Analysis of the Association Between MicroRNA Biogenesis Gene Polymorphisms and Venous Thromboembolism in Koreans
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population.
2.2. Genotype Frequencies of miRNA Biogenesis Genes
2.3. Genotype Combinations of miRNA Biogenesis Gene Polymorphisms
2.4. Genotype Combinations of miRNA Biogenesis Gene Polymorphisms
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Study Population
4.3. Genotyping
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- ISCfWT, D. Thrombosis: A major contributor to the global disease burden. J. Thromb. Haemost. 2014, 12, 1580–1590. [Google Scholar]
- Di Nisio, M.; van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. [Google Scholar] [CrossRef]
- Lee, J.S.; Moon, T.; Kim, T.H.; Kim, S.Y.; Choi, J.Y.; Lee, K.B.; Kwon, Y.J.; Song, S.H.; Kim, S.H.; Kim, H.O.; et al. Deep Vein Thrombosis in Patients with Pulmonary Embolism: Prevalance, Clinical Significance and Outcome. Vasc. Specialist Int. 2016, 32, 166–174. [Google Scholar] [CrossRef]
- Hong, J.; Lee, J.H.; Yhim, H.Y.; Choi, W.I.; Bang, S.M.; Lee, H.; Oh, D. Incidence of venous thromboembolism in Korea from 2009 to 2013. PLoS ONE 2018, 13, e0191897. [Google Scholar] [CrossRef]
- Nielsen, J.D. The incidence of pulmonary embolism during deep vein thrombosis. Phlebology 2013, 28, 29–33. [Google Scholar] [CrossRef]
- Kearon, C.; Ageno, W.; Cannegieter, S.C.; Cosmi, B.; Geersing, G.J.; Kyrle, P.A.; Subcommittees on Control of Anticoagulation, and Predictive and Diagnostic Variables in Thrombotic Disease. Categorization of patients as having provoked or unprovoked venous thromboembolism: Guidance from the SSC of ISTH. J. Thromb. Haemost. 2016, 14, 1480–1483. [Google Scholar] [CrossRef]
- Anderson, F.A.J.; Spencer, F.A. Risk factors for venous thromboembolism. Circulation 2003, 107, I-9–I-16. [Google Scholar] [CrossRef]
- Hollenhorst, M.A.; Battinelli, E.M. Thrombosis, Hypercoagulable States, and Anticoagulants. Prim. Care 2016, 43, 619–635. [Google Scholar] [CrossRef]
- Kline, J.A. Diagnosis and Exclusion of Pulmonary Embolism. Thromb. Res. 2018, 163, 207–220. [Google Scholar] [CrossRef]
- Wells, P.; Anderson, D. The diagnosis and treatment of venous thromboembolism. Hematol. Am. Soc. Hematol. Educ. Program 2013, 1, 457–463. [Google Scholar] [CrossRef]
- Teruel-Montoya, R.; Rosendaal, F.R.; Martinez, C. MicroRNAs in hemostasis. J. Thromb. Haemost. 2015, 13, 170–181. [Google Scholar] [CrossRef]
- Chen, L.J.; Yang, L.; Cheng, X.; Xue, Y.K.; Chen, L.B. Overexpression of miR-24 Is Involved in the Formation of Hypocoagulation State after Severe Trauma by Inhibiting the Synthesis of Coagulation Factor X. Dis. Markers 2017, 6, 3649693. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, X.; Du, X.; Xu, A.; Yuan, X.; Zhan, Y.; Liu, M.; Wang, S. MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1. Microvasc. Res. 2018, 123, 35–41. [Google Scholar] [CrossRef]
