 0.168 | 0.560 | 0.918 | 0.472 | 0.515 | 0.051 | |
IGFBP-1 (pg/mL) | |||||||
Lin− group | 29542 (15747) | 8945 * (20426) | 4146 * (13070) | 20443 (17910) | 21248 (25772) | 21570 (22494) | 0.001 |
Control group | 13817 (20845) | 13062 (15269) | 11479 (17643) | 13507 (12931) | 10491 (8228) | 11120 (10802) | 0.54 |
p value | 0.023 | 1.000 | 0.354 | 0.215 | 0.256 | 0.147 | |
Endoglin (pg/mL) | |||||||
Lin− group | 903 (702) | 849 * (707) | 835 * (590) | 965 (814) | 842 (528) | 1018 (589) | 0.0003 |
Control group | 1256 (553) | 1191 (565) | 1108 * (366) | 1185 * (295) | 1176 (394) | 1282 (427) | 0.03 |
p value | 0.056 | 0.056 | 0.025 | 0.103 | 0.010 | 0.040 | |
PDGF-AA (pg/mL) | |||||||
Lin− group | 119 (162) | 300 * (439) | 291 * (361) | 266 (383) | 116 (325) | 138 (179) | 0.02 |
Control group | 248 (277) | 165 (125) | 211 (206) | 296 (344) | 166 (252) | 150 (227) | 0.11 |
p value | 0.033 | 0.096 | 0.104 | 0.810 | 0.706 | 0.946 | |
Tie-2 (pg/mL) | |||||||
Lin− group | 283 (289) | 416 (969) | 440 (725) | 413 (290) | 307 (218) | 290 (324) | 0.10 |
Control group | 467 (472) | 387 (512) | 400 (207) | 495 (906) | 296 (415) | 318 (323) | 0.05 |
p value | 0.096 | 0.918 | 0.864 | 0.190 | 0.758 | 0.354 | |
Endothelin1 (pg/mL) | |||||||
Lin− group | 5.3 (8.4) | 4.7 (7.5) | 5.9 (7.2) | 5.9 (8.3) | 5.3 (8.5) | 6.6 (6.9) | 0.30 |
Control group | 6.8 (3.9) | 5.9 (4.0) | 5.9 (4.9) | 6.3 (6.8) | 6.8 (4.4) | 6.8 (4.1) | 0.19 |
p value | 0.784 | 0.973 | 0.707 | 0.707 | 0.918 | 0.784 | |
bFGF (pg/mL) | |||||||
Lin− group | 51 (64) | 144 * (147) | 110 * (130) | 90 (125) | 50 (74) | 61 (46) | 0.04 |
Control group | 88 (61) | 70 * (51) | 81 * (78) | 104 (92) | 76 * (46) | 65 * (63) | 0.004 |
p value | 0.051 | 0.157 | 0.056 | 0.784 | 0.656 | 0.973 |
The Differences between Following Time Points and Day 0 (Baseline) | |||||
---|---|---|---|---|---|
Groups | 2nd Day | 4th Day | 7th Day | 1st Month | 3rd Month |
BDNF (pg/mL) | |||||
Lin− group | 1506 | 940 | 267 | 325 | 221 |
Control group | −987 | −824 | −795 | −1167 | −1157 |
p value | 0.011 | 0.004 | 0.391 | 0.111 | 0.077 |
GDNF (pg/mL) | |||||
Lin− group | 0 | 0 | 0 | 0 | 0 |
Control group | 0 | 0 | 0 | 0 | 0 |
p value | 0.945 | 0.336 | 0.706 | 0.758 | 0.732 |
VEGF (pg/mL) | |||||
Lin− group | 4.91 | 6.02 * | 3.08 | −0.05 | −0.23 |
Control group | −7.84 | −0.72 | −1.22 | −7.04 * | −4.69 |
p value | 0.019 | 0.025 | 0.837 | 0.066 | 0.111 |
Angiopietin-1 (pg/mL) | |||||
Lin− group | 1978 | 1540 * | 655 | 495 | 402 |
Control group | −853 * | −238 | 4.5 | −887 * | −1419 |
p value | 0.010 | 0.003 | 0.515 | 0.066 | 0.043 |
HGF (pg/mL) | |||||
Lin− group | −25.5 | −46 * | −72 * | −64.1 * | −81.6 * |
