Application of the Scorpion Neurotoxin AaIT against Insect Pests
Abstract
:1. Introduction
2. AaIT Recombinant Baculovirus Insecticides
3. AaIT Recombinant Fungal Insecticides
4. AaIT Transgenic Plants
5. Other Application in Insecticide Development
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AaIT | Androctonus australis Hector insect toxin |
GNA | Galanthus nivalis agglutinin |
NPV | nuclear polyhedrosis virus (or nucleopolyhedrovirus) |
AcNPV | Autographa californica (multiecupsid) nuclear polyhedrosis virus |
HzNPV | Heliothis zea nuclear polyhedrosis virus |
HasNPV | Heliothis armigera single-nucleocapsid nuclear polyhedrosis virus |
CIV | Chilo iridescent virus |
References
- Oliveira, C.M.; Auad, A.M.; Frizzas, M.R.; Mendes, S.M. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop. Prot. 2014, 56, 50–54. [Google Scholar] [CrossRef]
- Grillet, M.E.; Hernandez-Villena, J.V.; Llewellyn, M.S.; Paniz-Mondolfi, A.E.; Tami, A.; Vincenti-Gonzalez, M.F.; Marquez, M.; Mogollon-Mendoza, A.C.; Hernandez-Pereira, C.E.; Plaza-Morr, J.D.; et al. Venezuela’s humanitarian crisis, resurgence of vector-borne diseases, and implications for spillover in the region. Lancet Infect. Dis. 2019, 19, e149–e161. [Google Scholar] [CrossRef]
- Nkya, T.E.; Akhouayri, I.; Kisinza, W.; David, J.-P. Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect Biochem. Mol. Boil. 2013, 43, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, S.; Huang, Q.; Wei, H.; Zhou, L.; Yao, L.; Li, D.; Wu, S.; Chen, J.; Peng, H. Beauveria bassiana infection reduces the vectorial capacity of Aedes albopictus for the Zika virus. J. Pest Sci. 2019, 92, 781–789. [Google Scholar] [CrossRef]
- Scott, J.G. Evolution of resistance to pyrethroid insecticides in Musca domestica. Pest Manag. Sci. 2017, 73, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Tuck, S.; Furey, A.; Crooks, S.; Danaher, M. A review of methodology for the analysis of pyrethrin and pyrethroid residues in food of animal origin. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 911–940. [Google Scholar] [CrossRef] [PubMed]
- Knauer, K.; Homazava, N.; Junghans, M.; Werner, I. The influence of particles on bioavailability and toxicity of pesticides in surface water. Integr. Environ. Assess. Manag. 2017, 13, 585–600. [Google Scholar] [CrossRef]
- Ono, C.; Okamoto, T.; Abe, T.; Matsuura, Y. Baculovirus as a Tool for Gene Delivery and Gene Therapy. Viruses 2018, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, A. Biopesticides: Present Status and the Future Prospects. J. Fertil. Pestic. 2015, 6, 1–2. [Google Scholar] [CrossRef]
- Haase, S.; Sciocco-Cap, A.; Romanowski, V. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives. Viruses 2015, 7, 2230–2267. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S. Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements. Annu. Rev. Entomol. 2017, 62, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Strategies for Enhanced Crop Resistance to Insect Pests. Annu. Rev. Plant Boil. 2018, 69, 637–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlotkin, E.; Rochat, H.; Kopeyan; Miranda, F.; Lissitzky, S. Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie 1971, 53, 1073–1078. [Google Scholar] [CrossRef]