- Sahu, A.; Jha, P.K.; Prabhakar, A.; Singh, H.D.; Gupta, N.; Chatterjee, T.; Tyagi, T.; Sharma, S.; Kumari, B.; Singh, S.; et al. MicroRNA-145 Impedes Thrombus Formation via Targeting Tissue Factor in Venous Thrombosis. EBioMedicine 2017, 26, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Yamakuchi, M. MicroRNAs in Vascular Biology. Int. J. Vasc. Med. 2012, 2012, 794898. [Google Scholar] [CrossRef]
- Elgheznawy, A.; Fleming, I. Platelet-Enriched MicroRNAs and Cardiovascular Homeostasis. Antioxid. Redox Signal. 2018, 29, 902–921. [Google Scholar] [CrossRef]
- Tsunetsugu-Yokota, Y.; Yamamoto, T. Mammalian MicroRNAs: Post-Transcriptional Gene Regulation in RNA Virus Infection and Therapeutic Applications. Front. Microbiol. 2010, 1, 108. [Google Scholar] [CrossRef] [Green Version]
- Wahid, F.; Shehzad, A.; Khan, T.; Kim, Y.Y. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta 2010, 1803, 1231–1243. [Google Scholar] [CrossRef] [Green Version]
- Chekulaeva, M.; Filipowicz, W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol. 2009, 21, 452–460. [Google Scholar] [CrossRef]
- Hartig, S.M.; Hamilton, M.P.; Bader, D.A.; McGuire, S.E. The miRNA Interactome in Metabolic Homeostasis. Trends Endocrinol. Metab. 2015, 26, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Gascon, E.; Gao, F.B. Cause or Effect: Misregulation of microRNA Pathways in Neurodegeneration. Front. Neurosci. 2012, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Choi, E.; Cha, M.-J.; Hwang, K.-C. Implications of MicroRNAs in the Vascular Homeostasis and Remodeling. Muscle Cell Tissue 2015. [Google Scholar]
- Kim, Y.K.; Kim, B.; Kim, V.N. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E1881–E1889. [Google Scholar] [CrossRef]
- Fan, M.; Krutilina, R.; Sun, J.; Sethuraman, A.; Yang, C.H.; Wu, Z.H.; Yue, J.; Pfeffer, L.M. Comprehensive analysis of microRNA (miRNA) targets in breast cancer cells. J. Biol. Chem. 2013, 288, 27480–27493. [Google Scholar] [CrossRef]
- Goncalves, I.; Brecht, J.; Thelen, M.P.; Rehorst, W.A.; Peters, M.; Lee, H.J.; Motameny, S.; Torres-Benito, L.; Ebrahimi-Fakhari, D.; Kononenko, N.L.; et al. Neuronal activity regulates DROSHA via autophagy in spinal muscular atrophy. Sci. Rep. 2018, 8, 7907. [Google Scholar] [CrossRef]
- Dattilo, V.; D’Antona, L.; Talarico, C.; Capula, M.; Catalogna, G.; Iuliano, R.; Schenone, S.; Roperto, S.; Bianco, C.; Perrotti, N.; et al. SGK1 affects RAN/RANBP1/RANGAP1 via SP1 to play a critical role in pre-miRNA nuclear export: A new route of epigenomic regulation. Sci Rep. 2017, 7, 45361. [Google Scholar] [CrossRef]
