Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders
Abstract
:1. Introduction
2. Structure and Pharmacology of Voltage-Gated Calcium Channels
2.1. CaVα1 Subunits
2.2. CaV Auxiliary Subunits, CaVα2δ and CaVβ
2.2.1. CaVα2δ Subunits
2.2.2. CaVβ Subunits
3. General Function of Voltage-Gated Calcium Channels and Auxiliary Subunits
3.1. CaVα1 Subunits
3.2. CaVα2δ Subunits
3.3. CaVβ Subunits
4. Genetic Analysis and Tools to Study Psychiatric Disorders
4.1. Genetic Strategies to Study Psychiatric Disorders
4.1.1. Linkage Studies
4.1.2. Linkage-Disequilibrium Studies
4.1.3. Association Studies
4.2. Tools to Identify and Analyze Genetic Variations Associated with Psychiatric Disorders
4.2.1. Next Generation Sequencing (NGS)
4.2.2. Microarrays
4.2.3. Gene Network Analysis
4.2.4. Endophenotypes
4.2.5. Computational Psychiatry
5. Genetic Associations between CaV Genes and Psychiatric Disorders
5.1. CaV1.2
5.2. CaV1.3
5.3. CaV2.1
5.4. CaV2.2
5.5. CaV2.3
5.6. CaV3.1
5.7. CaV3.2
5.8. CaV3.3
6. Genetic Associations between Auxiliary Subunit Genes CACNA2D (CaVα2δ) and CACNB (CaVβ) and Psychiatric Disorders
6.1. CaVα2δ-1
6.2. CaVα2δ-2
6.3. CaVα2δ-3
6.4. CaVα2δ-4
6.5. CaVβ1
6.6. CaVβ2
6.7. CaVβ3
6.8. CaVβ4
7. CaV Modulators for the Treatment of Psychiatric Disorders
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nanou, E.; Catterall, W.A. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 2018, 98, 466–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolphin, A.C. Calcium channel diversity: Multiple roles of calcium channel subunits. Curr. Opin. Neurobiol. 2009, 19, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Felix, R.; Calderón-Rivera, A.; Andrade, A. Regulation of high-voltage-activated Ca2+ channel function, trafficking, and membrane stability by auxiliary subunits. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2013, 2, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.F.; Lutz, C.M.; O’Sullivan, T.N.; Shaughnessy, J.D.; Hawkes, R.; Frankel, W.N.; Copeland, N.G.; Jenkins, N.A. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 1996, 87, 607–617. [Google Scholar] [CrossRef]
- Burgess, D.L.; Jones, J.M.; Meisler, M.H.; Noebels, J.L. Mutation of the Ca2+ channel β subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 1997, 88, 385–392. [Google Scholar] [CrossRef]
- Lorenzon, N.M.; Lutz, C.M.; Frankel, W.N.; Beam, K.G. Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J. Neurosci. 1998, 18, 4482–4489. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Jun, K.; Lee, T.; Kim, S.-S.; McEnery, M.W.; Chin, H.; Kim, H.-L.; Park, J.M.; Kim, D.K.; Jung, S.J. Altered nociceptive response in mice deficient in the α1B subunit of the voltage-dependent calcium channel. Mol. Cell Neurosci. 2001, 18, 235–245. [Google Scholar] [CrossRef]
- Barclay, J.; Balaguero, N.; Mione, M.; Ackerman, S.L.; Letts, V.A.; Brodbeck, J.; Canti, C.; Meir, A.; Page, K.M.; Kusumi, K.; et al. Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the Cacna2d2 Gene and Decreased Calcium Channel Current in Cerebellar Purkinje. Cells. J. Neurosci. 2001, 21, 6095–6104. [Google Scholar] [CrossRef]
- Surmeier, D.J. Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol. 2007, 6, 933–938. [Google Scholar] [CrossRef]
- Pietrobon, D. Calcium channels and migraine. Biochim. Biophys. Acta 2013, 1828, 1655–1665. [Google Scholar] [CrossRef]
- Bourinet, E.; Francois, A.; Laffray, S. T-type calcium channels in neuropathic pain. Pain 2016, 157 (Suppl. 1), S15–S22. [Google Scholar] [CrossRef]
- Rajakulendran, S.; Hanna, M.G. The Role of Calcium Channels in Epilepsy. Cold Spring Harb. Perspect Med. 2016, 6, a022723. [Google Scholar] [CrossRef]
- Striessnig, J. Voltage-gated calcium channels-from basic mechanisms to disease. J. Physiol. 2016, 594, 5817–5821. [Google Scholar] [CrossRef] [PubMed]
- Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 2016, 15, 19–34. [Google Scholar] [CrossRef]
- Celli, R.; Santolini, I.; Guiducci, M.; van Luijtelaar, G.; Parisi, P.; Striano, P.; Gradini, R.; Battaglia, G.; Ngomba, R.T.; Nicoletti, F. The α2δ Subunit and Absence Epilepsy: Beyond Calcium Channels. Curr. Neuropharmacol. 2017, 15, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Heyes, S.; Pratt, W.S.; Rees, E.; Dahimene, S.; Ferron, L.; Owen, M.J.; Dolphin, A.C. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog. Neurobiol. 2015, 134, 36–54. [Google Scholar] [CrossRef] [Green Version]
- Buraei, Z.; Yang, J. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. Biochim. Biophys. Acta 2013, 1828, 1530–1540. [Google Scholar] [CrossRef]
- Dolphin, A.C. The α2δ subunits of voltage-gated calcium channels. Biochim. Biophys. Acta 2013, 1828, 1541–1549. [Google Scholar] [CrossRef]
- Dolphin, A.C. Voltage-gated calcium channels and their auxiliary subunits: Physiology and pathophysiology and pharmacology. J. Physiol. 2016, 594, 5369–5390. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, A.C. Voltage-gated calcium channel α 2δ subunits: An assessment of proposed novel roles. F1000Research 2018, 7, 1830. [Google Scholar] [CrossRef] [PubMed]
- Geisler, S.; Schöpf, C.L.; Obermair, G.J. Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits. Gen. Physiol. Biophys. 2015, 34, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, F.; Belkacemi, A.; Flockerzi, V. Emerging Alternative Functions for the Auxiliary Subunits of the Voltage-Gated Calcium Channels. Curr. Mol. Pharmacol. 2015, 8, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zwingman, T.A.; Fletcher, C.F. In vivo analysis of voltage-dependent calcium channels. J. Bioenerg. Biomembr. 2003, 35, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Muth, J.N.; Varadi, G.; Schwartz, A. Use of transgenic mice to study voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 2001, 22, 526–532. [Google Scholar] [CrossRef]
- Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol. Rev. 2015, 67, 821–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doering, C.J.; Zamponi, G.W. Molecular pharmacology of high voltage-activated calcium channels. J. Bioenerg. Biomembr. 2003, 35, 491–505. [Google Scholar] [CrossRef]
- Perez-Reyes, E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev. 2003, 83, 117–161. [Google Scholar] [CrossRef]
- Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 2005, 57, 411–425. [Google Scholar] [CrossRef]
- Lewis, R.J.; Dutertre, S.; Vetter, I.; Christie, M.J. Conus venom peptide pharmacology. Pharmacol. Rev. 2012, 64, 259–298. [Google Scholar] [CrossRef]
- Xu, W.; Lipscombe, D. Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 2001, 21, 5944–5951. [Google Scholar] [CrossRef]
- Lipscombe, D.; Andrade, A. Calcium Channel CaVα₁ Splice Isoforms - Tissue Specificity and Drug Action. Curr. Mol. Pharmacol. 2015, 8, 22–31. [Google Scholar] [CrossRef]
- Lipscombe, D.; Andrade, A.; Allen, S.E. Alternative splicing: Functional diversity among voltage-gated calcium channels and behavioral consequences. Biochim. Biophys. Acta 2013, 1828, 1522–1529. [Google Scholar] [CrossRef]
- Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect Biol. 2011, 3, a003947. [Google Scholar] [CrossRef]
- Calderón-Rivera, A.; Andrade, A.; Hernández-Hernández, O.; González-Ramírez, R.; Sandoval, A.; Rivera, M.; Gomora, J.C.; Felix, R. Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca(2+) channel α(2)δ-1 auxiliary subunit. Cell Calcium 2012, 51, 22–30. [Google Scholar] [CrossRef]
- De Jongh, K.S.; Warner, C.; Catterall, W.A. Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. J. Biol. Chem. 1990, 265, 14738–14741. [Google Scholar]
- Davies, A.; Kadurin, I.; Alvarez-Laviada, A.; Douglas, L.; Nieto-Rostro, M.; Bauer, C.S.; Pratt, W.S.; Dolphin, A.C. The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc. Natl. Acad. Sci. USA 2010, 107, 1654–1659. [Google Scholar] [CrossRef]
- Anantharaman, V.; Aravind, L. Cache - a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 2000, 25, 535–537. [Google Scholar] [CrossRef]
- Cantí, C.; Nieto-Rostro, M.; Foucault, I.; Heblich, F.; Wratten, J.; Richards, M.; Hendrich, J.; Douglas, L.; Page, K.; Davies, A.; et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels. Proc. Natl. Acad. Sci. USA 2005, 102, 11230–11235. [Google Scholar] [CrossRef]
- Patel, R.; Dickenson, A.H. Mechanisms of the gabapentinoids and α 2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol. Res. Perspect 2016, 4, e00205. [Google Scholar] [CrossRef]
- Angelotti, T.; Hofmann, F. Tissue-specific expression of splice variants of the mouse voltage-gated calcium channel alpha2/delta subunit. FEBS Lett. 1996, 397, 331–337. [Google Scholar] [CrossRef]
- Lana, B.; Schlick, B.; Martin, S.; Pratt, W.S.; Page, K.M.; Goncalves, L.; Rahman, W.; Dickenson, A.H.; Bauer, C.S.; Dolphin, A.C. Differential upregulation in DRG neurons of an α2δ-1 splice variant with a lower affinity for gabapentin after peripheral sensory nerve injury. Pain 2014, 155, 522–533. [Google Scholar] [CrossRef]
- Chien, A.J.; Carr, K.M.; Shirokov, R.E.; Rios, E.; Hosey, M.M. Identification of palmitoylation sites within the L-type calcium channel beta2a subunit and effects on channel function. J. Biol. Chem. 1996, 271, 26465–26468. [Google Scholar] [CrossRef]
- Neely, A.; Hidalgo, P. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Front. Physiol. 2014, 5, 209. [Google Scholar] [CrossRef]
- Subramanyam, P.; Obermair, G.J.; Baumgartner, S.; Gebhart, M.; Striessnig, J.; Kaufmann, W.A.; Geley, S.; Flucher, B.E. Activity and calcium regulate nuclear targeting of the calcium channel beta4b subunit in nerve and muscle cells. Channels 2009, 3, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yamada, Y.; Fan, M.; Bangaru, S.D.; Lin, B.; Yang, J. The beta subunit of voltage-gated Ca2+ channels interacts with and regulates the activity of a novel isoform of Pax6. J. Biol. Chem. 2010, 285, 2527–2536. [Google Scholar] [CrossRef]
- Xu, X.; Lee, Y.J.; Holm, J.B.; Terry, M.D.; Oswald, R.E.; Horne, W.A. The Ca2+ channel beta4c subunit interacts with heterochromatin protein 1 via a PXVXL binding motif. J. Biol. Chem. 2011, 286, 9677–9687. [Google Scholar] [CrossRef]
- He, L.L.; Zhang, Y.; Chen, Y.H.; Yamada, Y.; Yang, J. Functional modularity of the beta-subunit of voltage-gated Ca2+ channels. Biophys. J. 2007, 93, 834–845. [Google Scholar] [CrossRef]
- McGee, A.W.; Nunziato, D.A.; Maltez, J.M.; Prehoda, K.E.; Pitt, G.S.; Bredt, D.S. Calcium channel function regulated by the SH3-GK module in beta subunits. Neuron 2004, 42, 89–99. [Google Scholar] [CrossRef]