- Li, H.; Xia, Y. Improving the secretory expression of active recombinant AaIT in Pichia pastoris by changing the expression strain and plasmid. World J. Microbiol. Biotechnol. 2018, 34, 104. [Google Scholar] [CrossRef] [PubMed]
- Darbon, H.; Zlotkin, E.; Kopeyan, C.; Van Rietschoten, J.; Rochat, H. Covalent structure of the insect toxin of the North African scorpion Androctonus australis Hector. Int. J. Pept. Protein Res. 1982, 20, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.W.; Xu, J.P.; Wei, L.U.; Wang, J.; Cao, X.; Meng, X.L. Expression and Functional Analysis of a Recombinant Scorpion Neurototoxin AaIT. Wuhan Univ. J. 2005, 51, 727–732. [Google Scholar]
- Deng, S.Q.; Deng, M.Z.; Chen, J.T.; Zheng, L.L.; Peng, H.J. Larvicidal activity of recombinant Escherichia coli expressing scorpion neurotoxin AaIT or B.t.i toxin Cyt2Ba against mosquito larvae and formulations for enhancing the effects. J. South. Med. Univ. 2017, 37, 750–754. [Google Scholar]
- Ji, S.J.; Liu, F.; Li, E.Q.; Zhu, Y.X. Recombinant scorpion insectotoxin AaIT kills specifically insect cells but not human cells. Cell Res. 2002, 12, 143–150. [Google Scholar] [CrossRef]
- Maeda, S.; Volrath, S.L.; Hanzlik, T.N.; Harper, S.; Majima, K.; Maddox, D.W.; Hammock, B.D.; Fowler, E. Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology 1991, 184, 777–780. [Google Scholar] [CrossRef]
- Zlotkin, E.; Kadouri, D.; Gordon, D.; Pelhate, M.; Martin, M.; Rochat, H. An excitatory and a depressant insect toxin from scorpion venom both affect sodium conductance and possess a common binding site. Arch. Biochem. Biophys. 1985, 240, 877–887. [Google Scholar] [CrossRef]
- Vassilevski, A.A.; Kozlov, S.A.; Grishin, E.V. Molecular diversity of spider venom. Biochemistry 2009, 74, 1505–1534. [Google Scholar] [CrossRef] [PubMed]
- Zlotkin, E. AaIT: From neurotoxin to insecticide. Biochimie 2000, 82, 869–881. [Google Scholar] [CrossRef]
- Liu, S.M.; Li, J.; Zhu, J.Q.; Wang, X.W.; Wang, C.S.; Liu, S.S.; Chen, X.X.; Li, S. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests. Insect Sci. 2016, 23, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Leger, R.J.S. A scorpion neurotoxin increases the potency of a fungal insecticide. Nat. Biotechnol. 2007, 25, 1455–1456. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.J.R.; Nusawardani, T.; Bonning, B.C. Introduction to the Use of Baculoviruses as Biological Insecticides. Methods Mol. Biol. 2016, 1350, 383–392. [Google Scholar]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect Pathogens as Biological Control Agents: Do They Have a Future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.; Grzywacz, D.; Shapiro-Ilan, D.; Frutos, R.; Brownbridge, M.; Goettel, M. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moscardi, F. Assessment of the application of baculoviruses for control of lepidoptera. Annu. Rev. Entomol. 1999, 44, 257–289. [Google Scholar] [CrossRef] [PubMed]
- Buerger, P.; Hauxwell, C.; Murray, D. Nucleopolyhedrovirus introduction in Australia. Virol. Sin. 2007, 22, 173–179. [Google Scholar] [CrossRef]