- Ott, C.A.; Linck, L.; Kremmer, E.; Meister, G.; Bosserhoff, A.K. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells. Oncotarget 2016, 7, 62292–62304. [Google Scholar] [CrossRef]
- Gross, T.J.; Powers, L.S.; Boudreau, R.L.; Brink, B.; Reisetter, A.; Goel, K.; Gerke, A.K.; Hassan, I.H.; Monick, M.M. A microRNA processing defect in smokers’ macrophages is linked to SUMOylation of the endonuclease DICER. J. Biol. Chem. 2014, 289, 12823–12834. [Google Scholar] [CrossRef]
- Wu, Q.; Song, R.; Ortogero, N.; Zheng, H.; Evanoff, R.; Small, C.L.; Griswold, M.D.; Namekawa, S.H.; Royo, H.; Turner, J.M.; et al. The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J. Biol. Chem. 2012, 287, 25173–25190. [Google Scholar] [CrossRef]
- Sun, H.L.; Cui, R.; Zhou, J.; Teng, K.Y.; Hsiao, Y.H.; Nakanishi, K.; Fassan, M.; Luo, Z.; Shi, G.; Tili, E.; et al. ERK Activation Globally Downregulates miRNAs through Phosphorylating Exportin-5. Cancer Cell 2016, 30, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, J.; Nema, V.; Dhas, Y.; Mishra, N. Role of MicroRNAs in Type 2 Diabetes and Associated Vascular Complications. Biochimie 2017, 139, 9–19. [Google Scholar] [CrossRef]
- Shi, L.; Liao, J.; Liu, B.; Zeng, F.; Zhang, L. Mechanisms and therapeutic potential of microRNAs in hypertension. Drug Discov. Today 2015, 20, 1188–1204. [Google Scholar] [CrossRef] [Green Version]
- Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. MicroRNAs: New Therapeutic Targets for Familial Hypercholesterolemia? Clin. Rev. Allergy Immunol. 2018, 54, 224–233. [Google Scholar] [CrossRef]
- Kim, J.O.; Bae, J.; Kim, J.; Oh, S.H.; An, H.J.; Han, I.B.; Oh, D.; Kim, O.J.; Kim, N.K. Association of MicroRNA Biogenesis Genes Polymorphisms with Ischemic Stroke Susceptibility and Post-Stroke Mortality. J. Stroke 2018, 20, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Fiorenza, A.; Barco, A. Role of Dicer and the miRNA system in neuronal plasticity and brain function. Neurobiol. Learn. Mem. 2016, 135, 3–12. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Thangavelu, P.U.; Duijf, P.H. Overexpression of Ran GTPase Components Regulating Nuclear Export, but not Mitotic Spindle Assembly, Marks Chromosome Instability and Poor Prognosis in Breast Cancer. Target. Oncol. 2016, 11, 677–686. [Google Scholar] [CrossRef]
- Rowley, J.W.; Chappaz, S.; Corduan, A.; Chong, M.M.; Campbell, R.; Khoury, A.; Manne, B.K.; Wurtzel, J.G.; Michael, J.V.; Goldfinger, L.E.; et al. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 2016, 127, 1743–1751. [Google Scholar] [CrossRef] [Green Version]