- Van Petegem, F.; Clark, K.A.; Chatelain, F.C.; Minor, D.L. Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 2004, 429, 671–675. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, M.H.; Zhang, Y.; He, L.L.; Yamada, Y.; Fitzmaurice, A.; Shen, Y.; Zhang, H.; Tong, L.; Yang, J. Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature 2004, 429, 675–680. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, G.; Miranda-Laferte, E.; Neely, A.; Hidalgo, P. The Src homology 3 domain of the beta-subunit of voltage-gated calcium channels promotes endocytosis via dynamin interaction. J. Biol. Chem. 2007, 282, 2156–2162. [Google Scholar] [CrossRef]
- Buraei, Z.; Yang, J. The ß subunit of voltage-gated Ca2+ channels. Physiol Rev. 2010, 90, 1461–1506. [Google Scholar] [CrossRef]
- Wu, J.; Yan, Z.; Li, Z.; Yan, C.; Lu, S.; Dong, M.; Yan, N. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 2015, 350, aad2395. [Google Scholar] [CrossRef]
- Mears, D. Regulation of insulin secretion in islets of Langerhans by Ca(2+)channels. J. Membr. Biol. 2004, 200, 57–66. [Google Scholar] [CrossRef]
- Wheeler, D.G.; Groth, R.D.; Ma, H.; Barrett, C.F.; Owen, S.F.; Safa, P.; Tsien, R.W. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 2012, 149, 1112–1124. [Google Scholar] [CrossRef]
- Moreno, C.M.; Dixon, R.E.; Tajada, S.; Yuan, C.; Opitz-Araya, X.; Binder, M.D.; Santana, L.F. Ca(2+) entry into neurons is facilitated by cooperative gating of clustered CaV1.3 channels. Elife 2016, 5, e15744. [Google Scholar] [CrossRef]
- Li, B.; Tadross, M.R.; Tsien, R.W. Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. Science 2016, 351, 863–867. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Chang, J.Y.; Yu, F.; Ko, M.L.; Ko, G.Y. The Contribution of L-Type Cav1.3 Channels to Retinal Light Responses. Front. Mol. Neurosci. 2017, 10, 394. [Google Scholar] [CrossRef]
- Comunanza, V.; Marcantoni, A.; Vandael, D.H.; Mahapatra, S.; Gavello, D.; Carabelli, V.; Carbone, E. CaV1.3 as pacemaker channels in adrenal chromaffin cells: Specific role on exo- and endocytosis. Channels 2010, 4, 440–446. [Google Scholar] [CrossRef]
- Liu, Y.; Harding, M.; Pittman, A.; Dore, J.; Striessnig, J.; Rajadhyaksha, A.; Chen, X. Cav1.2 and Cav1.3 L-type calcium channels regulate dopaminergic firing activity in the mouse ventral tegmental area. J. Neurophysiol. 2014, 112, 1119–1130. [Google Scholar] [CrossRef]
- Vandael, D.H.; Marcantoni, A.; Carbone, E. Cav1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells. Curr Mol. Pharmacol. 2015, 8, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Surmeier, D.J.; Schumacker, P.T.; Guzman, J.D.; Ilijic, E.; Yang, B.; Zampese, E. Calcium and Parkinson’s disease. Biochem. Biophys. Res. Commun. 2017, 483, 1013–1019. [Google Scholar] [CrossRef]
- Brandt, A.; Striessnig, J.; Moser, T. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J. Neurosci. 2003, 23, 10832–10840. [Google Scholar] [CrossRef]
- Mangoni, M.E.; Couette, B.; Bourinet, E.; Platzer, J.; Reimer, D.; Striessnig, J.; Nargeot, J. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 2003, 100, 5543–5548. [Google Scholar] [CrossRef]
- Torrente, A.; Mesirca, P.; Neco, P.; Rizzetto, R.; Dubel, S.; Barrere, C.; Sinegger-Brauns, M.; Striessnig, J.; Richard, S.; Nargeot, J.; et al. L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity. Cardiovasc. Res. 2016, 109, 451–461. [Google Scholar] [CrossRef]
- Lee, A.; Wang, S.; Williams, B.; Hagen, J.; Scheetz, T.E.; Haeseleer, F. Characterization of Cav1.4 complexes (α11.4, β2, and α2δ4) in HEK293T cells and in the retina. J. Biol. Chem. 2015, 290, 1505–1521. [Google Scholar] [CrossRef]
- Waldner, D.M.; Bech-Hansen, N.T.; Stell, W.K. Channeling Vision: CaV1.4-A Critical Link in Retinal Signal Transmission. Biomed. Res. Int. 2018, 2018, 7272630. [Google Scholar] [CrossRef]
- Stanley, E.F. PresyNaptic calcium channels: Why is P selected before N. Biophys. J. 2015, 108, 451–452. [Google Scholar] [CrossRef]
- Stanley, E.F. The Nanophysiology of Fast Transmitter Release. Trends Neurosci. 2016, 39, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Beuckmann, C.T.; Sinton, C.M.; Miyamoto, N.; Ino, M.; Yanagisawa, M. N-type calcium channel alpha1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance state differences. J. Neurosci. 2003, 23, 6793–6797. [Google Scholar] [CrossRef]
- Kim, C.; Jeon, D.; Kim, Y.H.; Lee, C.J.; Kim, H.; Shin, H.S. Deletion of N-type Ca(2+) channel Ca(v)2.2 results in hyperaggressive behaviors in mice. J. Biol. Chem. 2009, 284, 2738–2745. [Google Scholar] [CrossRef]
- Brimblecombe, K.R.; Gracie, C.J.; Platt, N.J.; Cragg, S.J. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains. J. Physiol. 2015, 593, 929–946. [Google Scholar] [CrossRef] [Green Version]
- Lenkey, N.; Kirizs, T.; Holderith, N.; Máté, Z.; Szabó, G.; Vizi, E.S.; Hájos, N.; Nusser, Z. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals. Nat. Commun. 2015, 6, 6557. [Google Scholar] [CrossRef]
- Szabó, G.G.; Lenkey, N.; Holderith, N.; Andrási, T.; Nusser, Z.; Hájos, N. Presynaptic calcium channel inhibition underlies CB₁ cannabinoid receptor-mediated suppression of GABA release. J. Neurosci. 2014, 34, 7958–7963. [Google Scholar] [CrossRef]
- Parajuli, L.K.; Nakajima, C.; Kulik, A.; Matsui, K.; Schneider, T.; Shigemoto, R.; Fukazawa, Y. Quantitative regional and ultrastructural localization of the Ca(v)2.3 subunit of R-type calcium channel in mouse brain. J. Neurosci. 2012, 32, 13555–13567. [Google Scholar] [CrossRef]
- Kamp, M.A.; Krieger, A.; Henry, M.; Hescheler, J.; Weiergräber, M.; Schneider, T. Presynaptic ‘Ca2.3-containing’ E-type Ca channels share dual roles during neurotransmitter release. Eur. J. Neurosci. 2005, 21, 1617–1625. [Google Scholar] [CrossRef]
- Bloodgood, B.L.; Sabatini, B.L. Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 2007, 53, 249–260. [Google Scholar] [CrossRef]
- Zamponi, G.W.; Currie, K.P. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. Biochim. Biophys. Acta 2013, 1828, 1629–1643. [Google Scholar] [CrossRef]
- Proft, J.; Weiss, N. G protein regulation of neuronal calcium channels: Back to the future. Mol. Pharmacol. 2015, 87, 890–906. [Google Scholar] [CrossRef]
- He, R.; Zhang, J.; Yu, Y.; Jizi, L.; Wang, W.; Li, M. New Insights Into Interactions of Presynaptic Calcium Channel Subtypes and SNARE Proteins in Neurotransmitter Release. Front. Mol. Neurosci. 2018, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Lambert, R.C.; Bessaïh, T.; Crunelli, V.; Leresche, N. The many faces of T-type calcium channels. Pflugers Arch. 2014, 466, 415–423. [Google Scholar] [CrossRef]
- Vassort, G.; Talavera, K.; Alvarez, J.L. Role of T-type Ca2+ channels in the heart. Cell Calcium 2006, 40, 205–220. [Google Scholar] [CrossRef]
- Mesirca, P.; Torrente, A.G.; Mangoni, M.E. T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch. 2014, 466, 791–799. [Google Scholar] [CrossRef]
- Suzuki, S.; Rogawski, M.A. T-type calcium channels mediate the transition between tonic and phasic firing in thalamic neurons. Proc. Natl. Acad. Sci. USA 1989, 86, 7228–7232. [Google Scholar] [CrossRef]
- Campiglio, M.; Flucher, B.E. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. J. Cell Physiol. 2015, 230, 2019–2031. [Google Scholar] [CrossRef]
- Cottrell, G.S.; Soubrane, C.H.; Hounshell, J.A.; Lin, H.; Owenson, V.; Rigby, M.; Cox, P.J.; Barker, B.S.; Ottolini, M.; Ince, S.; et al. CACHD1 is an α2δ-Like Protein That Modulates CaV3 Voltage-Gated Calcium Channel Activity. J. Neurosci. 2018, 38, 9186–9201. [Google Scholar] [CrossRef]
- Neely, G.G.; Hess, A.; Costigan, M.; Keene, A.C.; Goulas, S.; Langeslag, M.; Griffin, R.S.; Belfer, I.; Dai, F.; Smith, S.B.; et al. A Genome-wide Drosophila Screen for Heat Nociception Identifies α2δ3 as an Evolutionarily Conserved Pain Gene. Cell 2010, 143, 628–638. [Google Scholar] [CrossRef]
- De Sevilla Müller, L.P.; Liu, J.; Solomon, A.; Rodriguez, A.; Brecha, N.C. Expression of voltage-gated calcium channel α(2)δ(4) subunits in the mouse and rat retina. J. Comp. Neurol. 2013, 521, 2486–2501. [Google Scholar] [CrossRef]
- Eroglu, Ç.; Allen, N.J.; Susman, M.W.; O’Rourke, N.A.; Park, C.; Özkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; et al. Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis. Cell 2009, 139, 380–392. [Google Scholar] [CrossRef]
- Tong, X.J.; López-Soto, E.J.; Li, L.; Liu, H.; Nedelcu, D.; Lipscombe, D.; Hu, Z.; Kaplan, J.M. Retrograde Synaptic Inhibition Is Mediated by α-Neurexin Binding to the α2δ Subunits of N-Type Calcium Channels. Neuron 2017, 95, 326–340.e5. [Google Scholar] [CrossRef]
- Brockhaus, J.; Schreitmüller, M.; Repetto, D.; Klatt, O.; Reissner, C.; Elmslie, K.; Heine, M.; Missler, M. α-Neurexins Together with α2δ-1 Auxiliary Subunits Regulate Ca2+ Influx through Cav2.1 Channels. J. Neurosci. 2018, 38, 8277–8294. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.; Chen, S.-R.R.; Chen, H.; Xie, J.-D.D.; Sirrieh, R.E.; MacLean, D.M.; Zhang, Y.; Zhou, M.-H.H.; Jayaraman, V.; et al. The α2δ-1-NMDA Receptor Complex Is Critically Involved in Neuropathic Pain Development and Gabapentin Therapeutic Actions. Cell Rep. 2018, 22, 2307–2321. [Google Scholar] [CrossRef]
- Bichet, D.; Cornet, V.; Geib, S.; Carlier, E.; Volsen, S.; Hoshi, T.; Mori, Y.; De Waard, M. The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 2000, 25, 177–190. [Google Scholar] [CrossRef]
- Zhuchenko, O.; Bailey, J.; Bonnen, P.; Ashizawa, T.; Stockton, D.W.; Amos, C.; Dobyns, W.B.; Subramony, S.H.; Zoghbi, H.Y.; Lee, C.C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat. Genet. 1997, 15, 62–69. [Google Scholar] [CrossRef]
- Splawski, I.; Timothy, K.W.; Sharpe, L.M.; Decher, N.; Kumar, P.; Bloise, R.; Napolitano, C.; Schwartz, P.J.; Joseph, R.M.; Condouris, K.; et al. CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and Autism. Cell 2004, 119, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Yabe, I.; Sasaki, H.; Matsuura, T.; Takada, A.; Wakisaka, A.; Suzuki, Y.; Fukazawa, T.; Hamada, T.; Oda, T.; Ohnishi, A.; et al. SCA6 mutation analysis in a large cohort of the Japanese patients with late-onset pure cerebellar ataxia. J. Neurol. Sci. 1998, 156, 89–95. [Google Scholar] [CrossRef]