- Ashour, M.-B.; Ragheb, D.A.; El-Sheikh, E.-S.A.; Gomaa, E.-A.A.; Kamita, S.G.; Hammock, B.D.; El-Sheikh, E.-S.; Gomaa, E.-A. Biosafety of Recombinant and Wild Type Nucleopolyhedroviruses as Bioinsecticides. Int. J. Environ. Res. Public Health 2007, 4, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, L.F.; Miller, L.K. Baculovirus interaction with nontarget organisms: A virus-borne reporter gene is not expressed in two mammalian cell lines. Appl. Environ. Microbiol. 1987, 53, 1412–1417. [Google Scholar] [PubMed]
- Kamita, S.; Kang, K.-D.; Hammock, B.; Inceoglu, A. Genetically Modified Baculoviruses for Pest Insect Control. Compr. Mol. Insect Sci. 2005, 6, 271–322. [Google Scholar]
- Elazar, M.; Levi, R.; Zlotkin, E. Targeting of an expressed neurotoxin by its recombinant baculovirus. J. Exp. Boil. 2001, 204, 2637–2645. [Google Scholar]
- McCutchen, B.F.; Choudary, P.V.; Crenshaw, R.; Maddox, D.; Kamita, S.G.; Palekar, N.; Volrath, S.; Fowler, E.; Hammock, B.D.; Maeda, S. Development of a Recombinant Baculovirus Expressing an Insect-Selective Neurotoxin: Potential for Pest Control. Nat. Biotechnol. 1991, 9, 848–852. [Google Scholar] [CrossRef]
- McCutchen, B.F.; Hoover, K.; Preisler, H.K.; Betana, M.D.; Herrmann, R.; Robertson, J.L.; Hammock, B.D. Interactions of Recombinant and Wild-Type Baculoviruses with Classical Insecticides and Pyrethroid-Resistant Tobacco Budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 1997, 90, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Treacy, M.F.; All, J.N. Impact of insect-specific AaHIT gene insertion on inherent bioactivity of Baculovirus against tobacco budworm, Heliothis virescens, and cabbage looper, Trichoplusia ni. In Proceedings of the 1996 Beltwide Cotton Conferences, Nashville, TN, USA, 9–12 January 1996. [Google Scholar]
- All, J.N.; Treacy, M.F. Improved control of Heliothis virescens and Helicoverpa zea with a recombinant form of Autographa californica nuclear polyhedrosis virus and interaction with Bollgard cotton. In Proceedings of the 1997 Beltwide Cotton Conferences, New Orleans, LA, USA, 6–10 January 1997. [Google Scholar]
- Regev, A.; Rivkin, H.; Gurevitz, M.; Chejanovsky, N. New measures of insecticidal efficacy and safety obtained with the 39K promoter of a recombinant baculovirus. FEBS Lett. 2006, 580, 6777–6782. [Google Scholar] [CrossRef] [PubMed]
- Treacy, M.F.; Rensner, P.E.; All, J.N. Comparative Insecticidal Properties of Two Nucleopolyhedrovirus Vectors Encoding a Similar Toxin Gene Chimer. J. Econ. Entomol. 2000, 93, 1096–1104. [Google Scholar] [CrossRef]
- Shim, H.J.; Choi, J.Y.; Li, M.S.; Wang, Y.; Roh, J.Y.; Woo, S.-D.; Jin, B.R.; Je, Y.H. A novel recombinant baculovirus expressing insect neurotoxin and producing occlusion bodies that contain Bacillus thuringiensis Cry toxin. J. Asia Pac. Entomol. 2009, 12, 217–220. [Google Scholar] [CrossRef]
- Shim, H.J.; Choi, J.Y.; Wang, Y.; Tao, X.Y.; Liu, Q.; Roh, J.Y.; Kim, J.S.; Kim, W.J.; Woo, S.D.; Jin, B.R.; et al. NeuroBactrus, a Novel, Highly Effective, and Environmentally Friendly Recombinant Baculovirus Insecticide. Appl. Environ. Microbiol. 2013, 79, 141–149. [Google Scholar] [CrossRef]