- Nagalla, S.; Shaw, C.; Kong, X.; Kondkar, A.A.; Edelstein, L.C.; Ma, L.; Chen, J.; McKnight, G.S.; Lopez, J.A.; Yang, L.; et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011, 117, 5189–5197. [Google Scholar] [CrossRef]
- Gorucu Yilmaz, S.; Erdal, M.E.; Avci Ozge, A.; Sungur, M.A. SNP Variation in MicroRNA Biogenesis Pathway Genes as a New Innovation Strategy for Alzheimer Disease Diagnostics: A Study of 10 Candidate Genes in an Understudied Population From the Eastern Mediterranean. Alzheimer Dis. Assoc. Disord. 2016, 30, 203–209. [Google Scholar] [CrossRef]
- Chen, J.; Qin, Z.; Pan, S.; Jiang, J.; Liu, L.; Liu, J.; Chen, X.; Hu, Z.; Shen, H. Genetic variants in RAN, DICER and HIWI of microRNA biogenesis genes and risk of cervical carcinoma in a Chinese population. Chin. J. Cancer Res. 2013, 25, 565–571. [Google Scholar]
- Moghbelinejad, S.; Najafipour, R.; Momeni, A. Association of rs1057035polymorphism in microRNA biogenesis pathway gene (DICER1) with azoospermia among Iranian population. Genes Genomics 2018, 40, 17–24. [Google Scholar] [CrossRef]
- Osuch-Wojcikiewicz, E.; Bruzgielewicz, A.; Niemczyk, K.; Sieniawska-Buccella, O.; Nowak, A.; Walczak, A.; Majsterek, I. Association of Polymorphic Variants of miRNA Processing Genes with Larynx Cancer Risk in a Polish Population. Biomed. Res. Int. 2015, 2015, 298378. [Google Scholar] [CrossRef]
- Ding, C.; Li, C.; Wang, H.; Li, B.; Guo, Z. A miR-SNP of the XPO5 gene is associated with advanced non-small-cell lung cancer. Onco. Targets Ther. 2013, 6, 877–881. [Google Scholar] [Green Version]
- Geng, J.Q.; Wang, X.C.; Li, L.F.; Zhao, J.; Wu, S.; Yu, G.P.; Zhu, K.J. MicroRNA-related single-nucleotide polymorphism of XPO5 is strongly correlated with the prognosis and chemotherapy response in advanced non-small-cell lung cancer patients. Tumour. Biol. 2016, 37, 2257–2265. [Google Scholar] [CrossRef]
- Wang, C.; Dong, H.; Fan, H.; Wu, J.; Wang, G. Genetic polymorphisms of microRNA machinery genes predict overall survival of esophageal squamous carcinoma. J. Clin. Lab. Anal. 2018, 32, e22170. [Google Scholar] [CrossRef]
- Liao, Y.; Liao, Y.; Li, J.; Liu, L.; Li, J.; Wan, Y.; Peng, L. Genetic variants in miRNA machinery genes associated with clinicopathological characteristics and outcomes of gastric cancer patients. Int. J. Biol. Markers 2018, 33, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; An, J.; Lin, J.; Liu, Y.; Bao, L.; Zhang, W.; Zhao, J.J. Single nucleotide polymorphisms of microRNA processing machinery genes and outcome of hepatocellular carcinoma. PLoS ONE 2014, 9, e92791. [Google Scholar] [CrossRef]
- Wen, J.; Gao, Q.; Wang, N.; Zhang, W.; Cao, K.; Zhang, Q.; Chen, S.; Shi, L. Association of microRNA-related gene XPO5 rs11077 polymorphism with susceptibility to thyroid cancer. Medicine (Baltimore) 2017, 96, e6351. [Google Scholar] [CrossRef]
