Tear Metabolomics in Dry Eye Disease: A Review
Abstract
:1. Introduction
2. Dry Eye Disease
2.1. Risk Factors and Classification
2.2. Tear and Diagnostic Tests
3. Tear Sampling and Analysis
4. Metabolomic Studies of Tears in DED
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nelson, J.D.; Helms, H.; Fiscella, R.; Southwell, Y.; Hirsch, J.D. A new look at dry eye disease and its treatment. Adv. Ther. 2000, 17, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Tavares, P.F.; Fernandes, R.S.; Bernardes, T.F.; Bonfioli, A.A.; Soares, E. Dry eye disease. Semin. Ophthalmol. 2010, 25, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Zeev, M.S.-B.; Miller, D.D.; Latkany, R. Diagnosis of dry eye disease and emerging technologies. Clin. Ophthalmol. 2014, 8, 581–590. [Google Scholar] [PubMed]
- Rahman, M.Q.; Chuah, K.S.; Macdonald, E.C.A.; Trusler, J.P.M.; Ramaesh, K. The effect of pH, dilution, and temperature on the viscosity of ocular lubricants-shift in rheological parameters and potential clinical significance. Eye 2012, 26, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Dana, R.; Bradley, J.L.; Guerin, A.; Pivneva, I.; Stillman, I.Ö.; Evans, A.M.; Schaumberg, D.A. Estimated prevalence and incidence of dry eye disease based on coding analysis of a large, all-age united states health care system. Am. J. Ophthalmol. 2019, 202, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Barabino, S.; Labetoulle, M.; Rolando, M.; Messmer, E.M. Understanding symptoms and quality of life in patients with dry eye syndrome. Ocul. Surf. 2016, 14, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Messmer, E.M. The pathophysiology, diagnosis, and treatment of dry eye disease. Deutsches Ärzteblatt Int. 2015, 112, 71. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.; Patel, D.A.; Keith, M.S.; Snedecor, S.J. Economic and humanistic burden of dry eye disease in Europe, North America, and Asia: A systematic literature review. Ocul. Surf. 2016, 14, 144–167. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.; Chen, L.; Young, A. Depression and anxiety in dry eye disease: A systematic review and meta-analysis. Eye 2016, 30, 1558. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, X.; Lin, X.; Lin, H. The prevalence of depression and depressive symptoms among eye disease patients: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 46453. [Google Scholar] [CrossRef]
- Gomes, J.A.; Santo, R.M. The impact of dry eye disease treatment on patient satisfaction and quality of life: A review. Ocul. Surf. 2018, 17, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Gougerot, H. Insuffisance progressive et atrophie des glandes salivaires et muqueuses de la bouche, des conjonctives (et parfois des muqueuses nasale, laryngee, vulvaire): “Secheresse” de la bouche, des conjonctives, etc. Bull. Soc. Fr. Derm. Syph. 1925, 32, 376–379. [Google Scholar]
- Sjogren, H. Zur kenntnis der kerato-conjunctivitis sicca (keratitis filiformis bei hypofunction der tranendrusen). Acta Ophthalmol. 1933, 11, 1–151. [Google Scholar]
- Daniels, T.E. Do we need new diagnostic criteria for sjögren’s syndrome? La Presse Médicale 2012, 41, e441–e449. [Google Scholar] [CrossRef] [PubMed]
- Theander, E.; Wollheim, F.A. A note from Sweden: Recollection of henrik sjögren. In Sjögren’s Syndrome; Springer: Berlin, Germany, 2011; pp. 11–13. [Google Scholar]
- De Roetth, A. Lacrimation in normal eyes. AMA Arch. Ophthalmol. 1953, 49, 185–189. [Google Scholar] [CrossRef]
- Murube, J. Andrew de roetth (1893–1981): Dacryologist who introduced the term dry eye. Ocul. Surf. 2004, 2, 225–227. [Google Scholar] [CrossRef]
- Behrens, A.; Doyle, J.J.; Stern, L.; Chuck, R.S.; McDonnell, P.J.; Azar, D.T.; Dua, H.S.; Hom, M.; Karpecki, P.M.; Laibson, P.R. Dysfunctional tear syndrome: A delphi approach to treatment recommendations. Cornea 2006, 25, 900–907. [Google Scholar] [CrossRef]
- Lemp, A. Report of the national eye institute/industry workshop on clinical trials in dry eyes. Eye Cont. Lens 1995, 21, 221–232. [Google Scholar]
- Lemp, M.A.; Foulks, G.N. The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the International Dry Eye Workshop (2007). Ocul. Surf. 2007, 5, 75–92. [Google Scholar]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.-K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. Tfos dews ii definition and classification report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef]