- Giunti, P.; Mantuano, E.; Frontali, M.; Veneziano, L. Molecular mechanism of Spinocerebellar Ataxia type 6: Glutamine repeat disorder, channelopathy and transcriptional dysregulation. The multifaceted aspects of a single mutation. Front. Cell Neurosci. 2015, 9, 36. [Google Scholar] [CrossRef]
- Fukuyama, M.; Wang, Q.; Kato, K.; Ohno, S.; Ding, W.-G.; Toyoda, F.; Itoh, H.; Kimura, H.; Makiyama, T.; Ito, M.; et al. Long QT syndrome type 8: Novel CACNA1C mutations causing QT prolongation and variant phenotypes. Europace 2014, 16, 1828–1837. [Google Scholar] [CrossRef]
- Wemhöner, K.; Friedrich, C.; Stallmeyer, B.; Coffey, A.J.; Grace, A.; Zumhagen, S.; Seebohm, G.; Ortiz-Bonnin, B.; Rinné, S.; Sachse, F.B.; et al. Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome. J. Mol. Cell. Cardiol. 2015, 80, 186–195. [Google Scholar] [CrossRef]
- Birey, F.; Andersen, J.; Makinson, C.D.; Islam, S.; Wei, W.; Huber, N.; Fan, C.H.; Metzler, K.R.; Panagiotakos, G.; Thom, N.; et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017, 545, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Uher, R. Gene-environment interactions in severe mental illness. Front. Psychiatry 2014, 5, 48. [Google Scholar] [CrossRef]
- Assary, E.; Vincent, J.P.; Keers, R.; Pluess, M. Gene-environment interaction and psychiatric disorders: Review and future directions. Semin. Cell Dev. Biol. 2018, 77, 133–143. [Google Scholar] [CrossRef]
- Sklar, P. Linkage analysis in psychiatric disorders: The emerging picture. Annu. Rev. Genom. Hum. Genet. 2002, 3, 371–413. [Google Scholar] [CrossRef]
- Umesh, S.; Nizamie, S.H. Genetics in psychiatry. Indian J. Hum. Genet. 2014, 20, 120–128. [Google Scholar] [CrossRef]
- Gratten, J.; Wray, N.R.; Keller, M.C.; Visscher, P.M. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat. Neurosci. 2014, 17, 782–790. [Google Scholar] [CrossRef]
- Gelernter, J. Genetics of complex traits in psychiatry. Biol. Psychiatry 2015, 77, 36–42. [Google Scholar] [CrossRef]
- Group, G.; Manolio, T.A.; Rodriguez, L.; Brooks, L.; Abecasis, G.; Psoriasis, C.; Ballinger, D.; Daly, M.; Donnelly, P.; Faraone, S.V.; et al. New models of collaboration in genome-wide association studies: The Genetic Association Information Network. Nat. Genet. 2007, 39, 1045–1051. [Google Scholar]
- Sullivan, P.F. The psychiatric GWAS consortium: Big science comes to psychiatry. Neuron 2010, 68, 182–186. [Google Scholar] [CrossRef]
- Demkow, U.; Wolańczyk, T. Genetic tests in major psychiatric disorders-integrating molecular medicine with clinical psychiatry-why is it so difficult. Transl. Psychiatry 2017, 7, e1151. [Google Scholar] [CrossRef]
- Warr, A.; Robert, C.; Hume, D.; Archibald, A.; Deeb, N.; Watson, M. Exome Sequencing: Current and Future Perspectives. G3 2015, 5, 1543–1550. [Google Scholar] [CrossRef] [Green Version]
- Belkadi, A.; Bolze, A.; Itan, Y.; Cobat, A.; Vincent, Q.B.; Antipenko, A.; Shang, L.; Boisson, B.; Casanova, J.L.; Abel, L. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA 2015, 112, 5473–5478. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Corominas, R.; Lin, G.N. De novo Mutations from Whole Exome Sequencing in Neurodevelopmental and Psychiatric Disorders: From Discovery to Application. Front. Genet. 2019, 10, 258. [Google Scholar] [CrossRef]
- Le, T.T.; Savitz, J.; Suzuki, H.; Misaki, M.; Teague, K.T.; White, B.C.; Marino, J.H.; Wiley, G.; Gaffney, P.M.; Drevets, W.C.; et al. Identification and replication of RNA-Seq gene network modules associated with depression severity. Transl. Psychiatry 2018, 8, 180. [Google Scholar] [CrossRef]
- Pongrac, J.; Middleton, F.A.; Lewis, D.A.; Levitt, P.; Mirnics, K. Gene Expression Profiling with DNA Microarrays: Advancing Our Understanding of Psychiatric Disorders. Neurochem. Res. 2002, 27, 1049–1063. [Google Scholar] [CrossRef]
- Williams, N.M.; Zaharieva, I.; Martin, A.; Langley, K.; Mantripragada, K.; Fossdal, R.; Stefansson, H.; Stefansson, K.; Magnusson, P.; Gudmundsson, O.O.; et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: A genome-wide analysis. Lancet 2010, 376, 1401–1408. [Google Scholar] [CrossRef]
- Malhotra, D.; Sebat, J. CNVs: Harbingers of a rare variant revolution in psychiatric genetics. Cell 2012, 148, 1223–1241. [Google Scholar] [CrossRef]
- Rees, E.; Walters, J.T.; Georgieva, L.; Isles, A.R.; Chambert, K.D.; Richards, A.L.; Mahoney-Davies, G.; Legge, S.E.; Moran, J.L.; McCarroll, S.A.; et al. Analysis of copy number variations at 15 schizophrenia-associated loci. Br. J. Psychiatry : J. Ment. Sci. 2014, 204, 108–114. [Google Scholar] [CrossRef]
- Kirov, G.; Rees, E.; Walters, J.T.; Escott-Price, V.; Georgieva, L.; Richards, A.L.; Chambert, K.D.; Davies, G.; Legge, S.E.; Moran, J.L.; et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol. Psychiatry 2014, 75, 378–385. [Google Scholar] [CrossRef]
- Green, E.; Rees, E.; Walters, J.; Smith, K.-G.G.; Forty, L.; Grozeva, D.; Moran, J.; Sklar, P.; Ripke, S.; Chambert, K.; et al. Copy number variation in bipolar disorder. Mol. Psychiatry 2016, 21, 89–93. [Google Scholar] [CrossRef]
- Kushima, I.; Aleksic, B.; Nakatochi, M.; Shimamura, T.; Okada, T.; Uno, Y.; Morikawa, M.; Ishizuka, K.; Shiino, T.; Kimura, H.; et al. Comparative Analyses of Copy-Number Variation in Autism Spectrum Disorder and Schizophrenia Reveal Etiological Overlap and Biological Insights. Cell Rep. 2018, 24, 2838–2856. [Google Scholar] [CrossRef] [Green Version]
- Rees, E.; Kendall, K.; Pardiñas, A.F.; Legge, S.E.; Pocklington, A.; Escott-Price, V.; MacCabe, J.H.; Collier, D.A.; Holmans, P.; O’Donovan, M.C.; et al. Analysis of Intellectual Disability Copy Number Variants for Association With Schizophrenia. JAMA Psychiatry 2016, 73, 963–969. [Google Scholar] [CrossRef]
- Xia, J.; Gill, E.E.; Hancock, R.E. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 2015, 10, 823–844. [Google Scholar] [CrossRef]
- GTEx, C. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015, 348, 648–660. [Google Scholar]
- Gilman, S.R.; Chang, J.; Xu, B.; Bawa, T.S.; Gogos, J.A.; Karayiorgou, M.; Vitkup, D. Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nat. Neurosci. 2012, 15, 1723–1728. [Google Scholar] [CrossRef]
- Fromer, M.; Pocklington, A.J.; Kavanagh, D.H.; Williams, H.J.; Dwyer, S.; Gormley, P.; Georgieva, L.; Rees, E.; Palta, P.; Ruderfer, D.M.; et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014, 506, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Parikshak, N.N.; Gandal, M.J.; Geschwind, D.H. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 2015, 16, 441–458. [Google Scholar] [CrossRef]
- Breen, M.S.; Maihofer, A.X.; Glatt, S.J.; Tylee, D.S.; Chandler, S.D.; Tsuang, M.T.; Risbrough, V.B.; Baker, D.G.; O’Connor, D.T.; Nievergelt, C.M.; et al. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol. Psychiatry 2015, 20, 1538–1545. [Google Scholar] [CrossRef] [Green Version]
- European Network of National Networks Studying Gene-Environment Interaction in Schizophrenia (EU-GEI). Identifying Gene-Environment Interactions in Schizophrenia: Contemporary Challenges for Integrated, Large-scale Investigations. Schizophr. Bull. 2014, 40, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Tordjman, S.; Somogyi, E.; Coulon, N.; Kermarrec, S.; Cohen, D.; Bronsard, G.; Bonnot, O.; Weismann-Arcache, C.; Botbol, M.; Lauth, B.; et al. Gene × Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms. Front. Psychiatry 2014, 5, 53. [Google Scholar] [CrossRef]
- Dick, D.M.; Agrawal, A.; Keller, M.C.; Adkins, A.; Aliev, F.; Monroe, S.; Hewitt, J.K.; Kendler, K.S.; Sher, K.J. Candidate gene-environment interaction research: Reflections and recommendations. Perspect Psychol. Sci. 2015, 10, 37–59. [Google Scholar] [CrossRef]
- Isvoranu, A.M.; Borsboom, D.; van Os, J.; Guloksuz, S. A Network Approach to Environmental Impact in Psychotic Disorder: Brief Theoretical Framework. Schizophr. Bull. 2016, 42, 870–873. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Baram, T.Z. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology 2016, 41, 197–206. [Google Scholar] [CrossRef]
- Taylor, M.J.; Martin, J.; Lu, Y.; Brikell, I.; Lundström, S.; Larsson, H.; Lichtenstein, P. Association of Genetic Risk Factors for Psychiatric Disorders and Traits of These Disorders in a Swedish Population Twin Sample. JAMA Psychiatry 2018. [Google Scholar] [CrossRef]
- Iacono, W.G. Endophenotypes in psychiatric disease: Prospects and challenges. Genome Med. 2018, 10, 11. [Google Scholar] [CrossRef]
- Flint, J.; Munafò, M.R. The endophenotype concept in psychiatric genetics. Psychol. Med. 2007, 37, 163–180. [Google Scholar] [CrossRef]
- Bigos, K.L.; Mattay, V.S.; Callicott, J.H.; Straub, R.E.; Vakkalanka, R.; Kolachana, B.; Hyde, T.M.; Lipska, B.K.; Kleinman, J.E.; Weinberger, D.R. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch. Gen. Psychiatry 2010, 67, 939–945. [Google Scholar] [CrossRef]
- Stephan, K.E.; Mathys, C. Computational approaches to psychiatry. Curr. Opin. Neurobiol. 2014, 25, 85–92. [Google Scholar] [CrossRef]
- Friston, K.J.; Stephan, K.E.; Montague, R.; Dolan, R.J. Computational psychiatry: The brain as a phantastic organ. Lancet Psychiatry 2014, 1, 148–158. [Google Scholar] [CrossRef]
- Wang, X.J.; Krystal, J.H. Computational psychiatry. Neuron 2014, 84, 638–654. [Google Scholar] [CrossRef]
- Huys, Q.J.; Maia, T.V.; Frank, M.J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 2016, 19, 404–413. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.; Patterson, J.S.; Angelaki, D.E. A computational perspective on autism. Proc. Natl. Acad. Sci. USA 2015, 112, 9158–9165. [Google Scholar] [CrossRef] [Green Version]
- Hauser, T.U.; Fiore, V.G.; Moutoussis, M.; Dolan, R.J. Computational Psychiatry of ADHD: Neural Gain Impairments across Marrian Levels of Analysis. Trends Neurosci. 2016, 39, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Krystal, J.H.; Murray, J.D.; Chekroud, A.M.; Corlett, P.R.; Yang, G.; Wang, X.J.; Anticevic, A. Computational Psychiatry and the Challenge of Schizophrenia. Schizophr. Bull. 2017, 43, 473–475. [Google Scholar] [CrossRef]
- Hofmann, F.; Flockerzi, V.; Kahl, S.; Wegener, J.W. L-type CaV1.2 calcium channels: From in vitro findings to in vivo function. Physiol Rev. 2014, 94, 303–326. [Google Scholar] [CrossRef]
- Striessnig, J.; Pinggera, A.; Kaur, G.; Bock, G.; Tuluc, P. L-type Ca2+ channels in heart and brain. Wiley Interdiscip. Rev. Membr Transp. Signal. 2014, 3, 15–38. [Google Scholar] [CrossRef]