- Bennasser, Y.; Chable-Bessia, C.; Triboulet, R.; Gibbings, D.; Gwizdek, C.; Dargemont, C.; Kremer, E.J.; Voinnet, O.; Benkirane, M. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels. Nat. Struct. Mol. Biol. 2011, 18, 323–327. [Google Scholar] [CrossRef]
- Fan, P.; Chen, Z.; Tian, P.; Liu, W.; Jiao, Y.; Xue, Y.; Bhattacharya, A.; Wu, J.; Lu, M.; Guo, Y.; et al. miRNA biogenesis enzyme Drosha is required for vascular smooth muscle cell survival. PLoS ONE 2013, 8, e60888. [Google Scholar] [CrossRef]
- Kim, M.H.; Moon, J.S.; Park, S.Y.; An, S.A.; Kim, O.J.; Kim, N.K.; Oh, S.H. Different risk factor profiles between silent brain infarction and symptomatic lacunar infarction. Eur. Neurol. 2011, 65, 250–256. [Google Scholar] [CrossRef]
Characteristic | Controls (n = 300) | VTE Patients (n = 203) | p-value a | Unprovoked VTE (n = 93) | p-value a |
---|---|---|---|---|---|
Age (years, mean ± SD) | 57.18 ± 9.96 | 56.07 ± 17.79 | 0.881 | 57.23 ± 17.76 | 0.447 |
Male (%) | 138 (46.0) | 103 (50.7) | 0.297 | 54 (58.1) | 0.042 |
Hypertension (%) | 94 (31.3) | 61 (30.0) | 0.760 | 31 (33.3) | 0.718 |
DM (%) | 26 (8.7) | 31 (15.3) | 0.022 | 17 (18.3) | 0.010 |
Lipidemia (%) | 51 (17.0) | 41 (20.2) | 0.363 | 16 (17.2) | 0.964 |
Smoking (%) | 104 (34.7) | 58 (28.6) | 0.152 | 33 (35.5) | 0.885 |
Genotype | Controls | Total VTE | AOR (95% CI) a | p-value b | Unprovoked VTE | AOR (95% CI) a | p-value b | Provoked VTE | AOR (95% CI) a | p-value b |
---|---|---|---|---|---|---|---|---|---|---|
(n = 300) | (n = 203) | (n = 93) | (n = 110) | |||||||
DICER1 | ||||||||||
rs3742330A>G | ||||||||||
AA | 109 (36.3) | 79 (38.9) | 1.000 (reference) | 42 (45.2) | 1.000 (reference) | 1.000 (reference) | ||||
AG | 137 (45.7) | 92 (45.3) | 0.953 (0.638–1.424) | 0.815 | 35 (37.6) | 0.685 (0.403–1.164) | 0.162 | 37 (33.6) | 1.247 (0.756–2.057) | 0.387 |
GG | 54 (18.0) | 32 (15.8) | 0.788 (0.460–1.350) | 0.386 | 16 (17.2) | 0.729 (0.371–1.432) | 0.359 | 57 (51.8) | 0.830 (0.413–1.669) | 0.602 |
Dominant | 0.919 (0.633–1.336) | 0.659 | 0.708 (0.438–1.144) | 0.158 | 16 (14.5) | 1.130 (0.704–1.815) | 0.612 | |||
Recessive | 0.873 (0.536–1.423) | 0.586 | 0.971 (0.519–1.815) | 0.926 | 0.765 (0.411–1.425) | 0.399 | ||||
HWE p-value | 0.342 | 0.547 | ||||||||
DROSHA | ||||||||||
rs10719T > C | ||||||||||
TT | 164 (54.7) | 116 (57.1) | 1.000 (reference) | 50 (53.8) | 1.000 (reference) | 66 (60.0) | 1.000 (reference) | |||
TC | 123 (41.0) | 72 (35.5) | 0.892 (0.608–1.309) | 0.559 | 39 (41.9) | 1.101 (0.673–1.799) | 0.703 | 33 (30.0) | 0.696 (0.426–1.136) | 0.147 |