- Tsubota, K.; Yokoi, N.; Shimazaki, J.; Watanabe, H.; Dogru, M.; Yamada, M.; Kinoshita, S.; Kim, H.-M.; Tchah, H.-W.; Hyon, J.Y. New perspectives on dry eye definition and diagnosis: A consensus report by the asia dry eye society. Ocul. Surf. 2017, 15, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Chillarón, J.C.; Díaz, R.; Ramón-Krauel, M. Omics tools for the genome-wide analysis of methylation and histone modifications. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2014; Volume 63, pp. 81–110. [Google Scholar]
- Tan, S.; Begley, P.; Mullard, G.; Hollywood, K.; Bishop, P. Introduction to metabolomics and its applications in ophthalmology. Eye 2016, 30, 773. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451. [Google Scholar] [CrossRef]
- Riekeberg, E.; Powers, R. New frontiers in metabolomics: From measurement to insight. F1000Research 2017, 6, 1148. [Google Scholar] [CrossRef]
- Antignac, J.-P.; de Wasch, K.; Monteau, F.; De Brabander, H.; Andre, F.; Le Bizec, B. The ion suppression phenomenon in liquid chromatography–mass spectrometry and its consequences in the field of residue analysis. Anal. Chim. Acta 2005, 529, 129–136. [Google Scholar] [CrossRef]
- Gross, R.W. The evolution of lipidomics through space and time. BBA Mol. Cell Biol. Lipids 2017, 1862, 731–739. [Google Scholar] [CrossRef]
- Smoleńska, Ż.; Zdrojewski, Z. Metabolomics and its potential in diagnosis, prognosis and treatment of rheumatic diseases. Reumatologia 2015, 53, 152. [Google Scholar] [CrossRef]
- Tamhane, M.; Cabrera-Ghayouri, S.; Abelian, G.; Viswanath, V. Review of biomarkers in ocular matrices: Challenges and opportunities. Pharm. Res. 2019, 36, 40. [Google Scholar] [CrossRef]
- Green-Church, K.B.; Nichols, K.K.; Kleinholz, N.M.; Zhang, L.; Nichols, J.J. Investigation of the human tear film proteome using multiple proteomic approaches. Mol. Vis. 2008, 14, 456. [Google Scholar]
- Yazdani, M.; Chen, X.; Tashbayev, B.; Utheim, Ø.A.; Ræder, S.; Lagli, N.; Stojanovic, A.; Dartt, D.A.; Utheim, T.P. Tear production levels and dry eye disease severity in a large norwegian cohort. Curr. Eye Res. 2018, 43, 1465–1470. [Google Scholar] [CrossRef]
- Barbosa-Breda, J.; Himmelreich, U.; Ghesquière, B.; Rocha-Sousa, A.; Stalmans, I. Clinical metabolomics and glaucoma. Ophthalmic Res. 2018, 59, 1–6. [Google Scholar] [CrossRef]
- Marciano, D.P.; Snyder, M.P. Personalized metabolomics. In High-Throughput Metabolomics; Springer: Berlin, Germany, 2019; pp. 447–456. [Google Scholar]
- Reinhold, D.; Pielke-Lombardo, H.; Jacobson, S.; Ghosh, D.; Kechris, K. Pre-analytic considerations for mass spectrometry-based untargeted metabolomics data. In High-Throughput Metabolomics; Springer: Berlin, Germany, 2019; pp. 323–340. [Google Scholar]
- Williams, R. Biochemical Individuality; John Wiley & Sons, Inc.: New York, NY, USA, 1956. [Google Scholar]
- Dalgliesh, C.; Horning, E.; Horning, M.; Knox, K.L.; Yarger, K. A gas-liquid-chromatographic procedure for separating a wide range of metabolites occurring in urine or tissue extracts. Biochem. J. 1966, 101, 792–810. [Google Scholar] [CrossRef]
- Horning, E.C.; Horning, M.-G. Metabolic profiles: Gas-phase methods for analysis of metabolites. Clin. Chem. 1971, 17, 802–809. [Google Scholar]
- Kell, D.B.; Oliver, S.G. The metabolome 18 years on: A concept comes of age. Metabolomics 2016, 12, 148. [Google Scholar] [CrossRef]
- Mendrick, D.L.; Schnackenberg, L. Genomic and metabolomic advances in the identification of disease and adverse event biomarkers. Biomark. Med. 2009, 3, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Midelfart, A. Metabonomics—A new approach in ophthalmology. Acta Ophthalmol. 2009, 87, 697–703. [Google Scholar] [CrossRef]
- Lauwen, S.; de Jong, E.K.; Lefeber, D.J.; den Hollander, A.I. Omics biomarkers in ophthalmology. Invest. Ophthalmol. Vis. Sci. 2017, 58, BIO88–BIO98. [Google Scholar] [CrossRef]
- Chen, L.; Gao, Y.; Wang, L.Z.; Cheung, N.; Tan, G.S.; Cheung, G.C.M.; Beuerman, R.W.; Wong, T.Y.; Chan, E.C.Y.; Zhou, L. Recent advances in the applications of metabolomics in eye research. Anal. Chim. Acta 2018, 1037, 28–40. [Google Scholar] [CrossRef]