- Ortner, N.J.; Striessnig, J. L-type calcium channels as drug targets in CNS disorders. Channels 2016, 10, 7–13. [Google Scholar] [CrossRef]
- Kabir, Z.D.; Martínez-Rivera, A.; Rajadhyaksha, A.M. From Gene to Behavior: L-Type Calcium Channel Mechanisms Underlying Neuropsychiatric Symptoms. Neurotherapeutics 2017, 14, 588–613. [Google Scholar] [CrossRef]
- Seisenberger, C.; Specht, V.; Welling, A.; Platzer, J.; Pfeifer, A.; Kühbandner, S.; Striessnig, J.; Klugbauer, N.; Feil, R.; Hofmann, F. Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J. Biol. Chem. 2000, 275, 39193–39199. [Google Scholar] [CrossRef]
- Moosmang, S.; Haider, N.; Klugbauer, N.; Adelsberger, H.; Langwieser, N.; Müller, J.; Stiess, M.; Marais, E.; Schulla, V.; Lacinova, L.; et al. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 9883–9892. [Google Scholar] [CrossRef]
- White, J.A.; McKinney, B.C.; John, M.C.; Powers, P.A.; Kamp, T.J.; Murphy, G.G. Conditional forebrain deletion of the L-type calcium channel CaV1. 2 disrupts remote spatial memories in mice. Learn. Mem. 2008, 15, 1–5. [Google Scholar] [CrossRef]
- Kabitzke, P.; Brunner, D.; He, D.; Fazio, P.; Cox, K.; Sutphen, J.; Thiede, L.; Sabath, E.; Hanania, T.; Alexandrov, V.; et al. Comprehensive analysis of two Shank3 and the Cacna1c mouse models of autism spectrum disorder. Genes Brain Behav. 2018, 17, 4–22. [Google Scholar] [CrossRef]
- Bader, P.L.; Faizi, M.; Kim, L.H.; Owen, S.F.; Tadross, M.R.; Alfa, R.W.; Bett, G.C.; Tsien, R.W.; Rasmusson, R.L.; Shamloo, M. Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc. Natl. Acad. Sci. USA 2011, 108, 15432–15437. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Ra, S.; Rajadhyaksha, A.M.; Britt, J.; Jesus-Cortes, D.H.; Gonzales, K.; Lee, A.; Moosmang, S.; Hofmann, F.; Pieper, A.; et al. Forebrain elimination of cacna1c mediates anxiety-like behavior in mice. Mol. Psychiatry 2012, 17, 1054–1055. [Google Scholar] [CrossRef]
- Langwieser, N.; Christel, C.J.; Kleppisch, T.; Hofmann, F.; Wotjak, C.T.; Moosmang, S. Homeostatic switch in hebbian plasticity and fear learning after sustained loss of Cav1.2 calcium channels. J. Neurosci. 2010, 30, 8367–8375. [Google Scholar] [CrossRef]
- Jeon, D.; Kim, S.; Chetana, M.; Jo, D.; Ruley, H.E.; Lin, S.Y.; Rabah, D.; Kinet, J.P.; Shin, H.S. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat. Neurosci. 2010, 13, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.A.; O’Donovan, M.C.; Meng, Y.A.; Jones, I.R.; Ruderfer, D.M.; Jones, L.; Fan, J.; Kirov, G.; Perlis, R.H.; Green, E.K.; et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 2008, 40, 1056–1058. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Blackwood, D.H.; Caesar, S.; de Geus, E.J.; Farmer, A.; Ferreira, M.A.; Ferrier, I.N.; Fraser, C.; Gordon-Smith, K.; Green, E.K.; et al. Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol. Psychiatry 2011, 16, 2–4. [Google Scholar] [CrossRef]
- Cross Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 2013, 381, 1371–1379. [Google Scholar] [CrossRef]
- Ruderfer, D.M.; Fanous, A.H.; Ripke, S.; McQuillin, A.; Amdur, R.L.; Gejman, P.V.; O’Donovan, M.C.; Andreassen, O.A.; Djurovic, S.; Hultman, C.M.; et al. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol. Psychiatry 2014, 19, 1017–1024. [Google Scholar] [CrossRef]
- Gershon, E.S.; Grennan, K.; Busnello, J.; Badner, J.A.; Ovsiew, F.; Memon, S.; Alliey-Rodriguez, N.; Cooper, J.; Romanos, B.; Liu, C. A rare mutation of CACNA1C in a patient with bipolar disorder, and decreased gene expression associated with a bipolar-associated common SNP of CACNA1C in brain. Mol. Psychiatry 2014, 19, 890–894. [Google Scholar] [CrossRef]
- Yoshimizu, T.; Pan, J.; Mungenast, A.; Madison, J.; Su, S.; Ketterman, J.; Ongur, D.; McPhie, D.; Cohen, B.; Perlis, R.; et al. Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol. Psychiatry 2015, 20, 162–169. [Google Scholar] [CrossRef]
- Starnawska, A.; Demontis, D.; Pen, A.; Hedemand, A.; Nielsen, A.; Staunstrup, N.; Grove, J.; Als, T.; Jarram, A.; O’Brien, N.; et al. CACNA1C hypermethylation is associated with bipolar disorder. Transl. Psychiatry 2016, 6, e831. [Google Scholar] [CrossRef]
- Balaraman, Y.; Lahiri, D.K.; Nurnberger, J.I. Variants in Ion Channel Genes Link Phenotypic Features of Bipolar Illness to Specific Neurobiological Process Domains. Mol. Neuropsychiatry 2015, 1, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Soeiro-de-Souza, M.G.; Lafer, B.; Moreno, R.A.; Nery, F.G.; Chile, T.; Chaim, K.; da Costa Leite, C.; Machado-Vieira, R.; Otaduy, M.C.; Vallada, H. The CACNA1C risk allele rs1006737 is associated with age-related prefrontal cortical thinning in bipolar I disorder. Transl. Psychiatry 2017, 7, e1086. [Google Scholar] [CrossRef]
- Sumner, J.A.; Sheridan, M.A.; Drury, S.S.; Esteves, K.C.; Walsh, K.; Koenen, K.C.; McLaughlin, K.A. Variation in CACNA1C is Associated with Amygdala Structure and Function in Adolescents. J. Child Adolesc. Psychopharmacol. 2015, 25, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Tesli, M.; Skatun, K.C.; Ousdal, O.T.; Brown, A.A.; Thoresen, C.; Agartz, I.; Melle, I.; Djurovic, S.; Jensen, J.; Andreassen, O.A. CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS ONE 2013, 8, e56970. [Google Scholar] [CrossRef]
- Soeiro-de-Souza, M.G.; Otaduy, M.C.; Dias, C.Z.; Bio, D.S.; Machado-Vieira, R.; Moreno, R.A. The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls. J. Affect. Disord. 2012, 141, 94–101. [Google Scholar] [CrossRef]
- Nieratschker, V.; Brückmann, C.; Plewnia, C. CACNA1C risk variant affects facial emotion recognition in healthy individuals. Sci. Rep. 2015, 5, 17349. [Google Scholar] [CrossRef] [Green Version]
- Witt, S.H.; Kleindienst, N.; Frank, J.; Treutlein, J.; Mühleisen, T.; Degenhardt, F.; Jungkunz, M.; Krumm, B.; Cichon, S.; Tadic, A.; et al. Analysis of genome-wide significant bipolar disorder genes in borderline personality disorder. Psychiatr. Genet. 2014, 24, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Bassir Nia, A.; Eveleth, M.C.; Gabbay, J.M.; Hassan, Y.J.; Zhang, B.; Perez-Rodriguez, M.M. Past, present, and future of genetic research in borderline personality disorder. Curr. Opin. Psychol. 2018, 21, 60–68. [Google Scholar] [CrossRef]
- Pasparakis, E.; Koiliari, E.; Zouraraki, C.; Tsapakis, E.M.; Roussos, P.; Giakoumaki, S.G.; Bitsios, P. The effects of the CACNA1C rs1006737 A/G on affective startle modulation in healthy males. Eur. Psychiatry 2015, 30, 492–498. [Google Scholar] [CrossRef]
- Mallas, E.; Carletti, F.; Chaddock, C.; Shergill, S.; Woolley, J.; Picchioni, M.; McDonald, C.; Toulopoulou, T.; Kravariti, E.; Kalidindi, S.; et al. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder1. Genes Brain Behav. 2017, 16, 479–488. [Google Scholar] [CrossRef]
- Casamassima, F.; Huang, J.; Fava, M.; Sachs, G.S.; Smoller, J.W.; Cassano, G.B.; Lattanzi, L.; Fagerness, J.; Stange, J.P.; Perlis, R.H. Phenotypic effects of a bipolar liability gene among individuals with major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 303–309. [Google Scholar] [CrossRef]
- Fabbri, C.; Corponi, F.; Albani, D.; Raimondi, I.; Forloni, G.; Schruers, K.; Kasper, S.; Kautzky, A.; Zohar, J.; Souery, D.; et al. Pleiotropic genes in psychiatry: Calcium channels and the stress-related FKBP5 gene in antidepressant resistance. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 81, 203–210. [Google Scholar] [CrossRef]
- Schizophrenia, W.G.O.T.P.G.C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [Green Version]
- Goes, F.S.; McGrath, J.; Avramopoulos, D.; Wolyniec, P.; Pirooznia, M.; Ruczinski, I.; Nestadt, G.; Kenny, E.E.; Vacic, V.; Peters, I.; et al. Genome-wide association study of schizophrenia in Ashkenazi Jews. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2015, 168, 649–659. [Google Scholar] [CrossRef]
- Autism Spectrum Disorders Group of the Psychiatric Genomics Consortium. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol. Autism 2017, 8, 21. [Google Scholar] [CrossRef]
- Pardiñas, A.F.; Holmans, P.; Pocklington, A.J.; Escott-Price, V.; Ripke, S.; Carrera, N.; Legge, S.E.; Bishop, S.; Cameron, D.; Hamshere, M.L.; et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 2018, 50, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Zhang, Y.; Xie, W.; Li, W.; Jin, C.; Mi, W.; Wang, F.; Ma, W.; Ma, C.; Yang, Y.; et al. Further evidence for genetic association of CACNA1C and schizophrenia: New risk loci in a Han Chinese population and a meta-analysis. Schizophr. Res. 2014, 152, 105–110. [Google Scholar] [CrossRef]
- Cosgrove, D.; Mothersill, O.; Kendall, K.; Konte, B.; Harold, D.; Giegling, I.; Hartmann, A.; Richards, A.; Mantripragada, K.; Consortium, T.; et al. Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C’s Role in Working Memory. Neuropsychopharmacol 2017, 42, 2612–2622. [Google Scholar] [CrossRef]
- Bustillo, J.R.; Patel, V.; Jones, T.; Jung, R.; Payaknait, N.; Qualls, C.; Canive, J.M.; Liu, J.; Perrone-Bizzozero, N.; Calhoun, V.D.; et al. Risk-Conferring Glutamatergic Genes and Brain Glutamate Plus Glutamine in Schizophrenia. Front. Psychiatry 2017, 8, 79. [Google Scholar] [CrossRef]
- Murphy, M.J.; Peterson, M.J. Sleep Disturbances in Depression. Sleep Med. Clin. 2015, 10, 17–23. [Google Scholar] [CrossRef]
- Ng, T.H.; Chung, K.F.; Ho, F.Y.; Yeung, W.F.; Yung, K.P.; Lam, T.H. Sleep-wake disturbance in interepisode bipolar disorder and high-risk individuals: A systematic review and meta-analysis. Sleep Med. Rev. 2015, 20, 46–58. [Google Scholar] [CrossRef]
- Manoach, D.S.; Pan, J.Q.; Purcell, S.M.; Stickgold, R. Reduced Sleep Spindles in Schizophrenia: A Treatable Endophenotype That Links Risk Genes to Impaired Cognition. Biol. Psychiatry 2016, 80, 599–608. [Google Scholar] [CrossRef]
- Shimada, M.; Miyagawa, T.; Kawashima, M.; Tanaka, S.; Honda, Y.; Honda, M.; Tokunaga, K. An approach based on a genome-wide association study reveals candidate loci for narcolepsy. Hum. Genet. 2010, 128, 433–441. [Google Scholar] [CrossRef]
- Byrne, E.M.; Gehrman, P.R.; Medland, S.E.; Nyholt, D.R.; Heath, A.C.; Madden, P.A.; Hickie, I.B.; Ijn, C.; Henders, A.K.; Montgomery, G.W.; et al. A genome-wide association study of sleep habits and insomnia. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2013, 162, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.J.; Lester, K.J.; Barclay, N.L.; Nolan, P.M.; Eley, T.C.; Gregory, A.M. Replication of Genome-Wide association studies (GWAS) loci for sleep in the British G1219 cohort. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2013, 162, 431–438. [Google Scholar] [CrossRef]