CC | 13 (4.3) | 15 (7.4) | 1.893 (0.837–4.278) | 0.125 | 4 (4.3) | 1.250 (0.379–4.120) | 0.714 | 11 (10.0) | 2.200 (0.891–5.428) | 0.087 |
Dominant | 0.970 (0.672–1.400) | 0.871 | 1.096 (0.680–1.766) | 0.707 | 0.828 (0.525–1.306) | 0.418 | ||||
Recessive | 1.897 (0.872–4.127) | 0.106 | 1.115 (0.349–3.563) | 0.854 | 2.460 (1.048–5.774) | 0.039 | ||||
HWE p-value | 0.089 | 0.414 | ||||||||
RAN | ||||||||||
rs14035C > T | ||||||||||
CC | 178 (59.3) | 141 (69.5) | 1.000 (reference) | 71 (76.3) | 1.000 (reference) | 70 (63.6) | 1.000 (reference) | |||
CT | 113 (37.7) | 58 (28.6) | 0.630 (0.425–0.935) | 0.022 | 21 (22.6) | 0.433 (0.248–0.756) | 0.003 | 37 (33.6) | 0.833 (0.519–1.338) | 0.450 |
TT | 9 (3.0) | 4 (2.0) | 0.569 (0.169–1.919) | 0.363 | 1 (1.1) | 0.268 (0.032–2.217) | 0.222 | 3 (2.7) | 0.973 (0.249–3.796) | 0.969 |
Dominant | 0.627 (0.427–0.922) | 0.018 | 0.423 (0.245–0.730) | 0.002 | 0.842 (0.531–1.337) | 0.467 | ||||
Recessive | 0.684 (0.205–2.275) | 0.535 | 0.368 (0.045–2.981) | 0.349 | 1.014 (0.264–3.899) | 0.984 | ||||
HWE p-value | 0.073 | 0.482 | ||||||||
XPO5 | ||||||||||
rs11077A > C | ||||||||||
AA | 263 (87.7) | 148 (72.9) | 1.000 (reference) | 67 (72.0) | 1.000 (reference) | 81 (73.6) | 1.000 (reference) | |||
AC | 36 (12.0) | 54 (26.6) | 2.522 (1.564–4.067) | <0.001 | 25 (26.9) | 2.611 (1.450–4.700) | 0.001 | 29 (26.4) | 2.398 (1.359–4.233) | 0.003 |
CC | 1 (0.3) | 1 (0.5) | 1.542 (0.093–25.601) | 0.763 | 1 (1.1) | 2.971 (0.175–50.478) | 0.451 | 0 (0.0) | - | - |
Dominant | 2.493 (1.552–4.003) | <0.001 | 2.624 (1.469–4.689) | 0.001 | 2.336 (1.326–4.116) | 0.003 | ||||
Recessive | 1.119 (0.068–18.398) | 0.937 | 2.516 (0.150-42.109) | 0.521 | - | - | ||||
HWE p-value | 0.843 | 0.091 |
Genotype | Controls (n = 300) | Total VTE (n = 203) | AOR (95% CI) a | p-value b | FDR-Adjusted p-value | Unprovoked VTE (n = 93) | AOR (95% CI) a | p-value b | FDR-Adjusted p-value |
---|---|---|---|---|---|---|---|---|---|
DICER1/RAN | |||||||||
AA-CC | 60 (20.0) | 51 (25.1) | 1.000 (reference) | 29 (31.2) | 1.000 (reference) | ||||
AA-CT | 46 (15.3) | 26 (12.8) | 0.658 (0.349–1.240) | 0.195 | 0.520 | 12 (12.9) | 0.446 (0.192–1.038) | 0.061 | 0.183 |
AA-TT | 3 (1.0) | 2 (1.0) | 0.690 (0.099–4.812) | 0.708 | 0.796 | 1 (1.1) | 0.627 (0.056–7.036) | 0.705 | 0.705 |
AG-CC | 88 (29.3) | 68 (33.5) | 0.936 (0.567–1.545) | 0.796 | 0.796 | 31 (33.3) | 0.725 (0.386–1.359) | 0.315 | 0.473 |
GG-CC | 30 (10.0) | 22 (10.8) | 0.832 (0.417–1.659) | 0.602 | 0.796 | 11 (11.8) | 0.729 (0.312–1.703) | 0.465 | 0.558 |
AG-CT | 45 (15.0) | 23 (11.3) | 0.569 (0.298–1.086) | 0.088 | 0.350 | 4 (4.3) | 0.153 (0.048–0.491) | 0.002 | 0.010 |
AG-TT | 4 (1.3) | 1 (0.5) | 0.390 (0.040–3.798) | 0.417 | 0.796 | 0 (0.0) | N/A | N/A | N/A |