Control group | −94.5 | −178.5 * | −219.5 * | −251.5 * | −271 * |
p value | 0.302 | 0.036 | 0.071 | 0.077 | 0.036 |
IGFBP-1 (pg/mL) | |||||
Lin− group | −16545 * | −20303 * | −7312 | −8166 | −11815 |
Control group | −1625 | −2421 | 947 | −1481 | −1823 |
p value | 0.027 | 0.030 | 0.319 | 0.319 | 0.515 |
Endoglin (pg/mL) | |||||
Lin− group | −99.5 * | −165 * | −80 | −92.5 | −58.5 |
Control group | −140.5 | −198.5 * | −156 * | −92.5 | −91 |
p value | 0.973 | 0.837 | 0.515 | 0.784 | 0.493 |
PDGF-AA (pg/mL) | |||||
Lin− group | 179.5 * | 149.7 * | 56.8 | 50.2 | 43.5 |
Control group | −56.3 | 6.5 | 14.5 | −68.9 | −133.1 |
p value | 0.025 | 0.006 | 0.319 | 0.286 | 0.036 |
Tie-2 (pg/mL) | |||||
Lin− group | 136.5 | 141 | 2.9 | 19 | −9.9 |
Control group | −23 | −52.5 | 61.5 | −146.5 | −157 |
p value | 0.179 | 0.036 | 0.493 | 0.319 | 0.286 |
Endothelin1 (pg/mL) | |||||
Lin− group | 0 | 0 | 0 | 0 | 0.83 |
Control group | −0.96 | −0.24 | −0.51 | 0 | −0.72 |
p value | 0.256 | 0.537 | 0.271 | 0.451 | 0.120 |
bFGF (pg/mL) | |||||
Lin− group | 55.3 * | 53.3 * | 14.9 | 12.5 | 16.8 |
Control group | −24.6 * | −12.4 * | −3 | −29.5 * | −43.6 * |
p value | 0.006 | ≤0.001 | 0.372 | 0.030 | 0.036 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumert, B.; Przybycień, K.; Paczkowska, E.; Kotowski, M.; Pius-Sadowska, E.; Safranow, K.; Peregud-Pogorzelski, J.; Kornacewicz-Jach, Z.; Peregud-Pogorzelska, M.; Machaliński, B. Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction. Int. J. Mol. Sci. 2019, 20, 3330. https://doi.org/10.3390/ijms20133330
Baumert B, Przybycień K, Paczkowska E, Kotowski M, Pius-Sadowska E, Safranow K, Peregud-Pogorzelski J, Kornacewicz-Jach Z, Peregud-Pogorzelska M, Machaliński B. Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction. International Journal of Molecular Sciences. 2019; 20(13):3330. https://doi.org/10.3390/ijms20133330
Chicago/Turabian StyleBaumert, Bartłomiej, Krzysztof Przybycień, Edyta Paczkowska, Maciej Kotowski, Ewa Pius-Sadowska, Krzysztof Safranow, Jarosław Peregud-Pogorzelski, Zdzisława Kornacewicz-Jach, Małgorzata Peregud-Pogorzelska, and Bogusław Machaliński. 2019. "Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction" International Journal of Molecular Sciences 20, no. 13: 3330. https://doi.org/10.3390/ijms20133330
APA StyleBaumert, B., Przybycień, K., Paczkowska, E., Kotowski, M., Pius-Sadowska, E., Safranow, K., Peregud-Pogorzelski, J., Kornacewicz-Jach, Z., Peregud-Pogorzelska, M., & Machaliński, B. (2019). Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction. International Journal of Molecular Sciences, 20(13), 3330. https://doi.org/10.3390/ijms20133330