- Stern, M.E.; Beuerman, R.W.; Fox, R.I.; Gao, J.; Mircheff, A.K.; Pflugfelder, S.C. The pathology of dry eye: The interaction between the ocular surface and lacrimal glands. Cornea 1998, 17, 584–589. [Google Scholar] [CrossRef]
- Maurice, D.M. Structures and fluids involved in the penetration of topically applied drugs. Int. Ophthalmol. Clin. 1980, 20, 7–20. [Google Scholar] [CrossRef]
- Posa, A.; Bräuer, L.; Schicht, M.; Garreis, F.; Beileke, S.; Paulsen, F. Schirmer strip vs. Capillary tube method: Non-invasive methods of obtaining proteins from tear fluid. Ann. Anat. 2013, 195, 137–142. [Google Scholar] [CrossRef]
- Bylsma, L.M.; Gračanin, A.; Vingerhoets, A.J. The neurobiology of human crying. Clin. Auton. Res. 2019, 29, 63–73. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Lane, K.J.; Ousler, G.W., III; Angjeli, E.; Smith, L.M.; Abelson, M.B. Blink: Characteristics, controls, and relation to dry eyes. Curr. Eye Res. 2018, 43, 52–66. [Google Scholar] [CrossRef]
- Sridhar, M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018, 66, 190. [Google Scholar]
- Willshire, C.; Buckley, R.J.; Bron, A.J. Central connections of the lacrimal functional unit. Cornea 2017, 36, 898–907. [Google Scholar] [CrossRef]
- Bron, A.; Benjamin, L.; Snibson, G. Meibomian gland disease: Classification and grading of lid changes. Eye 1991, 5, 395–411. [Google Scholar] [CrossRef]
- Brewitt, H.; Sistani, F. Dry eye disease: The scale of the problem. Surv. Ophthalmol. 2001, 45 (Suppl. 2), S199–S202. [Google Scholar] [CrossRef]
- Schaumberg, D.A.; Buring, J.E.; Sullivan, D.A.; Dana, M.R. Hormone replacement therapy and dry eye syndrome. JAMA 2001, 286, 2114–2119. [Google Scholar] [CrossRef]
- Zegans, M.E.; Anninger, W.; Chapman, C.; Gordon, S.R. Ocular manifestations of hepatitis c virus infection. Curr. Opin. Ophthalmol. 2002, 13, 423–427. [Google Scholar] [CrossRef]
- Colev, M.; Engel, H.; Mayers, M.; Markowitz, M.; Cahill, L. Vegan diet and vitamin a deficiency. Clin. Pediatr. 2004, 43, 107–109. [Google Scholar] [CrossRef]
- Miljanović, B.; Trivedi, K.A.; Dana, M.R.; Gilbard, J.P.; Buring, J.E.; Schaumberg, D.A. Relation between dietary n−3 and n−6 fatty acids and clinically diagnosed dry eye syndrome in women. Am. J. Clin. Nutr. 2005, 82, 887–893. [Google Scholar] [CrossRef]
- Nebbioso, M.; Del Regno, P.; Gharbiya, M.; Sacchetti, M.; Plateroti, R.; Lambiase, A. Analysis of the pathogenic factors and management of dry eye in ocular surface disorders. Int. J. Mol. Sci. 2017, 18, 1764. [Google Scholar] [CrossRef]
- Sriprasert, I.; Warren, D.W.; Mircheff, A.K.; Stanczyk, F.Z. Dry eye in postmenopausal women: A hormonal disorder. Menopause 2016, 23, 343–351. [Google Scholar] [CrossRef]
- Matossian, C.; McDonald, M.; Donaldson, K.E.; Nichols, K.K.; MacIver, S.; Gupta, P.K. Dry eye disease: Consideration for women’s health. J. Womens Health 2019, 28, 502–514. [Google Scholar] [CrossRef]
- De Paiva, C.S. Effects of aging in dry eye. Int. Ophthalmol. Clin. 2017, 57, 47. [Google Scholar] [CrossRef]
- Lin, J.B.; Tsubota, K.; Apte, R.S. A glimpse at the aging eye. NPJ Aging Mech. Dis. 2016, 2, 1–7. [Google Scholar] [CrossRef]
- McCusker, M.M.; Durrani, K.; Payette, M.J.; Suchecki, J. An eye on nutrition: The role of vitamins, essential fatty acids, and antioxidants in age-related macular degeneration, dry eye syndrome, and cataract. Clin. Dermatol. 2016, 34, 276–285. [Google Scholar] [CrossRef]
- Rapoport, Y.; Singer, J.M.; Ling, J.D.; Gregory, A.; Kohanim, S. A comprehensive review of sex disparities in symptoms, pathophysiology, and epidemiology of dry eye syndrome. Semin. Ophthalmol. 2016, 31, 325–336. [Google Scholar] [CrossRef]
- Al-Saedi, Z.; Zimmerman, A.; Devi Bachu, R.; Dey, S.; Shah, Z.; Baugh, R.; HS Boddu, S. Dry eye disease: Present challenges in the management and future trends. Curr. Pharm. Des. 2016, 22, 4470–4490. [Google Scholar] [CrossRef]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V. TFOS DEWS II pathophysiology report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef]
- Bron, A.J. The definition and classification of dry eye disease. In Dry Eye; Springer: Berlin, Germany, 2015; pp. 1–19. [Google Scholar]
- Benitez-del-Castillo, J.M.; Lemp, M.A. Ocular Surface Disorders; JP Medical Ltd.: London, UK, 2013. [Google Scholar]