- Xu, Y.L.; Fan, H.; Xia, L.; Wang, L.L.; Zhang, T.; Qin, L. The Virulence of Recombinant AcMNPV-AaIT against Spodoptera exigua. Liaoning Agric. Sci. 2004, 2, 10–12. [Google Scholar]
- Qin, L.; Zhang, T.; Liu, Y.Q.; Hirohisa, K.; Nakai, M. Fluorescent Brightener 28 Promoting AcMNPV Infection to Spodoptera exigua. Chin. J. Biol. Control 2002, 18, 43–44. [Google Scholar]
- Wang, L.L.; Li, J.; Zhang, T.; Qin, L. Substances enhancing infection of AcMNPV-AalT. Chin. Bull. Entomol. 2007, 44, 382–384. [Google Scholar]
- Chen, X.; Sun, X.; Hu, Z.; Li, M.; O’Reilly, D.R.; Zuidema, D.; Vlak, J.M. Genetic Engineering of Helicoverpa armigera Single-Nucleocapsid Nucleopolyhedrovirus as an Improved Pesticide. J. Invertebr. Pathol. 2000, 76, 140–146. [Google Scholar] [CrossRef]
- Sun, X.; Chen, X.; Zhang, Z.; Wang, H.; Bianchi, F.J.; Peng, H.; Vlak, J.M.; Hu, Z. Bollworm responses to release of genetically modified Helicoverpa armigera nucleopolyhedroviruses in cotton. J. Invertebr. Pathol. 2002, 81, 63–69. [Google Scholar] [CrossRef]
- Georgievska, L.; Joosten, N.; Hoover, K.; Cory, J.S.; Vlak, J.M.; Van Der Werf, W. Effects of single and mixed infections with wild type and genetically modified Helicoverpa armigera nucleopolyhedrovirus on movement behaviour of cotton bollworm larvae. Entomol. Exp. Appl. 2010, 135, 56–67. [Google Scholar] [CrossRef]
- Sun, X.; Wu, D.; Sun, X.; Jin, L.; Ma, Y.; Bonning, B.C.; Peng, H.; Hu, Z. Impact of Helicoverpa armigera nucleopolyhedroviruses expressing a cathepsin L-like protease on target and nontarget insect species on cotton. Biol. Control 2009, 49, 77–83. [Google Scholar] [CrossRef]
- Sun, X.; Sun, X.; Bai, B.; Van Der Werf, W.; Vlak, J.M.; Hu, Z. Production of polyhedral inclusion bodies from Helicoverpa armigera larvae infected with wild-type and recombinant HaSNPV. Biocontrol Sci. Technol. 2005, 15, 353–366. [Google Scholar] [CrossRef]
- Sun, X.L.; Wang, H.L.; Sun, X.C.; Chen, X.W.; Peng, C.M.; Pan, D.M.; Jehle, J.A.; Van Der Werf, W.; Vlak, J.M.; Hu, Z.H. Biological activity and field efficacy of a genetically modified Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus expressing an insect-selective toxin from a chimeric promoter. Biol. Control 2004, 29, 124–137. [Google Scholar] [CrossRef]
- Yao, B.; Pang, Y.; Fan, Y.; Zhao, R.; Yang, Y.; Wang, T. Construction of an insecticidal baculovirus expressing insect-specific neurotoxin AaIT. Sci. China Ser. C Life Sci. 1996, 39, 199–206. [Google Scholar]
- Heinz, K.M.; McCutchen, B.F.; Herhmann, R.; Pahhella, M.P.; Hammocki, B.D. Direct Effects of Recombinant Nuclear Polyhedrosis Viruses on Selected Nontarget Organisms. J. Econ. Entomol. 1995, 88, 259–264. [Google Scholar] [CrossRef]
- Fuxa, J.R.; Richter, A.R.; Ameen, A.O.; Hammock, B.D. Vertical transmission of TnSNPV, TnCPV, AcMNPV, and possibly recombinant NPV in Trichoplusia ni. J. Invertebr. Pathol. 2002, 79, 44–50. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, X.; Sun, X.; Vlak, J.M.; Hu, Z.; Van Der Werf, W. Horizontal and vertical transmission of wild-type and recombinant Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus. J. Invertebr. Pathol. 2005, 89, 165–175. [Google Scholar] [CrossRef]