- Kantojärvi, K.; Liuhanen, J.; Saarenpää-Heikkilä, O.; Satomaa, A.-L.; Kylliäinen, A.; Pölkki, P.; Jaatela, J.; Toivola, A.; Milani, L.; Himanen, S.-L.; et al. Variants in calcium voltage-gated channel subunit Alpha1 C-gene (CACNA1C) are associated with sleep latency in infants. PLoS ONE 2017, 12, e0180652. [Google Scholar] [CrossRef]
- Amare, A.T.; Vaez, A.; Hsu, Y.-H.; Direk, N.; Kamali, Z.; Howard, D.M.; McIntosh, A.M.; Tiemeier, H.; Bültmann, U.; Snieder, H.; et al. Bivariate genome-wide association analyses of the broad depression phenotype combined with major depressive disorder, bipolar disorder or schizophrenia reveal eight novel genetic loci for depression. Mol. Psychiatry 2019, 1–10. [Google Scholar] [CrossRef]
- Dedic, N.; Pöhlmann, M.; Richter, J.; Mehta, D.; Czamara, D.; Metzger, M.; Dine, J.; Bedenk, B.; Hartmann, J.; Wagner, K.; et al. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol. Psychiatry 2017, 23, 53–543. [Google Scholar] [CrossRef]
- Porcelli, S.; Lee, S.J.; Han, C.; Patkar, A.A.; Serretti, A.; Pae, C.U. CACNA1C gene and schizophrenia: A case-control and pharmacogenetic study. Psychiatr. Genet. 2015, 25, 163–167. [Google Scholar] [CrossRef]
- Jan, W.C.; Yang, S.Y.; Chuang, L.C.; Lu, R.B.; Lu, M.K.; Sun, H.S.; Kuo, P.H. Exploring the associations between genetic variants in genes encoding for subunits of calcium channel and subtypes of bipolar disorder. J. Affect. Disord. 2014, 157, 80–86. [Google Scholar] [CrossRef]
- Lu, A.T.; Dai, X.; Martinez-Agosto, J.A.; Cantor, R.M. Support for calcium channel gene defects in autism spectrum disorders. Mol. Autism 2012, 3, 18. [Google Scholar] [CrossRef]
- Skafidas, E.; Testa, R.; Zantomio, D.; Chana, G.; Everall, I.P.; Pantelis, C. Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol. Psychiatry 2014, 19, 504–510. [Google Scholar] [CrossRef]
- Purcell, S.M.; Moran, J.L.; Fromer, M.; Ruderfer, D.; Solovieff, N.; Roussos, P.; O’Dushlaine, C.; Chambert, K.; Bergen, S.E.; Kähler, A.; et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014, 506, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Busquet, P.; Nguyen, N.K.; Schmid, E.; Tanimoto, N.; Seeliger, M.W.; Ben-Yosef, T.; Mizuno, F.; Akopian, A.; Striessnig, J.; Singewald, N. CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype. Int. J. Neuropsychopharmacol. 2010, 13, 499–513. [Google Scholar] [CrossRef]
- Platzer, J.; Engel, J.; Schrott-Fischer, A.; Stephan, K.; Bova, S.; Chen, H.; Zheng, H.; Striessnig, J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000, 102, 89–97. [Google Scholar] [CrossRef]
- Martínez-Rivera, A.; Hao, J.; Tropea, T.; Giordano, T.; Kosovsky, M.; Rice, R.; Lee, A.; Huganir, R.; Striessnig, J.; Addy, N.; et al. Enhancing VTA Cav1.3 L-type Ca2+ channel activity promotes cocaine and mood-related behaviors via overlapping AMPA receptor mechanisms in the nucleus accumbens. Mol. Psychiatry 2017, 22, 1735–1745. [Google Scholar] [CrossRef] [Green Version]
- Sinnegger-Brauns, M.J.; Hetzenauer, A.; Huber, I.G.; Renström, E.; Wietzorrek, G.; Berjukov, S.; Cavalli, M.; Walter, D.; Koschak, A.; Waldschütz, R.; et al. Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels. J. Clin. Investig. 2004, 113, 1430–1439. [Google Scholar] [CrossRef]
- Hetzenauer, A.; Sinnegger-Brauns, M.J.; Striessnig, J.; Singewald, N. Brain activation pattern induced by stimulation of L-type Ca2+-channels: Contribution of Ca(V)1.3 and Ca(V)1.2 isoforms. Neuroscience 2006, 139, 1005–1015. [Google Scholar] [CrossRef]
- Ament, S.A.; Szelinger, S.; Glusman, G.; Ashworth, J.; Hou, L.; Akula, N.; Shekhtman, T.; Badner, J.A.; Brunkow, M.E.; Mauldin, D.E.; et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc. Natl. Acad. Sci. USA 2015, 112, 3576–3581. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.; Gedvilaite, E.; Badner, J.A.; Erdman, C.; Baird, L.; Matsunami, N.; Leppert, M.; Xing, J.; Byerley, W. A Rare Variant in CACNA1D Segregates with 7 Bipolar I Disorder Cases in a Large Pedigree. Mol. Neuropsychiatry 2016, 2, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Guan, F.; Li, L.; Qiao, C.; Chen, G.; Yan, T.; Li, T.; Zhang, T.; Liu, X. Evaluation of genetic susceptibility of common variants in CACNA1D with schizophrenia in Han Chinese. Sci. Rep. 2015, 5, 12935. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, J.; Yu, H.; He, L.; Xu, Y.; Zhang, D.; Yi, Q.; Li, C.; Li, X.; Shen, J.; et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 2017, 49, 1576–1583. [Google Scholar] [CrossRef]
- Ikeda, M.; Takahashi, A.; Kamatani, Y.; Momozawa, Y.; Saito, T.; Kondo, K.; Shimasaki, A.; Kawase, K.; Sakusabe, T.; Iwayama, Y.; et al. Genome-Wide Association Study Detected Novel Susceptibility Genes for Schizophrenia and Shared Trans-Populations/Diseases Genetic Effect. Schizophr. Bull. 2018, 45, 824–834. [Google Scholar] [CrossRef]
- O’Roak, B.J.; Vives, L.; Girirajan, S.; Karakoc, E.; Krumm, N.; Coe, B.P.; Levy, R.; Ko, A.; Lee, C.; Smith, J.D.; et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485, 246. [Google Scholar] [CrossRef]
- Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515, 216–250. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Pinggera, A.; Lieb, A.; Benedetti, B.; Lampert, M.; Monteleone, S.; Liedl, K.R.; Tuluc, P.; Striessnig, J. CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels. Biol. Psychiatry 2015, 77, 816–822. [Google Scholar] [CrossRef]
- Limpitikul, W.B.; Dick, I.E.; Ben-Johny, M.; Yue, D.T. An autism-associated mutation in CaV1.3 channels has opposing effects on voltage- and Ca(2+)-dependent regulation. Sci. Rep. 2016, 6, 27235. [Google Scholar] [CrossRef]
- Pinggera, A.; Mackenroth, L.; Rump, A.; Schallner, J.; Beleggia, F.; Wollnik, B.; Striessnig, J. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum. Mol. Genet. 2017, 26, 2923–2932. [Google Scholar] [CrossRef] [Green Version]
- Rubeis, S.; He, X.; Goldberg, A.P.; Poultney, C.S.; Samocha, K.; Cicek, E.A.; Kou, Y.; Liu, L.; Fromer, M.; Walker, S.; et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014, 515, 209–215. [Google Scholar] [CrossRef]
- Moessner, R.; Marshall, C.R.; Sutcliffe, J.S.; Skaug, J.; Pinto, D.; Vincent, J.; Zwaigenbaum, L.; Fernandez, B.; Roberts, W.; Szatmari, P.; et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am. J. Hum. Genet. 2007, 81, 1289–1297. [Google Scholar] [CrossRef]
- Pinggera, A.; Striessnig, J. Cav 1.3 (CACNA1D) L-type Ca2+ channel dysfunction in CNS disorders. J. Physiol. 2016, 594, 5839–5849. [Google Scholar] [CrossRef]
- Weyn-Vanhentenryck, S.M.; Mele, A.; Yan, Q.; Sun, S.; Farny, N.; Zhang, Z.; Xue, C.; Herre, M.; Silver, P.A.; Zhang, M.Q.; et al. HITS-CLIP and Integrative Modeling Define the Rbfox Splicing-Regulatory Network Linked to Brain Development and Autism. Cell Rep. 2014, 6, 1139–1152. [Google Scholar] [CrossRef] [Green Version]
- Garza-Lopez, E.; Lopez, J.A.; Hagen, J.; Sheffer, R.; Meiner, V.; Lee, A. Role of a conserved glutamine in the function of voltage-gated Ca2+ channels revealed by a mutation in human CACNA1D. J. Biol. Chem. 2018, 293, 14444–14454. [Google Scholar] [CrossRef] [Green Version]
- Jun, K.; Piedras-Rentería, E.; Smith, S.; Wheeler, D.; Lee, S.; Lee, T.; Chin, H.; Adams, M.; Scheller, R.; Tsien, R.; et al. Ablation of P/Q-type Ca(2+) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. Proc. Natl. Acad. Sci. USA 1999, 96, 15245–15250. [Google Scholar] [CrossRef]
- Fletcher, C.F.; Tottene, A.; Lennon, V.A.; Wilson, S.M.; Dubel, S.J.; Paylor, R.; Hosfo, D.A.; Tessarollo, L.; Mcenery, M.W.; Pietrobon, D.; et al. Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity1. FASEB J. 2001, 15, 1288–1290. [Google Scholar] [CrossRef]
- Todorov, B.; van de Ven, R.C.; Kaja, S.; Broos, L.A.; Verbeek, S.J.; Plomp, J.J.; Ferrari, M.D.; Frants, R.R.; van den Maagdenberg, A.M. Conditional inactivation of the Cacna1a gene in transgenic mice. Genesis 2006, 44, 589–594. [Google Scholar] [CrossRef]
- Mallmann, R.T.; Elgueta, C.; Sleman, F.; Castonguay, J.; Wilmes, T.; van den Maagdenberg, A.; Klugbauer, N. Ablation of Ca(V)2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments. PLoS ONE 2013, 8, e78598. [Google Scholar] [CrossRef]
- Damaj, L.; Lupien-Meilleur, A.; Lortie, A.; Riou, É.; Ospina, L.H.; Gagnon, L.; Vanasse, C.; Rossignol, E. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur. J. Hum. Genet. 2015, 23, 1505–1512. [Google Scholar] [CrossRef]
- Indelicato, E.; Nachbauer, W.; Karner, E.; Eigentler, A.; Wagner, M.; Unterberger, I.; Poewe, W.; Delazer, M.; Boesch, S. The neuropsychiatric phenotype in CACNA1A mutations: A retrospective single center study and review of the literature. Eur. J. Neurol. 2019, 26, 66-e7. [Google Scholar] [CrossRef]
- Gandal, M.J.; Zhang, P.; Hadjimichael, E.; Walker, R.L.; Chen, C.; Liu, S.; Won, H.; van Bakel, H.; Varghese, M.; Wang, Y.; et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018, 362, eaat8127. [Google Scholar] [CrossRef]
- Saegusa, H.; Kurihara, T.; Zong, S.; Kazuno, A.; Matsuda, Y.; Nonaka, T.; Han, W.; Toriyama, H.; Tanabe, T. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J. 2001, 20, 2349–2356. [Google Scholar] [CrossRef]
- Nakagawasai, O.; Onogi, H.; Mitazaki, S.; Sato, A.; Watanabe, K.; Saito, H.; Murai, S.; Nakaya, K.; Murakami, M.; Takahashi, E.; et al. Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel α1B subunit. Behav. Brain Res. 2010, 208, 224–230. [Google Scholar] [CrossRef]
- Newton, P.M.; Orr, C.J.; Wallace, M.J.; Kim, C.; Shin, H.S.; Messing, R.O. Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. J. Neurosci. 2004, 24, 9862–9869. [Google Scholar] [CrossRef]
- Li, Q.; Wineinger, N.E.; Fu, D.-J.; Libiger, O.; Alphs, L.; Savitz, A.; Gopal, S.; Cohen, N.; Schork, N.J. Genome-wide association study of paliperidone efficacy. Pharm. Genom. 2017, 27, 7–18. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, K.S.; McGregor, N.W.; Malhotra, A.; Lencz, T.; Emsley, R.; Warnich, L. Variation within voltage-gated calcium channel genes and antipsychotic treatment response in a South African first episode schizophrenia cohort. Pharm. J. 2019, 19, 109–114. [Google Scholar] [CrossRef]
- Glessner, J.T.; Reilly, M.P.; Kim, C.E.; Takahashi, N.; Albano, A.; Hou, C.; Bradfield, J.P.; Zhang, H.; Sleiman, P.M.; Flory, J.H.; et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc. Natl. Acad. Sci. USA 2010, 107, 10584–10589. [Google Scholar] [CrossRef] [Green Version]