- Nelson, J.D.; Craig, J.P.; Akpek, E.K.; Azar, D.T.; Belmonte, C.; Bron, A.J.; Clayton, J.A.; Dogru, M.; Dua, H.S.; Foulks, G.N. TFOS DEWS II introduction. Ocul. Surf. 2017, 15, 269–275. [Google Scholar] [CrossRef]
- Ding, C.; Tóth-Molnár, E.; Wang, N.; Zhou, L. Lacrimal gland, ocular surface, and dry eye. J. Ophthalmol. 2016, 2016. [Google Scholar] [CrossRef]
- De Souza, G.A.; de Godoy, L.M.; Mann, M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006, 7, R72. [Google Scholar] [CrossRef]
- Willcox, M.D.; Argüeso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U. TFOS DEWS II tear film report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef]
- Dumortier, G.; Chaumeil, J. Lachrymal determinations: Methods and updates on biopharmaceutical and clinical applications. Ophthalmic Res. 2004, 36, 183–194. [Google Scholar] [CrossRef]
- Schirmer, O.W.A. Handbuch der Gesamten Augenheilkunde: Mikroskopische Anatomie und Physiologie der Tränenorgane; Springer: Berlin, Germany, 1931. [Google Scholar]
- Nagataki, S.; Mishima, S. Pharmacokinetics of instilled drugs in the human eye. Int. Ophthalmol. Clin. 1980, 20, 33–49. [Google Scholar] [CrossRef]
- Prydal, J.I.; Campbell, F.W. Study of precorneal tear film thickness and structure by interferometry and confocal microscopy. Invest. Ophthalmol. Vis. Sci. 1992, 33, 1996–2005. [Google Scholar]
- Foulks, G.; Lemp, M.; Jester, J.; Sutphin, J.; Murube, J.; Novack, G. Report of the International Dry Eye Workshop (dews). Ocul. Surf. 2007, 5, 65–204. [Google Scholar] [CrossRef]
- Wolff, E. The muco-cutaneous junction of the lidmargin and the distribution of the tear fluid. Trans. Ophthalmol. Soc. UK 1946, 66, 291–308. [Google Scholar]
- Georgiev, G.A.; Eftimov, P.; Yokoi, N. Structure-function relationship of tear film lipid layer: A contemporary perspective. Exp. Eye Res. 2017, 163, 17–28. [Google Scholar] [CrossRef]
- Green-Church, K.B.; Butovich, I.; Willcox, M.; Borchman, D.; Paulsen, F.; Barabino, S.; Glasgow, B.J. The international workshop on meibomian gland dysfunction: Report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Invest. Ophthalmol. Vis. Sci. 2011, 52, 1979–1993. [Google Scholar] [CrossRef]
- Kim, T.; Donnenfeld, E.D.; Holland, E.J.; Kanellopoulos, A.J.; Mah, F.S.; Randleman, J.B.; Scoper, S.V.; Shamie, N.; Vroman, D.T. Meibomian Gland Dysfunction; American Society of Cataract and Refractive Surgery: Fairfax, VA, USA, 2011; pp. 1–8. [Google Scholar]
- Butovich, I.A. Tear film lipids. Exp. Eye Res. 2013, 117, 4–27. [Google Scholar] [CrossRef] [Green Version]
- Conrady, C.D.; Joos, Z.P.; Patel, B.C. The lacrimal gland and its role in dry eye. J. Ophthalmol. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Chhadva, P.; Goldhardt, R.; Galor, A. Meibomian gland disease: The role of gland dysfunction in dry eye disease. Ophthalmology 2017, 124, S20–S26. [Google Scholar] [CrossRef]
- Cwiklik, L. Tear film lipid layer: A molecular level view. Biochim. Biophys. Acta 2016, 1858, 2421–2430. [Google Scholar] [CrossRef]
- Millar, T.J.; Schuett, B.S. The real reason for having a meibomian lipid layer covering the outer surface of the tear film—A review. Exp. Eye Res. 2015, 137, 125–138. [Google Scholar] [CrossRef]
- Gipson, I.K. Goblet cells of the conjunctiva: A review of recent findings. Prog. Retin. Eye Res. 2016, 54, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Tiffany, J.M. The normal tear film. In Surgery for the Dry Eye; Karger Publishers: Basel, Switzerland, 2008; Volume 41, pp. 1–20. [Google Scholar]
- Flanagan, J.; Willcox, M. Role of lactoferrin in the tear film. Biochimie 2009, 91, 35–43. [Google Scholar] [CrossRef]
- Butovich, I.A. Lipidomics of human meibomian gland secretions: Chemistry, biophysics, and physiological role of meibomian lipids. Prog. Lipid Res. 2011, 50, 278–301. [Google Scholar] [CrossRef]
- Quah, J.H.M.; Tong, L.; Barbier, S. Patient acceptability of tear collection in the primary healthcare setting. Optom. Vis. Sci. 2014, 91, 452. [Google Scholar] [CrossRef]
- Sweeney, D.F.; Millar, T.J.; Raju, S.R. Tear film stability: A review. Exp. Eye Res. 2013, 117, 28–38. [Google Scholar] [CrossRef]