- Blanford, S.; Chan, B.H.K.; Jenkins, N.; Sim, D.; Turner, R.J.; Read, A.F.; Thomas, M.B. Fungal Pathogen Reduces Potential for Malaria Transmission. Science 2005, 308, 1638–1641. [Google Scholar] [CrossRef]
- Wei, G.; Lai, Y.; Wang, G.; Chen, H.; Li, F.; Wang, S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. USA 2017, 114, 5994–5999. [Google Scholar] [CrossRef] [Green Version]
- Pava-Ripoll, M.; Posada, F.J.; Momen, B.; Wang, C.; Leger, R.S. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J. Invertebr. Pathol. 2008, 99, 220–226. [Google Scholar] [CrossRef]
- Deng, S.-Q.; Cai, Q.-D.; Deng, M.-Z.; Huang, Q.; Peng, H.-J. Scorpion neurotoxin AaIT-expressing Beauveria bassiana enhances the virulence against Aedes albopictus mosquitoes. AMB Express 2017, 7, 121. [Google Scholar] [CrossRef]
- Lu, D.; Pava-Ripoll, M.; Li, Z.; Wang, C. Insecticidal evaluation of Beauveria bassiana engineered to express a scorpion neurotoxin and a cuticle degrading protease. Appl. Microbiol. Biotechnol. 2008, 81, 515–522. [Google Scholar] [CrossRef]
- Bilgo, E.; Lovett, B.; Fang, W.; Bende, N.; King, G.F.; Diabate, A.; Leger, R.J.S. Improved efficacy of an arthropod toxin expressing fungus against insecticide-resistant malaria-vector mosquitoes. Sci. Rep. 2017, 7, 3433. [Google Scholar] [CrossRef]
- Anderson, J.A.; Ellsworth, P.C.; Faria, J.C.; Head, G.P.; Owen, M.D.K.; Pilcher, C.D.; Shelton, A.M.; Meissle, M. Genetically Engineered Crops: Importance of Diversified Integrated Pest Management for Agricultural Sustainability. Front. Bioeng. Biotechnol. 2019, 7, 24. [Google Scholar] [CrossRef]
- Bisht, D.S.; Bhatia, V.; Bhattacharya, R. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing. Semin. Cell Dev. Biol. 2019. [Google Scholar] [CrossRef]
- Liu, Q.; Hallerman, E.; Peng, Y.; Li, Y. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control. Int. J. Mol. Sci. 2016, 17, 1561. [Google Scholar] [CrossRef]
- Yao, B.; Fan, Y.L.; Zeng, Q.; Zhao, R.M. Insect-resistant Tabacco Plants Expressing Insect-specific Neurotoxin AaIT. Chin. J. Biotechnol. 1996, 12, 113–118. [Google Scholar]
- Wu, N.F.; Sun, Q.; Yao, B.; Fan, Y.L.; Rao, H.Y.; Huang, M.R.; Wang, M.X. Insect-resistant transgenic poplar expressing AaIT gene. Sheng Wu Gong Cheng Xue Bao 2000, 16, 129–133. [Google Scholar]
- Dizman, Y.A.; Muratoglu, H.; Sandalli, C.; Nalcacioglu, R.; Demirbag, Z. Chilo iridescent virus (CIV) ORF 012L encodes a protein with both exonuclease and endonuclease functions. Arch. Virol. 2016, 161, 3029–3037. [Google Scholar] [CrossRef]
- Williams, T.; Barbosa-Solomieu, V.; Chinchar, V.G. A Decade of Advances in Iridovirus Research. Adv. Virus Res. 2005, 65, 173–248. [Google Scholar]
- Nalcacioglu, R.; Muratoglu, H.; Yesilyurt, A.; Van Oers, M.M.; Vlak, J.M.; Demirbag, Z. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin. J. Invertebr. Pathol. 2016, 138, 104–111. [Google Scholar] [CrossRef]
- Li, H.B.; Xia, Y.X. High expression and rapid purification of recombinant scorpion anti-insect neurotoxin AaIT. World J. Microbiol. Biotechnol. 2009, 25, 1251–1257. [Google Scholar] [CrossRef]
- Roh, J.Y.; Shim, H.J.; Boo, K.S.; Je, Y.H.; Choi, J.Y.; Li, M.S.; Chang, J.H.; Shin, S.C. Expression of a Fusion Protein with Cry1Ac Protein and a Scorpion Insect Toxin in Acrystalliferous Bacillus thuringiensis Strain. Int. J. Ind. Entomol. 2004, 8, 89–93. [Google Scholar]