- Yatsenko, S.A.; Hixson, P.; Roney, E.K.; Scott, D.A.; Schaaf, C.P.; Ng, Y.; Palmer, R.; Fisher, R.B.; Patel, A.; Cheung, S.; et al. Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: Beyond breakage–fusion–bridge for telomere stabilization. Hum. Genet. 2012, 131, 1895–1910. [Google Scholar] [CrossRef]
- Pinto, D.; Delaby, E.; Merico, D.; Barbosa, M.; Merikangas, A.; Klei, L.; Thiruvahindrapuram, B.; Xu, X.; Ziman, R.; Wang, Z.; et al. Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders. Am. J. Hum. Genet. 2014, 94, 677–694. [Google Scholar] [CrossRef] [Green Version]
- Tombácz, D.; Maróti, Z.; Kalmár, T.; Csabai, Z.; Balázs, Z.; Takahashi, S.; Palkovits, M.; Snyder, M.; Boldogkői, Z. High-Coverage Whole-Exome Sequencing Identifies Candidate Genes for Suicide in Victims with Major Depressive Disorder. Sci. Rep. 2017, 7, 7106. [Google Scholar] [CrossRef]
- Saegusa, H.; Kurihara, T.; Zong, S.; Minowa, O.; Kazuno, A.; Han, W.; Matsuda, Y.; Yamanaka, H.; Osanai, M.; Noda, T.; et al. Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc. Natl. Acad. Sci. USA 2000, 97, 6132–6137. [Google Scholar] [CrossRef]
- Kubota, M.; Murakoshi, T.; Saegusa, H.; Kazuno, A.; Zong, S.; Hu, Q.; Noda, T.; Tanabe, T. Intact LTP and fear memory but impaired spatial memory in mice lacking Ca(v)2.3 (alpha(IE)) channel. Biochem. Biophys. Res. Commun. 2001, 282, 242–248. [Google Scholar] [CrossRef]
- Siwek, M.; Müller, R.; Henseler, C.; Broich, K.; Papazoglou, A.; Weiergräber, M. The CaV2.3 R-Type Voltage-Gated Ca2+ Channel in Mouse Sleep Architecture. Sleep 2014, 37, 881–892. [Google Scholar] [CrossRef]
- Schneider, T.; Dibué-Adjei, M. Cav2.3 E-/R-type voltage-gated calcium channels modulate sleep in mice. Sleep 2015, 38, 499. [Google Scholar] [CrossRef]
- Takata, A.; Ionita-Laza, I.; Gogos, J.A.; Xu, B.; Karayiorgou, M. De Novo Synonymous Mutations in Regulatory Elements Contribute to the Genetic Etiology of Autism and Schizophrenia. Neuron 2016, 89, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Howard, D.M.; Adams, M.J.; Clarke, T.-K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Okbay, A.; Baselmans, B.M.; Neve, J.-E.; Turley, P.; Nivard, M.G.; Fontana, M.; Meddens, F.S.; Linnér, R.; Rietveld, C.A.; Derringer, J.; et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 2016, 48, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Kuo, P.-H.; Liu, Y.-L.; Yu, Y.; Yang, A.C.; Tsai, S.-J. A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers. Front. Psychiatry 2018, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Heck, A.; Fastenrath, M.; Ackermann, S.; Auschra, B.; Bickel, H.; Coynel, D.; Gschwind, L.; Jessen, F.; Kaduszkiewicz, H.; Maier, W.; et al. Converging Genetic and Functional Brain Imaging Evidence Links Neuronal Excitability to Working Memory, Psychiatric Disease, and Brain Activity. Neuron 2014, 81, 1203–1213. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, D.; Shin, H.-S. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking α1G-subunit of T-type calcium channels. Proc. Natl. Acad. Sci. USA 2004, 101, 18195–18199. [Google Scholar] [CrossRef]
- Anderson, M.P.; Mochizuki, T.; Xie, J.; Fischler, W.; Manger, J.P.; Talley, E.M.; Scammell, T.E.; Tonegawa, S. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc. Natl. Acad. Sci. USA 2005, 102, 1743–1748. [Google Scholar] [CrossRef]
- Choi, S.; Yu, E.; Lee, S.; Llinás, R.R. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness. Proc. Natl. Acad. Sci. USA 2015, 112, 7839–7844. [Google Scholar] [CrossRef]
- Cantor, R.M.; Kono, N.; Duvall, J.A.; Alvarez-Retuerto, A.; Stone, J.L.; Alarcón, M.; Nelson, S.F.; Geschwind, D.H. Replication of autism linkage: Fine-mapping peak at 17q21. Am. J. Hum. Genet. 2005, 76, 1050–1056. [Google Scholar] [CrossRef]
- Strom, S.; Stone, J.; ten Bosch, J.; Merriman, B.; Cantor, R.; Geschwind, D.; Nelson, S. High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Mol. Psychiatry 2010, 15, 996–1005. [Google Scholar] [CrossRef]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.; Narzisi, G.; Leotta, A.; et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Chemin, J.; Siquier-Pernet, K.; Nicouleau, M.; Barcia, G.; Ahmad, A.; Medina-Cano, D.; Hanein, S.; Altin, N.; Hubert, L.; Bole-Feysot, C.; et al. OUP accepted manuscript. Brain 2018, 141, 1998–2013. [Google Scholar] [CrossRef]
- Study, T.; Fitzgerald, T.; Gerety, S.; Jones, W.; van Kogelenberg, M.; King, D.; McRae, J.; Morley, K.; Parthiban, V.; Al-Turki, S.; et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature 2015, 519, 223–228. [Google Scholar]
- Gangarossa, G.; Laffray, S.; Bourinet, E.; Valjent, E. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Front. Behav. Neurosci. 2014, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Shen, J.W.; Chung, N.C.; Min, M.Y.; Cheng, S.J.; Liu, I.Y. Retrieval of context-associated memory is dependent on the Ca(v)3.2 T-type calcium channel. PLoS ONE 2012, 7, e29384. [Google Scholar]
- Pellegrini, C.; Lecci, S.; Lüthi, A.; Astori, S. Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca(2+) Channels. Sleep 2016, 39, 875–885. [Google Scholar] [CrossRef]
- Crunelli, V.; David, F.; Leresche, N.; Lambert, R.C. Role for T-type Ca2+ channels in sleep waves. Pflugers Arch. 2014, 466, 735–745. [Google Scholar] [CrossRef]
- Splawski, I.; Yoo, D.S.; Stotz, S.C.; Cherry, A.; Clapham, D.E.; Keating, M.T. CACNA1H mutations in autism spectrum disorders. J. Biol. Chem. 2006, 281, 22085–22091. [Google Scholar] [CrossRef]
- Chourasia, N.; Ossó-Rivera, H.; Ghosh, A.; Von Allmen, G.; Koenig, M.K. Expanding the Phenotypic Spectrum of CACNA1H Mutations. Pediatr. Neurol. 2019, 93, 50–55. [Google Scholar] [CrossRef]
- D’Gama, A.M.; Pochareddy, S.; Li, M.; Jamuar, S.S.; Reiff, R.E.; Lam, A.N.; Sestan, N.; Walsh, C.A. Targeted DNA Sequencing from Autism Spectrum Disorder Brains Implicates Multiple Genetic Mechanisms. Neuron 2015, 88, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Iossifov, I.; Levy, D.; Allen, J.; Ye, K.; Ronemus, M.; Lee, Y.H.; Yamrom, B.; Wigler, M. Low load for disruptive mutations in autism genes and their biased transmission. Proc. Natl. Acad. Sci. USA 2015, 112, E5600–E5607. [Google Scholar] [CrossRef] [Green Version]
- Takata, A.; Miyake, N.; Tsurusaki, Y.; Fukai, R.; Miyatake, S.; Koshimizu, E.; Kushima, I.; Okada, T.; Morikawa, M.; Uno, Y.; et al. Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder. Cell Rep. 2018, 22, 734–747. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Fan, C.C.; Mäki-Marttunen, T.; Thompson, W.K.; Schork, A.J.; Bettella, F.; Djurovic, S.; Dale, A.M.; Andreassen, O.A.; Wang, Y.; et al. A molecule-based genetic association approach implicates a range of voltage-gated calcium channels associated with schizophrenia. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2018, 177, 454–467. [Google Scholar] [CrossRef]
- Astori, S.; Wimmer, R.D.; Prosser, H.M.; Corti, C.; Corsi, M.; Liaudet, N.; Volterra, A.; Franken, P.; Adelman, J.P.; Lüthi, A. The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc. Natl. Acad. Sci. USA 2011, 108, 13823–13828. [Google Scholar] [CrossRef]
- Liu, X.B.; Murray, K.D.; Jones, E.G. Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J. Comp. Neurol. 2011, 519, 1181–1195. [Google Scholar] [CrossRef]
- Gulsuner, S.; Walsh, T.; Watts, A.C.; Lee, M.K.; Thornton, A.M.; Casadei, S.; Rippey, C.; Shahin, H.; Nimgaonkar, V.L.; Go, R.; et al. Spatial and Temporal Mapping of De Novo Mutations in Schizophrenia to a Fetal Prefrontal Cortical Network. Cell 2013, 154, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Andrade, A.; Hope, J.; Allen, A.; Yorgan, V.; Lipscombe, D.; Pan, J. A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity. Sci. Rep. 2016, 6, 34233. [Google Scholar] [CrossRef] [Green Version]
- Irish Schizophrenia Genomics Consortium and the Welcome Trust Case Control Consortium 2. Genome-Wide Association Study Implicates HLA-C*01:02 as a Risk Factor at the Major Histocompatibility Complex Locus in Schizophrenia. Biol. Psychiatry 2012, 72, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Liu, Y.; Chen, J.; Guo, Q.; Liu, K.; Wen, Z.; Zhou, Z.; Song, Z.; Zhou, J.; He, L.; et al. Genetic risk between the CACNA1I gene and schizophrenia in Chinese Uygur population. Hereditas 2017, 155, 5. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, D.; Wei, L.; Luo, X.-J. Further evidence for the genetic association between CACNA1I and schizophrenia. Hereditas 2018, 155, 16. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, L.; Ni, T.; Liu, D.; Chen, G.; Yan, Z.; Lin, H.; Guan, F.; Rice, J.P. Voltage-gated calcium channel activity and complex related genes and schizophrenia: A systematic investigation based on Han Chinese population. J. Psychiatr. Res. 2018, 106, 99–105. [Google Scholar] [CrossRef]
- Lam, M.; Trampush, J.W.; Yu, J.; Knowles, E.; Davies, G.; Liewald, D.C.; Starr, J.M.; Djurovic, S.; Melle, I.; Sundet, K.; et al. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets. Cell Rep. 2017, 21, 2597–2613. [Google Scholar] [CrossRef] [Green Version]
- Merikanto, I.; Utge, S.; Lahti, J.; Kuula, L.; Makkonen, T.; Lahti-Pulkkinen, M.; Heinonen, K.; Räikkönen, K.; Andersson, S.; Strandberg, T.; et al. Genetic risk factors for schizophrenia associate with sleep spindle activity in healthy adolescents. J. Sleep Res. 2019, 28, e12762. [Google Scholar] [CrossRef]
- Sanchez-Roige, S.; Fontanillas, P.; Elson, S.L.; Gray, J.C.; de Wit, H.; MacKillop, J.; Palmer, A.A. Genome-wide association studies of impulsive personality traits (BIS-11 and UPPSP) and drug experimentation in up to 22,861 adult research participants identify loci in the CACNA1I and CADM2 genes. J. Neurosci. 2019, 39, 2562–2572. [Google Scholar] [CrossRef]
- Dalley, J.W.; Robbins, T.W. Fractionating impulsivity: Neuropsychiatric implications. Nat. Rev. Neurosci. 2017, 18, 158–171. [Google Scholar] [CrossRef]
- Elia, J.; Glessner, J.T.; Wang, K.; Takahashi, N.; Shtir, C.J.; Hadley, D.; Sleiman, P.M.; Zhang, H.; Kim, C.E.; Robison, R.; et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat. Genet. 2012, 44, 78–84. [Google Scholar] [CrossRef]
- Hussman, J.P.; Chung, R.-H.; Griswold, A.J.; Jaworski, J.M.; Salyakina, D.; Ma, D.; Konidari, I.; Whitehead, P.L.; Vance, J.M.; Martin, E.R.; et al. A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism. Mol. Autism 2011, 2, 1. [Google Scholar] [CrossRef]