- Savini, G.; Prabhawasat, P.; Kojima, T.; Grueterich, M.; Espana, E.; Goto, E. The challenge of dry eye diagnosis. Clin. Ophthalmol. 2008, 2, 31–55. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, J.D.; Keith, M.S.; Sudharshan, L.; Snedecor, S.J. Associations between signs and symptoms of dry eye disease: A systematic review. Clin. Ophthalmol. 2015, 9, 1719. [Google Scholar] [CrossRef]
- Dohlman, T.H.; Ciralsky, J.B.; Lai, E.C. Tear film assessments for the diagnosis of dry eye. Curr. Opin. Allergy Clin. Immunol. 2016, 16, 487–491. [Google Scholar] [CrossRef]
- Bunya, V.Y.; Fuerst, N.M.; Pistilli, M.; McCabe, B.E.; Salvo, R.; Macchi, I.; Ying, G.-S.; Massaro-Giordano, M. Variability of tear osmolarity in patients with dry eye. JAMA Ophthalmol. 2015, 133, 662–667. [Google Scholar] [CrossRef]
- Vehof, J.; Smitt-Kamminga, N.S.; Nibourg, S.A.; Hammond, C.J. Predictors of discordance between symptoms and signs in dry eye disease. Ophthalmology 2017, 124, 280–286. [Google Scholar] [CrossRef]
- Skiadaresi, E.; Huang, J.; McAlinden, C. Diagnosis, treatment, and monitoring of dry eye disease. BMJ 2016, 354, i4617. [Google Scholar] [CrossRef]
- Yazdani, M.; Chen, X.; Tashbayev, B.; Utheim, Ø.A.; Ræder, S.; Hua, Y.; Eidet, J.R.; Stojanovic, A.; Dartt, D.A.; Utheim, T.P. Evaluation of the ocular surface disease index questionnaire as a discriminative test for clinical findings in dry eye disease patients. Curr. Eye Res. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Peral, A.; Carracedo, G.; Acosta, M.C.; Gallar, J.; Pintor, J. Increased levels of diadenosine polyphosphates in dry eye. Invest. Ophthalmol. Vis. Sci. 2006, 47, 4053–4058. [Google Scholar] [CrossRef]
- Pescosolido, N.; Imperatrice, B.; Koverech, A.; Messano, M. l-carnitine and short chain ester in tears from patients with dry eye. Optom. Vis. Sci. 2009, 86, E132–E138. [Google Scholar] [CrossRef]
- Galbis-Estrada, C.; Martinez-Castillo, S.; Morales, J.M.; Vivar-Llopis, B.; Monleón, D.; Díaz-Llopis, M.; Pinazo-Durán, M.D. Differential effects of dry eye disorders on metabolomic profile by 1 h nuclear magnetic resonance spectroscopy. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef]
- Galbis-Estrada, C.; Pinazo-Durán, M.D.; Martínez-Castillo, S.; Morales, J.M.; Monleón, D.; Zanon-Moreno, V. A metabolomic approach to dry eye disorders. The role of oral supplements with antioxidants and omega 3 fatty acids. Mol. Vis. 2015, 21, 555. [Google Scholar]
- Pieragostino, D.; Agnifili, L.; Cicalini, I.; Calienno, R.; Zucchelli, M.; Mastropasqua, L.; Sacchetta, P.; Del Boccio, P.; Rossi, C. Tear film steroid profiling in dry eye disease by liquid chromatography tandem mass spectrometry. Int. J. Mol. Sci. 2017, 18, 1349. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, L.; Chan, E.C.; Neo, J.; Beuerman, R.W. Characterization of the human tear metabolome by lc–ms/ms. J. Proteome Res. 2011, 10, 4876–4882. [Google Scholar] [CrossRef]
- Chen, X.; Rao, J.; Zheng, Z.; Yu, Y.; Lou, S.; Liu, L.; He, Q.; Wu, L.; Sun, X. Integrated tear proteome and metabolome reveal panels of inflammatory-related molecules via key regulatory pathways in dry eye syndrome. J. Proteome Res. 2019, 18, 2321–2330. [Google Scholar] [CrossRef]
- Saurav Patra, M.; Mukherjee, B.; Das, A.K. Pre-analytical errors in the clinical laboratory and how to minimize them. Int. J. Bioassays 2013, 2, 551–553. [Google Scholar]
- Villas-Boas, S.G.; Nielsen, J.; Smedsgaard, J.; Hansen, M.A.; Roessner-Tunali, U. Metabolome Analysis: An introduction; John Wiley & Sons: New York, NY, USA, 2007; Volume 24. [Google Scholar]
- Rentka, A.; Koroskenyi, K.; Harsfalvi, J.; Szekanecz, Z.; Szucs, G.; Szodoray, P.; Kemeny-Beke, A. Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis. Ann. Clin. Biochem. 2017, 54, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Cho, P.; Yap, M. Schirmer test II. A clinical study of its repeatability. Optom Vis. Sci. 1993, 70, 157–159. [Google Scholar] [CrossRef]
- Nelson, P. A shorter schirmer tear test. Optom. Mon. 1982, 73, 568–569. [Google Scholar]
- Van Setten, G.-B.; Stephens, R.; Tervo, T.; Salonen, E.-M.; Tarkkanen, A.; Vaheri, A. Effects of the schirmer test on the fibrinolytic system in the tear fluid. Exp. Eye Res. 1990, 50, 135–141. [Google Scholar] [CrossRef]
- Pandolfi, M.; Astrup, T. A histochemical study of the fibrinolytic activity: Cornea, conjunctiva, and lacrimal gland. Arch. Ophthal. 1967, 77, 258–264. [Google Scholar] [CrossRef]