Protein | Amino Acids (70) |
---|---|
AaIT | KKNGYAVDSSGKAPECLLSNYCNNQCTCVHYADK GYCCLLSCYCFGLNDDKKVLEISDTRKSYCDTTIIN |
Category | New Strain Expressing AaIT | Test Insects | References |
---|---|---|---|
Recombinant baculovirus | Bombyx mori NPV-AaIT | Bombyx mori larvae | [19,33] |
Autographa californica NPV-AaIT | Heliothis virescens, Heliothis zea, Spodoptera exigua, Trichoplusia ni, and Pseudaletia separate larvae. | [34,35,36,37,38,39] | |
Heliothi zea NPV-AaIT | Heliothis virescens, and Heliothis zea larvae | [39] | |
Helicoverpa armigera single-nucleocapsid NPV-AaIT | Helicoverpa armigera larvae | [45,46,47,48,49,50] | |
Trichoplusia ni NPV-AaIT | Trichoplusia ni larvae | [51] | |
Autographa californica NPV-AaIT-Cry1–5 | Plutella xylostella and Spodoptera exigua larvae | [40,41] | |
Recombinant fungus | Metarhizium anisopliae-AaIT | Manduca sexta caterpillars larvae, Aedes aegypti adults and Hypothenemus hampei larvae | [24,57] |
Beauveria bassianae-AaIT | Dendrolimus punctatus and Galleria mellonella larvae, Aedes albopictus larvae and adults | [58,59] | |
Beauveria bassianae-AaIT-PR1A# | Dendrolimus punctatus and Galleria mellonella larvae | [59] | |
Metarhizium pingshaense-AaIT | Anopheles gambiae larvae | [60] | |
Metarhizium pingshaense-AaIT-Hybrid | Anopheles gambiae larvae | [60] | |
Transgenic plant | hybrid poplars (P. deltoides × P. simonii)-AaIT | Lymantria dispar larvae | [65] |
Arabidopsis-AaIT | Helicoverpa armigera larvae | [23] | |
tobacco-AaIT | Helicoverpa armigera larvae, Bemisia tabaci, and Nilaparvata lugens | [23,64] | |
rice-AaIT | Bemisia tabaci, and Nilaparvata lugens | [23] | |
Arabidopsis-AaIT-GNA (Galanthus nivalis agglutinin) | Helicoverpa armigera larvae | [23] | |
tobacco-AaIT-GNA | Helicoverpa armigera larvae, Bemisia tabaci, and Nilaparvata lugens | [23] | |
rice-AaIT-GNA | Bemisia tabaci, and Nilaparvata lugens | [23] | |
Recombinat Chilo iridescent virus | Chilo iridescent virus-AaIT | Galleria mellonella larvae | [66] |
Recombinant Bacillus thuringiensis | Bacillus thuringiensis-AaIT-Cry1Ac | Plutella xylostella larvae | [70] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.-Q.; Chen, J.-T.; Li, W.-W.; Chen, M.; Peng, H.-J. Application of the Scorpion Neurotoxin AaIT against Insect Pests. Int. J. Mol. Sci. 2019, 20, 3467. https://doi.org/10.3390/ijms20143467
Deng S-Q, Chen J-T, Li W-W, Chen M, Peng H-J. Application of the Scorpion Neurotoxin AaIT against Insect Pests. International Journal of Molecular Sciences. 2019; 20(14):3467. https://doi.org/10.3390/ijms20143467
Chicago/Turabian StyleDeng, Sheng-Qun, Jia-Ting Chen, Wen-Wen Li, Min Chen, and Hong-Juan Peng. 2019. "Application of the Scorpion Neurotoxin AaIT against Insect Pests" International Journal of Molecular Sciences 20, no. 14: 3467. https://doi.org/10.3390/ijms20143467
APA StyleDeng, S. -Q., Chen, J. -T., Li, W. -W., Chen, M., & Peng, H. -J. (2019). Application of the Scorpion Neurotoxin AaIT against Insect Pests. International Journal of Molecular Sciences, 20(14), 3467. https://doi.org/10.3390/ijms20143467