- Geisler, S.; Schöpf, C.L.; Stanika, R.; Kalb, M.; Campiglio, M.; Repetto, D.; Traxler, L.; Missler, M.; Obermair, G.J. Presynaptic α2δ-2 calcium channel subunits regulate postsynaptic GABAA-receptor abundance and axonal wiring. J. Neurosci. 2019, 39, 2581–2605. [Google Scholar] [CrossRef]
- Field, M.J.; Cox, P.J.; Stott, E.; Melrose, H.; Offord, J.; Su, T.Z.; Bramwell, S.; Corradini, L.; England, S.; Winks, J.; et al. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc. Natl. Acad. Sci. USA 2006, 103, 17537–17542. [Google Scholar] [CrossRef]
- Fuller-Bicer, G.A.; Varadi, G.; Koch, S.E.; Ishii, M.; Bodi, I.; Kadeer, N.; Muth, J.N.; Mikala, G.; Petrashevskaya, N.N.; Jordan, M.A.; et al. Targeted disruption of the voltage-dependent calcium channel alpha2/delta-1-subunit. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H117–H124. [Google Scholar] [CrossRef]
- Patel, R.; Bauer, C.S.; Nieto-Rostro, M.; Margas, W.; Ferron, L.; Chaggar, K.; Crews, K.; Ramirez, J.D.; Bennett, D.L.; Schwartz, A.; et al. α2δ-1 gene deletion affects somatosensory neuron function and delays mechanical hypersensitivity in response to peripheral nerve damage. J. Neurosci. 2013, 33, 16412–16426. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhang, X.L.; Matthews, E.A.; Li, K.W.; Kurwa, A.; Boroujerdi, A.; Gross, J.; Gold, M.S.; Dickenson, A.H.; Feng, G.; et al. Calcium channel alpha2delta1 subunit mediates spinal hyperexcitability in pain modulation. Pain 2006, 125, 20–34. [Google Scholar] [CrossRef]
- Ikeda, M.; Shimasaki, A.; Takahashi, A.; Kondo, K.; Saito, T.; Kawase, K.; Esaki, K.; Otsuka, Y.; Mano, K.; Kubo, M.; et al. Genome-Wide Environment Interaction Between Depressive State and Stressful Life Events. J. Clin. Psychiatry 2016, 77, e29–e30. [Google Scholar] [CrossRef]
- Winham, S.J.; Cuellar-Barboza, A.B.; McElroy, S.L.; Oliveros, A.; Crow, S.; Colby, C.L.; Choi, D.-S.; Chauhan, M.; Frye, M.A.; Biernacka, J.M. Bipolar disorder with comorbid binge eating history: A genome-wide association study implicates APOB. J. Affect. Disord. 2014, 165, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Brodbeck, J.; Davies, A.; Courtney, J.M.; Meir, A.; Balaguero, N.; Canti, C.; Moss, F.J.; Page, K.M.; Pratt, W.S.; Hunt, S.P.; et al. The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated alpha 2 delta-2 protein with abnormal function. J. Biol. Chem. 2002, 277, 7684–7693. [Google Scholar] [CrossRef]
- Donato, R.; Page, K.M.; Koch, D.; Nieto-Rostro, M.; Foucault, I.; Davies, A.; Wilkinson, T.; Rees, M.; Edwards, F.A.; Dolphin, A.C. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression. J. Neurosci. 2006, 26, 12576–12586. [Google Scholar] [CrossRef]
- Ivanov, S.V.; Ward, J.M.; Tessarollo, L.; McAreavey, D.; Sachdev, V.; Fananapazir, L.; Banks, M.K.; Morris, N.; Djurickovic, D.; Devor-Henneman, D.E.; et al. Cerebellar ataxia, seizures, premature death, and cardiac abnormalities in mice with targeted disruption of the Cacna2d2 gene. Am. J. Pathol. 2004, 165, 1007–1018. [Google Scholar] [CrossRef]
- Pippucci, T.; Parmeggiani, A.; Palombo, F.; Maresca, A.; Angius, A.; Crisponi, L.; Cucca, F.; Liguori, R.; Valentino, M.L.; Seri, M.; et al. A novel null homozygous mutation confirms CACNA2D2 as a gene mutated in epileptic encephalopathy. PLoS ONE 2013, 8, e82154. [Google Scholar] [CrossRef]
- Brill, J.; Klocke, R.; Paul, D.; Boison, D.; Gouder, N.; Klugbauer, N.; Hofmann, F.; Becker, C.M.; Becker, K. entla, a novel epileptic and ataxic Cacna2d2 mutant of the mouse. J. Biol. Chem. 2004, 279, 7322–7330. [Google Scholar] [CrossRef]
- Rodríguez-López, J.; Sobrino, B.; Amigo, J.; Carrera, N.; Brenlla, J.; Agra, S.; Paz, E.; Carracedo, Á.; Páramo, M.; Arrojo, M.; et al. Identification of putative second genetic hits in schizophrenia carriers of high-risk copy number variants and resequencing in additional samples. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 585–592. [Google Scholar] [CrossRef]
- Pirone, A.; Kurt, S.; Zuccotti, A.; Rüttiger, L.; Pilz, P.; Brown, D.H.; Franz, C.; Schweizer, M.; Rust, M.B.; Rübsamen, R.; et al. α2δ3 Is Essential for Normal Structure and Function of Auditory Nerve Synapses and Is a Novel Candidate for Auditory Processing Disorders. J. Neurosci. 2014, 34, 434–445. [Google Scholar] [CrossRef]
- Landmann, J.; Richter, F.; Oros-Peusquens, A.-M.; Shah, J.N.; Classen, J.; Neely, G.G.; Richter, A.; Penninger, J.M.; Bechmann, I. Neuroanatomy of pain-deficiency and cross-modal activation in calcium channel subunit (CACN) α2δ3 knockout mice. Brain Struct. Funct. 2018, 223, 111–130. [Google Scholar] [CrossRef]
- Engels, G.; Francke, A.L.; van Meijel, B.; Douma, J.G.; de Kam, H.; Wesselink, W.; Houtjes, W.; Scherder, E.J. Clinical pain in schizophrenia: A systematic review. J. Pain 2014, 15, 457–467. [Google Scholar] [CrossRef]
- Moore, D.J. Acute pain experience in individuals with autism spectrum disorders: A review. Autism 2015, 19, 387–399. [Google Scholar] [CrossRef]
- Neufeld, J.; Roy, M.; Zapf, A.; Sinke, C.; Emrich, H.M.; Prox-Vagedes, V.; Dillo, W.; Zedler, M. Is synesthesia more common in patients with Asperger syndrome. Front. Hum. Neurosci. 2013, 7, 847. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Johnson, D.; Asher, J.; Wheelwright, S.; Fisher, S.E.; Gregersen, P.K.; Allison, C. Is synaesthesia more common in autism. Mol. Autism 2013, 4, 40. [Google Scholar] [CrossRef]
- Yuen, R.K.; Merico, D.; Bookman, M.; Howe, J.L.; Thiruvahindrapuram, B.; Patel, R.V.; Whitney, J.; Deflaux, N.; Bingham, J.; Wang, Z.; et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 2017, 20, 602–611. [Google Scholar] [CrossRef]
- Girirajan, S.; Dennis, M.Y.; Baker, C.; Malig, M.; Coe, B.P.; Campbell, C.D.; Mark, K.; Vu, T.H.; Alkan, C.; Cheng, Z.; et al. Refinement and Discovery of New Hotspots of Copy-Number Variation Associated with Autism Spectrum Disorder. Am. J. Hum. Genet. 2013, 92, 221–237. [Google Scholar] [CrossRef] [Green Version]
- Stessman, H.A.; Xiong, B.; Coe, B.P.; Wang, T.; Hoekzema, K.; Fenckova, M.; Kvarnung, M.; Gerdts, J.; Trinh, S.; Cosemans, N.; et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 2017, 49, 515–526. [Google Scholar] [CrossRef]
- Paunio, T.; Arajärvi, R.; Terwilliger, J.D.; Hiekkalinna, T.; Haimi, P.; Partonen, T.; Lönnqvist, J.; Peltonen, L.; Varilo, T. Linkage analysis of schizophrenia controlling for population substructure. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150B, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, T.A.; Swerdlow, N.R.; Gur, R.E.; Cadenhead, K.S.; Calkins, M.E.; Dobie, D.J.; Freedman, R.; Green, M.F.; Gur, R.C.; Lazzeroni, L.C.; et al. Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am. J. Psychiatry 2013, 170, 521–532. [Google Scholar] [CrossRef]
- Li, J.; Yoshikawa, A.; Brennan, M.D.; Ramsey, T.L.; Meltzer, H.Y. Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophr. Res. 2018, 192, 194–204. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Perrone-Bizzozero, N.I.; Turner, J.A.; Calhoun, V.D. Regional enrichment analyses on genetic profiles for schizophrenia and bipolar disorder. Schizophr. Res. 2018, 192, 240–246. [Google Scholar] [CrossRef]
- Meda, S.A.; Ruaño, G.; Windemuth, A.; O’Neil, K.; Berwise, C.; Dunn, S.M.; Boccaccio, L.E.; Narayanan, B.; Kocherla, M.; Sprooten, E.; et al. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc. Natl. Acad. Sci. USA 2014, 111, E2066–E2075. [Google Scholar] [CrossRef] [Green Version]
- Qin, N.; Yagel, S.; Momplaisir, M.-L.; Codd, E.E.; D’Andrea, M.R. Molecular Cloning and Characterization of the Human Voltage-Gated Calcium Channel α2δ-4 Subunit. Mol. Pharm. 2002, 62, 485–496. [Google Scholar] [CrossRef]
- Kerov, V.; Laird, J.G.; Joiner, M.L.; Knecht, S.; Soh, D.; Hagen, J.; Gardner, S.H.; Gutierrez, W.; Yoshimatsu, T.; Bhattarai, S.; et al. α2δ-4 Is Required for the Molecular and Structural Organization of Rod and Cone Photoreceptor Synapses. J. Neurosci. 2018, 38, 6145–6160. [Google Scholar] [CrossRef]
- Wycisk, K.A.; Zeitz, C.; Feil, S.; Wittmer, M.; Forster, U.; Neidhardt, J.; Wissinger, B.; Zrenner, E.; Wilke, R.; Kohl, S.; et al. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am. J. Hum. Genet. 2006, 79, 973–977. [Google Scholar] [CrossRef]
- Wycisk, K.A.; Budde, B.; Feil, S.; Skosyrski, S.; Buzzi, F.; Neidhardt, J.; Glaus, E.; Nürnberg, P.; Ruether, K.; Berger, W. Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3523–3530. [Google Scholar] [CrossRef]
- Bossche, M.J.; Strazisar, M.; Bruyne, S.; Bervoets, C.; Lenaerts, A.; Zutter, S.; Nordin, A.; Norrback, K.; Goossens, D.; Rijk, P.; et al. Identification of a CACNA2D4 deletion in late onset bipolar disorder patients and implications for the involvement of voltage-dependent calcium channels in psychiatric disorders. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2012, 159B, 465–475. [Google Scholar] [CrossRef]
- Prabhu, S.; Pe’er, I. Ultrafast genome-wide scan for SNP–SNP interactions in common complex disease. Genome Res. 2012, 22, 2230–2240. [Google Scholar] [CrossRef]
- Smith, M.; Flodman, P.L.; Gargus, J.J.; Simon, M.T.; Verrell, K.; Haas, R.; Reiner, G.E.; Naviaux, R.; Osann, K.; Spence, A.M.; et al. Mitochondrial and ion channel gene alterations in autism. Biochim. Biophys. Acta BBA Bioenerg. 2012, 1817, 1796–1802. [Google Scholar] [CrossRef] [Green Version]
- Strube, C.; Beurg, M.; Powers, P.A.; Gregg, R.G.; Coronado, R. Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit. Biophys. J. 1996, 71, 2531–2543. [Google Scholar] [CrossRef]
- Trikalinos, T.A.; Karvouni, A.; Zintzaras, E.; Ylisaukko-oja, T.; Peltonen, L.; Järvelä, I.; Ioannidis, J.P. A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Mol. Psychiatry 2006, 11, 29–36. [Google Scholar] [CrossRef]
- Madison, J.; Zhou, F.; Nigam, A.; Hussain, A.; Barker, D.; Nehme, R.; van der Ven, K.; Hsu, J.; Wolf, P.; Fleishman, M.; et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol. Psychiatry 2015, 20, 703–717. [Google Scholar] [CrossRef]
- Weissgerber, P.; Held, B.; Bloch, W.; Kaestner, L.; Chien, K.R.; Fleischmann, B.K.; Lipp, P.; Flockerzi, V.; Freichel, M. Reduced Cardiac L-Type Ca2+ Current in Cavβ2−/− Embryos Impairs Cardiac Development and Contraction with Secondary Defects in Vascular Maturation. Circ. Res. 2006, 99, 749–757. [Google Scholar] [CrossRef]