- Small, D.; Hevy, J.; Tang-Liu, D. Comparison of tear sampling techniques for pharmacokinetic analysis: Ofloxacin concentrations in rabbit tears after sampling with schirmer tear strips, capillary tubes, or surgical sponges. J. Ocul. Pharmacol. Ther. 2000, 16, 439–446. [Google Scholar] [CrossRef]
- Stuchell, R.; Feldman, J.; Farris, R.; Mandel, I. The effect of collection technique on tear composition. Invest. Ophthalmol. Vis. Sci. 1984, 25, 374–377. [Google Scholar]
- Farias, E.; Yasunaga, K.L.; Peixoto, R.V.; Fonseca, M.P.; Fontes, W.; Galera, P.D. Comparison of two methods of tear sampling for protein quantification by bradford method. Pesquisa Veterinária Brasileira 2013, 33, 261–264. [Google Scholar] [CrossRef]
- Choy, C.K.M.; Cho, P.; Chung, W.-Y.; Benzie, I.F. Water-soluble antioxidants in human tears: Effect of the collection method. Invest. Ophthalmol. Vis. Sci. 2001, 42, 3130–3134. [Google Scholar]
- Murube, J. Basal, reflex, and psycho-emotional tears. Ocul. Surf. 2009, 7, 60–66. [Google Scholar] [CrossRef]
- Lu, W.; Bennett, B.D.; Rabinowitz, J.D. Analytical strategies for LC–MS-based targeted metabolomics. J. Chromatogr. B 2008, 871, 236–242. [Google Scholar] [CrossRef]
- Lindon, J.C.; Nicholson, J.K. Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. Trends Anal. Chem. 2008, 27, 194–204. [Google Scholar] [CrossRef]
- Li, S.; Todor, A.; Luo, R. Blood transcriptomics and metabolomics for personalized medicine. Comput. Struct. Biotechnol. J. 2016, 14, 1–7. [Google Scholar] [CrossRef]
- Himmelreich, U.; Mountford, C.E.; Sorrell, T.C. NMR spectroscopic determination of microbiological profiles in infectious diseases. Trends Appl. Spectrosc. 2004, 5, 269–283. [Google Scholar]
- Lindon, J.C.; Holmes, E.; Bollard, M.E.; Stanley, E.G.; Nicholson, J.K. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 2004, 9, 1–31. [Google Scholar] [CrossRef]
- Beger, R.D.; Dunn, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier, T. Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics 2016, 12, 149. [Google Scholar] [CrossRef]
- Kryczka, T.; Ehlers, N.; Nielsen, K.; Wylegala, E.; Dobrowolski, D.; Midelfart, A. Metabolic profile of keratoconic cornea. Curr. Eye Res. 2013, 38, 305–309. [Google Scholar] [CrossRef]
- Kryczka, T.; Szaflik, J.P.; Szaflik, J.; Midelfart, A. Influence of donor age, post-mortem time and cold storage on metabolic profile of human cornea. Acta Ophthalmol. 2013, 91, 83–87. [Google Scholar] [CrossRef]
- Kryczka, T.; Wylęgała, E.; Dobrowolski, D.; Midelfart, A. NMR spectroscopy of human eye tissues: A new insight into ocular biochemistry. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Karamichos, D.; Hutcheon, A.; Rich, C.; Trinkaus-Randall, V.; Asara, J.; Zieske, J. In vitro model suggests oxidative stress involved in keratoconus disease. Sci. Rep. 2014, 4, 4608. [Google Scholar] [CrossRef] [Green Version]
- Snytnikova, O.A.; Yanshole, L.V.; Iskakov, I.A.; Yanshole, V.V.; Chernykh, V.V.; Stepakov, D.A.; Novoselov, V.P.; Tsentalovich, Y.P. Quantitative metabolomic analysis of the human cornea and aqueous humor. Metabolomics 2017, 13, 152. [Google Scholar] [CrossRef]
- Saijyothi, A.V.; Fowjana, J.; Madhumathi, S.; Rajeshwari, M.; Thennarasu, M.; Prema, P.; Angayarkanni, N. Tear fluid small molecular antioxidants profiling shows lowered glutathione in keratoconus. Exp. Eye Res. 2012, 103, 41–46. [Google Scholar] [CrossRef]
- Tsentalovich, Y.P.; Verkhovod, T.D.; Yanshole, V.V.; Kiryutin, A.S.; Yanshole, L.V.; Fursova, A.Z.; Stepakov, D.A.; Novoselov, V.P.; Sagdeev, R.Z. Metabolomic composition of normal aged and cataractous human lenses. Exp. Eye Res. 2015, 134, 15–23. [Google Scholar] [CrossRef]
- Van Haeringen, N.; Glasius, E. Collection method dependant concentrations of some metabolites in human tear fluid, with special reference to glucose in hyperglycaemic conditions. Albrecht von Graefes Archiv für Klinische und Experimentelle Ophthalmologie 1977, 202, 1–7. [Google Scholar] [CrossRef]
- Trope, G.E.; Rumley, A.G. Catecholamine concentrations in tears. Exp. Eye Res. 1984, 39, 247–250. [Google Scholar] [CrossRef]
- Gogia, R.; Richer, S.P.; Rose, R.C. Tear fluid content of electrochemically active components including water soluble antioxidants. Curr. Eye Res. 1998, 17, 257–263. [Google Scholar] [CrossRef]