GG-CT | 22 (7.3) | 9 (4.4) | 0.433 (0.178–1.054) | 0.065 | 0.350 | 5 (5.4) | 0.413 (0.137–1.246) | 0.117 | 0.233 |
GG-TT | 2 (0.7) | 1 (0.5) | 0.610 (0.045–8.209) | 0.710 | 0.796 | 0 (0.0) | N/A | N/A | N/A |
DICER1/XPO5 | |||||||||
AA-AA | 95 (31.7) | 49 (24.1) | 1.000 (reference) | 26 (28.0) | 1.000 (reference) | ||||
AA-AC | 14 (4.7) | 30 (14.8) | 4.326 (2.024–9.245) | 0.0002 | 0.001 | 16 (17.2) | 4.709 (1.928–11.502) | 0.001 | 0.004 |
AA-CC | 0 (0.0) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
AG-AA | 120 (40.0) | 72 (35.5) | 1.233 (0.772–1.968) | 0.381 | 0.634 | 29 (31.2) | 1.008 (0.541–1.879) | 0.979 | 0.979 |
GG-AA | 48 (16.0) | 27 (13.3) | 1.017 (0.555–1.862) | 0.958 | 0.958 | 12 (12.9) | 0.867 (0.392–1.920) | 0.725 | 0.979 |
AG-AC | 16 (5.3) | 20 (9.9) | 2.387 (1.112–5.125) | 0.026 | 0.064 | 6 (6.5) | 1.160 (0.382–3.519) | 0.793 | 0.979 |
AG-CC | 1 (0.3) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
GG-AC | 6 (2.0) | 4 (2.0) | 1.358 (0.352–5.236) | 0.657 | 0.821 | 3 (3.2) | 1.994 (0.436–9.116) | 0.374 | 0.934 |
GG-CC | 0 (0.0) | 1 (0.5) | N/A | N/A | N/A | 1 (1.1) | N/A | N/A | N/A |
DROSHA/RAN | |||||||||
TT-CC | 96 (32.0) | 86 (42.4) | 1.000 (reference) | 40 (43.0) | 1.000 (reference) | ||||
TT-CT | 61 (20.3) | 27 (13.3) | 0.445 (0.250–0.790) | 0.006 | 0.040 | 10 (10.8) | 0.318 (0.138–0.731) | 0.007 | 0.042 |
TT-TT | 7 (2.3) | 3 (1.5) | 0.663 (0.162–2.709) | 0.567 | 0.661 | 0 (0.0) | N/A | N/A | N/A |
TC-CC | 75 (25.0) | 45 (22.2) | 0.692 (0.427–1.121) | 0.135 | 0.436 | 28 (30.1) | 0.889 (0.494–1.602) | 0.696 | 0.914 |
CC-CC | 7 (2.3) | 10 (4.9) | 1.858 (0.648–5.325) | 0.249 | 0.436 | 3 (3.2) | 1.213 (0.283–5.205) | 0.795 | 0.914 |
TC-CT | 46 (15.3) | 26 (12.8) | 0.684 (0.383–1.221) | 0.199 | 0.436 | 10 (10.8) | 0.496 (0.219–1.124) | 0.093 | 0.279 |
TC-TT | 2 (0.7) | 1 (0.5) | 0.373 (0.030–4.595) | 0.442 | 0.618 | 1 (1.1) | 1.152 (0.090–14.704) | 0.914 | 0.914 |
CC-CT | 6 (2.0) | 5 (2.5) | 1.084 (0.308–3.818) | 0.901 | 0.901 | 1 (1.1) | 0.459 (0.051–4.143) | 0.488 | 0.914 |
CC-TT | 0 (0.0) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
DROSHA/XPO5 | |||||||||
TT-AA | 143 (47.7) | 84 (41.4) | 1.000 (reference) | 36 (38.7) | 1.000 (reference) | ||||
TT-AC | 21 (7.0) | 31 (15.3) | 2.385 (1.239–4.590) | 0.009 | 0.047 | 13 (14.0) | 2.304 (1.017–5.217) | 0.045 | 0.136 |
TT-CC | 0 (0.0) | 1 (0.5) | N/A | N/A | N/A | 1 (1.1) | N/A | N/A | N/A |
TC-AA | 109 (36.3) | 54 (26.6) | 0.913 (0.591–1.410) | 0.680 | 0.680 | 28 (30.1) | 1.119 (0.631–1.985) | 0.700 | 0.757 |
CC-AA | 11 (3.7) | 10 (4.9) | 1.776 (0.700–4.504) | 0.226 | 0.283 | 3 (3.2) | 1.242 (0.315–4.894) | 0.757 | 0.757 |
TC-AC | 13 (4.3) | 18 (8.9) | 2.624 (1.156–5.955) | 0.021 | 0.053 | 11 (11.8) | 3.346 (1.276–8.774) | 0.014 | 0.084 |