- Ball, S.L.; Powers, P.A.; Shin, H.S.; Morgans, C.W.; Peachey, N.S.; Gregg, R.G. Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1595–1603. [Google Scholar]
- Neef, J.; Gehrt, A.; Bulankina, A.V.; Meyer, A.C.; Riedel, D.; Gregg, R.G.; Strenzke, N.; Moser, T. The Ca2+ channel subunit beta2 regulates Ca2+ channel abundance and function in inner hair cells and is required for hearing. J. Neurosci. 2009, 29, 10730–10740. [Google Scholar] [CrossRef]
- Ripke, S.; Sanders, A.R.; Kendler, K.S.; Levinson, D.F.; Sklar, P.; Holmans, P.A.; Lin, D.Y.; Duan, J.; Ophoff, R.A.; Andreassen, O.A.; et al. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 2011, 43, 969–976. [Google Scholar]
- Roussos, P.; Mitchell, A.C.; Voloudakis, G.; Fullard, J.F.; Pothula, V.M.; Tsang, J.; Stahl, E.A.; Georgakopoulos, A.; Ruderfer, D.M.; Charney, A.; et al. A Role for Noncoding Variation in Schizophrenia. Cell Rep. 2014, 9, 1417–1429. [Google Scholar] [CrossRef]
- Juraeva, D.; Haenisch, B.; Zapatka, M.; Frank, J.; Investigators, G.; Group, P.-G.; Witt, S.H.; Mühleisen, T.W.; Treutlein, J.; Strohmaier, J.; et al. Integrated Pathway-Based Approach Identifies Association between Genomic Regions at CTCF and CACNB2 and Schizophrenia. PLoS Genet. 2014, 10, e1004345. [Google Scholar] [CrossRef]
- Wang, K.-S.; Liu, X.-F.; Aragam, N. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr. Res. 2010, 124, 192–199. [Google Scholar] [CrossRef]
- Adkins, D.E.; Aberg, K.; McClay, J.L.; Bukszár, J.; Zhao, Z.; Jia, P.; Stroup, T.S.; Perkins, D.; McEvoy, J.P.; Lieberman, J.A.; et al. Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol. Psychiatry 2011, 16, 321–332. [Google Scholar] [CrossRef]
- Andreassen, O.A.; Thompson, W.K.; Schork, A.J.; Ripke, S.; Mattingsdal, M.; Kelsoe, J.R.; Kendler, K.S.; O’Donovan, M.C.; Rujescu, D.; Werge, T.; et al. Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate. PLoS Genet. 2013, 9, e1003455. [Google Scholar] [CrossRef]
- Cocchi, E.; Fabbri, C.; Han, C.; Lee, S.-J.; Patkar, A.A.; Masand, P.S.; Pae, C.-U.; Serretti, A. Genome-wide association study of antidepressant response: Involvement of the inorganic cation transmembrane transporter activity pathway. BMC Psychiatry 2016, 16, 106. [Google Scholar] [CrossRef]
- Breitenkamp, A.F.; Matthes, J.; Nass, R.; Sinzig, J.; Lehmkuhl, G.; Nürnberg, P.; Herzig, S. Rare Mutations of CACNB2 Found in Autism Spectrum Disease-Affected Families Alter Calcium Channel Function. PLoS ONE 2014, 9, e95579. [Google Scholar] [CrossRef]
- Yuen, R.K.; Thiruvahindrapuram, B.; Merico, D.; Walker, S.; Tammimies, K.; Hoang, N.; Chrysler, C.; Nalpathamkalam, T.; Pellecchia, G.; Liu, Y.; et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat. Med. 2015, 21, 185–191. [Google Scholar] [CrossRef]
- Jeon, D.; Song, I.; Guido, W.; Kim, K.; Kim, E.; Oh, U.; Shin, H.S. Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory. J. Biol. Chem. 2008, 283, 12093–12101. [Google Scholar] [CrossRef]
- Murakami, M.; Nakagawasai, O.; Yanai, K.; Nunoki, K.; Tan-No, K.; Tadano, T.; Iijima, T. Modified behavioral characteristics following ablation of the voltage-dependent calcium channel beta3 subunit. Brain Res. 2007, 1160, 102–112. [Google Scholar] [CrossRef]
- Group, P.; Sklar, P.; Ripke, S.; Scott, L.J.; Andreassen, O.A.; Cichon, S.; Craddock, N.; Edenberg, H.J.; Nurnberger, J.I., Jr.; Rietschel, M.; et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 2011, 43, 977–983. [Google Scholar]
- Van Hulzen, K.; Scholz, C.J.; Franke, B.; Ripke, S.; Klein, M.; McQuillin, A.; Sonuga-Barke, E.J.; Group, P.; Kelsoe, J.R.; Landén, M.; et al. Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence from Genome-wide Association Study Meta-analysis. Biol. Psychiatry 2017, 82, 634–641. [Google Scholar] [CrossRef]
- Maycox, P.; Kelly, F.; Taylor, A.; Bates, S.; Reid, J.; Logendra, R.; Barnes, M.; Larminie, C.; Jones, N.; Lennon, M.; et al. Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Mol. Psychiatry 2009, 14, 1083–1094. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Haupt, A.; Bildl, W.; Schindler, J.; Knaus, H.-G.; Meissner, M.; Rammner, B.; Striessnig, J.; Flockerzi, V.; Fakler, B.; et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc. Natl. Acad. Sci. USA 2010, 107, 14950–14957. [Google Scholar] [CrossRef] [Green Version]
- Hosford, D.A.; Lin, F.H.; Wang, Y.I.; Caddick, S.J.; Rees, M.; Parkinson, N.J.; Barclay, J.; Cox, R.D.; Gardiner, R.M.; Denton, P. Studies of the lethargic (lh/lh) mouse model of absence seizures: Regulatory mechanisms and identification of the lh gene. Adv. Neurol. 1999, 79, 239–252. [Google Scholar]
- Coleman, J.R.; Lester, K.J.; Keers, R.; Roberts, S.; Curtis, C.; Arendt, K.; Bögels, S.; Cooper, P.; Creswell, C.; Dalgleish, T.; et al. Genome-wide association study of response to cognitive–behavioural therapy in children with anxiety disorders. Brit. J. Psychiatry 2016, 209, 236–243. [Google Scholar] [CrossRef]
- Johannessen Landmark, C.; Beiske, G.; Baftiu, A.; Burns, M.L.; Johannessen, S.I. Experience from therapeutic drug monitoring and gender aspects of gabapentin and pregabalin in clinical practice. Seizure 2015, 28, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Sofuoglu, M.; Rosenheck, R.; Petrakis, I. Pharmacological treatment of comorbid PTSD and substance use disorder: Recent progress. Addict. Behav. 2014, 39, 428–433. [Google Scholar] [CrossRef]
- Ng, F.; Hallam, K.; Lucas, N.; Berk, M. The role of lamotrigine in the management of bipolar disorder. Neuropsychiatr. Dis. Treat. 2007, 3, 463–474. [Google Scholar]
- Prabhavalkar, K.S.; Poovanpallil, N.B.; Bhatt, L.K. Management of bipolar depression with lamotrigine: An antiepileptic mood stabilizer. Front. Pharmacol. 2015, 6, 242. [Google Scholar] [CrossRef]
- Stefani, A.; Spadoni, F.; Siniscalchi, A.; Bernardi, G. Lamotrigine inhibits Ca2+ currents in cortical neurons: Functional implications. Eur. J. Pharmacol. 1996, 307, 113–116. [Google Scholar] [CrossRef]
- Weiergräber, M.; Henry, M.; Radhakrishnan, K.; Hescheler, J.; Schneider, T. Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel. J. Neurophysiol. 2007, 97, 3660–3669. [Google Scholar] [CrossRef]
- Xu, J.; Yabuki, Y.; Yu, M.; Fukunaga, K. T-type calcium channel enhancer SAK3 produces anti-depressant-like effects by promoting adult hippocampal neurogenesis in olfactory bulbectomized mice. J. Pharmacol. Sci. 2018, 137, 333–341. [Google Scholar] [CrossRef]
- Wang, S.; Yabuki, Y.; Matsuo, K.; Xu, J.; Izumi, H.; Sakimura, K.; Saito, T.; Saido, T.C.; Fukunaga, K. T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice. PLoS ONE 2018, 13, e0206986. [Google Scholar] [CrossRef]
Protein Name Gene Name Current Type | Expression Profile | Subfamily | Threshold of Activation |
---|---|---|---|
Cav1.1 CACNA1S L-type | Skeletal muscle (myocytes) | CaV1 | HVA (associated with CaVα2δ and Cavβ subunits) |
Cav1.2 CACNA1C L-type | Brain, cardiovascular system (smooth muscle of blood vessels, sinoatrial and atrioventricular nodes, cardiomyocytes), pancreatic islets, adrenal medulla (chromaffin cells), intestinal and bladder smooth muscle, sympathetic and sensory ganglia, pituitary gland. | ||
Cav1.3 CACNA1D L-type | Brain, cochlear and vestibular hair cells, retina, heart (sinoatrial and atrioventricular nodes, cardiomyocytes), pancreatic islets, adrenal medulla (chromaffin cells) and adrenal cortex, sympathetic and sensory ganglia, pituitary gland. | ||
Cav1.4 CACNA1F L-type | Retina (photoreceptors) | ||
Cav2.1 CACNA1A P/Q-type | Brain (broadly expressed but dominant in cerebellar Purkinje cells and glutamatergic neurons), spinal cord motor neurons, sympathetic and sensory ganglia, pancreas and pituitary | CaV2 | |
Cav2.2 CACNA1B N-type | Brain (broadly expressed but dominant in monoaminergic neurons, as well as cholecystokinin expressing interneurons), sympathetic and sensory ganglia | ||
Cav2.3 CACNA1E R-type | Brain, heart (atrial myocytes), testis, pituitary, pancreatic islets, gastrointestinal system, lungs | ||
Cav3.1 CACNA1G T-type | Brain, heart (sinoatrial node), aorta, immune system (T-cells), bone, lung, glands (pancreas, ovary, testis) | CaV3 | LVA (associated with CACHD1) |
Cav3.2 CACNA1H T-type | Brain, heart (sinoatrial node), kidney, liver, adrenal cortex, smooth muscle, sensory ganglia (low threshold mechanoreceptors) | ||
Cav3.3 CACNA1I T-type | Brain, thyroid, spleen, small intestine, adrenal gland |
CaV | Associated Disorder | Pharmacological Inhibitors | Potential Therapeutic Intervention for Psychiatric Fisorders |
---|---|---|---|
CaV1.1 | — | Dihydropyridines | Nimodipine (SCZ) Isradipine (BD, SCZ) Verapamil (BD) Diltiazem (BD) |
CaV1.2 | ASD, SCZ, BD, MDD, ADHD | ||
CaV1.3 | ASD, SCZ, BD, MDD, ADHD | ||
CaV1.4 | — | ||
CaV2.1 | SCZ, ADHD, MDD | ω-Agatoxin IVA | — |
CaV2.2 | SCZ, ASD, MDD | ω-Conotoxin GVIA | CNV2197944 (anxiety) Z160 (anxiety) |
CaV2.3 | ASD, MDD, SCZ | SNX 482 | Topiramate (PTSD) |
CaV3.1 | ASD | TTA-A2, TTA-P2, ProTx-I, ProTx-II | Sak3 (MDD) Ethosuximide (MDD) |
CaV3.2 | ASD, SCZ | ||
CaV3.3 | SCZ, ADHD, ASD | ||
CaVα2δ-1 | MDD, BD, SCZ | Gabapentin, pregabalin | Pregabalin (anxiety, SCZ) Gabapentin (anxiety, mood disorders) |
CaVα2δ-2 | SCZ | ||
CaVα2δ-3 | ASD, SCZ, BD | — | — |
CaVα2δ-4 | ASD, SCZ, BD, MDD, ADHD | ||
CaVβ1 | ASD, BD, SCZ | — | — |
CaVβ2 | ASD, SCZ, BD, MDD, ADHD | ||
CaVβ3 | ASD, BD, SCZ | ||
CaVβ4 | MDD, SCZ, anxiety disorders |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, A.; Brennecke, A.; Mallat, S.; Brown, J.; Gomez-Rivadeneira, J.; Czepiel, N.; Londrigan, L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int. J. Mol. Sci. 2019, 20, 3537. https://doi.org/10.3390/ijms20143537
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. International Journal of Molecular Sciences. 2019; 20(14):3537. https://doi.org/10.3390/ijms20143537
Chicago/Turabian StyleAndrade, Arturo, Ashton Brennecke, Shayna Mallat, Julian Brown, Juan Gomez-Rivadeneira, Natalie Czepiel, and Laura Londrigan. 2019. "Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders" International Journal of Molecular Sciences 20, no. 14: 3537. https://doi.org/10.3390/ijms20143537
APA StyleAndrade, A., Brennecke, A., Mallat, S., Brown, J., Gomez-Rivadeneira, J., Czepiel, N., & Londrigan, L. (2019). Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. International Journal of Molecular Sciences, 20(14), 3537. https://doi.org/10.3390/ijms20143537