- Baca, J.T.; Taormina, C.R.; Feingold, E.; Finegold, D.N.; Grabowski, J.J.; Asher, S.A. Mass spectral determination of fasting tear glucose concentrations in nondiabetic volunteers. Clin. Chem. 2007, 53, 1370–1372. [Google Scholar] [CrossRef]
- Taormina, C.R.; Baca, J.T.; Asher, S.A.; Grabowski, J.J.; Finegold, D.N. Analysis of tear glucose concentration with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Butovich, I.A. On the lipid composition of human meibum and tears: Comparative analysis of nonpolar lipids. Invest. Ophthalmol. Vis. Sci. 2008, 49, 3779–3789. [Google Scholar] [CrossRef]
- Nakatsukasa, M.; Sotozono, C.; Shimbo, K.; Ono, N.; Miyano, H.; Okano, A.; Hamuro, J.; Kinoshita, S. Amino acid profiles in human tear fluids analyzed by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. Am. J. Ophthalmol. 2011, 151, 799–808. [Google Scholar] [CrossRef]
- English, J.T.; Norris, P.C.; Hodges, R.R.; Dartt, D.A.; Serhan, C.N. Identification and profiling of specialized pro-resolving mediators in human tears by lipid mediator metabolomics. Prostaglandins Leukot. Essent. Fatty Acids 2017, 117, 17–27. [Google Scholar] [CrossRef]
- Pintor, J.; Carracedo, G.; Alonso, C.M.; Bautista, A.; Peral, A. Presence of diadenosine polyphosphates in human tears. Pflügers Arch. 2002, 443, 432–436. [Google Scholar] [CrossRef]
- Pintor, J.; Peral, A.; Peláez, T.; Martín, S.; Hoyle, C.H. Presence of diadenosine polyphosphates in the aqueous humor: Their effect on intraocular pressure. J. Pharm. Exp. Ther. 2003, 304, 342–348. [Google Scholar] [CrossRef]
- Pintor, J.; Bautista, A.; Carracedo, G.; Peral, A. UTP and diadenosine tetraphosphate accelerate wound healing in the rabbit cornea. Ophthalmic Physiol. Opt. 2004, 24, 186–193. [Google Scholar] [CrossRef]
- Mitchell, C.H.; Carré, D.A.; McGlinn, A.M.; Stone, R.A.; Civan, M.M. A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc. Natl. Acad. Sci. USA 1998, 95, 7174–7178. [Google Scholar] [CrossRef] [Green Version]
- Augustin, A.J.; Spitznas, M.; Kaviani, N.; Meller, D.; Koch, F.H.; Grus, F.; Göbbels, M.J. Oxidative reactions in the tear fluid of patients suffering from dry eyes. Graefes Arch. Clin. Exp. Ophthalmol. 1995, 233, 694–698. [Google Scholar] [CrossRef]
- Cammarata, P.R.; Xu, G.-T.; Huang, L.; Zhou, C.; Martin, M. Inducible expression of na+/myo-inositol cotransporter mrna in anterior epithelium of bovine lens: Affiliation with hypertonicity and cell proliferation. Exp. Eye Res. 1997, 64, 745–757. [Google Scholar] [CrossRef]
- Xu, S.; Flanagan, J.L.; Simmons, P.A.; Vehige, J.; Willcox, M.D.; Garrett, Q. Transport of l-carnitine in human corneal and conjunctival epithelial cells. Mol. Vis. 2010, 16, 1823. [Google Scholar]
- Marcozzi, G.; Liberati, V.; Madia, F.; Centofanti, M.; De Feo, G. Age-and gender-related differences in human lacrimal fluid peroxidase activity. Ophthalmologica 2003, 217, 294–297. [Google Scholar] [CrossRef]
- Gagliano, C.; Caruso, S.; Napolitano, G.; Malaguarnera, G.; Cicinelli, M.V.; Amato, R.; Reibaldi, M.; Incarbone, G.; Bucolo, C.; Drago, F. Low levels of 17-β-oestradiol, oestrone and testosterone correlate with severe evaporative dysfunctional tear syndrome in postmenopausal women: A case–control study. Br. J. Ophthalmol. 2014, 98, 371–376. [Google Scholar] [CrossRef]
- Mathers, W.D.; Stovall, D.; Lane, J.A.; Zimmerman, M.B.; Johnson, S. Menopause and tear function: The influence of prolactin and sex hormones on human tear production. Cornea 1998, 17, 353–358. [Google Scholar] [CrossRef]
- Sullivan, D.A.; Rocha, E.M.; Ullman, M.D.; Kreuzer, K.L.; Gao, J.; Toda, I.; Dana, M.R.; Bazzinotti, D.; da Silveira, L.A.; Wickham, L.A. Androgen regulation of the meibomian gland. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2; Springer: Berlin, Germany, 1998; pp. 327–331. [Google Scholar]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92. [Google Scholar] [CrossRef]
- Walter, S.D.; Gronert, K.; McClellan, A.L.; Levitt, R.C.; Sarantopoulos, K.D.; Galor, A. Ω-3 tear film lipids correlate with clinical measures of dry eye. Invest. Ophthalmol. Vis. Sci. 2016, 57, 2472–2478. [Google Scholar] [CrossRef]
- Kell, D.B.; Oliver, S.G. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 2004, 26, 99–105. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Guo, T.; Ghosh, S.; Koh, S.K.; Tian, D.; Zhang, L.; Jia, D.; Beuerman, R.W.; Aebersold, R. Global metabonomic and proteomic analysis of human conjunctival epithelial cells (IOBA-NHC) in response to hyperosmotic stress. J. Proteome Res. 2015, 14, 3982–3995. [Google Scholar] [CrossRef]
- Vehof, J.; Hysi, P.G.; Hammond, C.J. A metabolome-wide study of dry eye disease reveals serum androgens as biomarkers. Ophthalmology 2017, 124, 505–511. [Google Scholar] [CrossRef]
Subjects | DED Screening | Sampling | Analytical Method | Metabolites (DED vs. Control) | Reference |
---|---|---|---|---|---|
Total, 97 subjects (27 men, 70 women); mean age, 27 ± 1 years (range, 20–36 years) | McMonnies questionnaire, Schirmer test | Tears collected on Schirmer paper strip, transferred to an Eppendorf tube containing 500 µL ultrapure water, and frozen | HPLC | ↑Diadenosine polyphosphates Ap4A and Ap5A | [101] |
Total, 20 subjects (10 healthy, 10 DED); mean age 65 years (range, 55–75 years) | Ophthalmologic examinations | Tears collected in a capillary tube, pooled from both eyes, if required, and stored at 4 °C | HPLC–MS | ↓Carnitine and its derivatives l-acetylcarnitine and l-propionylcarnitine | [102] |
Total, 90 subjects (35 healthy with median age of 36 ± 11 years; 55 DED with median age of 52 ± 18 years); age, 25–80 years | Interview, OSDI* questionnaire, ophthalmologic examinations | Reflex tears (20–30 μL) collected from both eyes with a microglass pipette, deposited in a cryotube, and stored at −80 °C | 1H-NMR | −CH3 lipids, cholesterol/lipids, N-acetylglucosamine, glutamate, amino-n-butyrate, choline, glucose, phenylalanine, and formate | [103] |
Total, 90 subjects (35 healthy, 55 DED); mean age, 52 years (range, 25–80 years) | Interview, OSDI questionnaire, ophthalmologic examinations | Reflex tears (18–35 μL) collected with a microglass pipette, transferred to an Eppendorf tube, and stored at −80 °C | 1H-NMR | ←Cholesterol, N-acetylglucosamine, glutamate, amino-n-butyrate, choline, glucose, and formate →choline/acetylcholine | [104] ** |
Total, 27 female subjects (13 healthy, 14 DED); age, 25–73 years | Schirmer test | Tears collected on Schirmer paper strip, transferred to an Eppendorf tube, dried at room temperature, and stored at −80 °C | HPLC–MS | Cortisol, corticosterone, 11-deoxycortisol, 4-androstene-3,17-dione, testosterone, 17α-hydroxyprogesterone, and progesterone | [105] |
Total, 12 healthy subjects (six men, six women) | – | Emotional tears collected and stored at −80 °C | HPLC–MS | N/A | [140] |
Total, 37 subjects (19 healthy, 18 DED); (six men, 31 women); age, 18–87 years | Interview, ophthalmologic examinations | Tears (5−15 μL) collected with a capillary tube, transferred to an Eppendorf tube, and stored at −80 °C | nanoLC–MS | Benzenoids; hydrocarbons; lipids and lipid-like molecules; nucleosides, nucleotides, and analogs; organic acids and derivatives; organic nitrogen compounds; phenylpropanoids and polyketides; and unknown | [107] |
Total, six healthy subjects | No ocular complaints or history of contact lens usage | Tears collected on Schirmer paper strip and stored at −80 °C | HPLC–MS | N/A | [106] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdani, M.; Elgstøen, K.B.P.; Rootwelt, H.; Shahdadfar, A.; Utheim, Ø.A.; Utheim, T.P. Tear Metabolomics in Dry Eye Disease: A Review. Int. J. Mol. Sci. 2019, 20, 3755. https://doi.org/10.3390/ijms20153755
Yazdani M, Elgstøen KBP, Rootwelt H, Shahdadfar A, Utheim ØA, Utheim TP. Tear Metabolomics in Dry Eye Disease: A Review. International Journal of Molecular Sciences. 2019; 20(15):3755. https://doi.org/10.3390/ijms20153755
Chicago/Turabian StyleYazdani, Mazyar, Katja Benedikte Prestø Elgstøen, Helge Rootwelt, Aboulghassem Shahdadfar, Øygunn Aass Utheim, and Tor Paaske Utheim. 2019. "Tear Metabolomics in Dry Eye Disease: A Review" International Journal of Molecular Sciences 20, no. 15: 3755. https://doi.org/10.3390/ijms20153755
APA StyleYazdani, M., Elgstøen, K. B. P., Rootwelt, H., Shahdadfar, A., Utheim, Ø. A., & Utheim, T. P. (2019). Tear Metabolomics in Dry Eye Disease: A Review. International Journal of Molecular Sciences, 20(15), 3755. https://doi.org/10.3390/ijms20153755