TC-CC | 1 (0.3) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
CC-AC | 2 (0.7) | 5 (2.5) | 5.425 (0.948–31.053) | 0.058 | 0.096 | 1 (1.1) | 3.820 (0.292–49.938) | 0.307 | 0.614 |
CC-CC | 0 (0.0) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
RAN/XPO5 | |||||||||
CC-AA | 153 (51.0) | 103 (50.7) | 1.000 (reference) | 52 (55.9) | 1.000 (reference) | ||||
CC-AC | 25 (8.3) | 37 (18.2) | 2.061 (1.153–3.686) | 0.015 | 0.045 | 18 (19.4) | 1.965 (0.971–3.975) | 0.060 | 0.120 |
CC-CC | 0 (0.0) | 1 (0.5) | N /A | N/A | N/A | 1 (1.1) | N/A | N/A | N/A |
CT-AA | 103 (34.3) | 43 (21.2) | 0.583 (0.373–0.912) | 0.018 | 0.045 | 15 (16.1) | 0.378 (0.197–0.726) | 0.004 | 0.014 |
TT-AA | 7 (2.3) | 2 (1.0) | 0.431 (0.085–2.179) | 0.309 | 0.386 | 0 (0.0) | N/A | N/A | N/A |
CT-AC | 9 (3.0) | 15 (7.4) | 2.191 (0.898–5.346) | 0.085 | 0.142 | 6 (6.5) | 1.368 (0.432–4.338) | 0.594 | 0.698 |
CT-CC | 1 (0.3) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
TT-AC | 2 (0.7) | 2 (1.0) | 1.507 (0.201–11.300) | 0.690 | 0.690 | 1 (1.1) | 1.638 (0.135–19.801) | 0.698 | 0.698 |
TT-CC | 0 (0.0) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
Allele Combination | Controls (2n = 600) | Total VTE (2n = 406) | OR (95% CI) | p-value a | FDR-Adjusted p-value | Unprovoked VTE (2n = 186) | OR (95% CI) | p-value a | FDR-Adjusted p-value |
---|---|---|---|---|---|---|---|---|---|
DICER1/DROSHA/RAN/XPO5 | |||||||||
A-T-C-A | 184 (30.6) | 137 (33.7) | 1.000 (reference) | 74 (39.9) | 1.000 (reference) | ||||
A-T-C-C | 13 (2.1) | 21 (5.2) | 2.170 (1.049–4.486) | 0.033 | 0.144 | 11 (6.0) | 2.104 (0.902–4.909) | 0.080 | 0.173 |
A-T-T-A | 64 (10.7) | 16 (4.0) | 0.336 (0.186–0.606) | 0.0002 | 0.003 | 3 (1.8) | 0.117 (0.035–0.383) | <0.0001 | 0.001 |
A-T-T-C | 2 (0.4) | 10 (2.4) | 6.715 (1.447–31.160) | 0.005 | 0.035 | 4 (2.4) | 4.973 (0.891–27.750) | 0.065 | 0.168 |
A-C-C-A | 71 (11.9) | 34 (8.4) | 0.643 (0.404–1.024) | 0.062 | 0.181 | 13 (7.0) | 0.455 (0.238–0.872) | 0.016 | 0.051 |
A-C-C-C | 9 (1.5) | 13 (3.2) | 1.940 (0.806–4.670) | 0.182 | 0.295 | 4 (2.4) | 1.105 (0.330–3.701) | 1.000 | 1.000 |
A-C-T-A | 13 (2.1) | 19 (4.7) | 1.963 (0.937–4.112) | 0.070 | 0.181 | 8 (4.5) | 1.530 (0.609–3.845) | 0.363 | 0.524 |
A-C-T-C | 0 (0) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
G-T-C-A | 142 (23.7) | 91 (22.3) | 0.861 (0.610–1.214) | 0.392 | 0.464 | 32 (17.3) | 0.560 (0.351–0.896) | 0.015 | 0.051 |
G-T-C-C | 10 (1.6) | 12 (2.9) | 1.612 (0.677–3.840) | 0.277 | 0.361 | 7 (3.7) | 1.741 (0.638–4.746) | 0.274 | 0.445 |
G-T-T-A | 34 (5.6) | 18 (4.4) | 0.711 (0.385–1.312) | 0.274 | 0.188 | 7 (3.7) | 0.512 (0.217–1.206) | 0.120 | 0.051 |
G-T-T-C | 4 (0.6) | 0 (0.0) | 0.149 (0.008–2.794) | 0.141 | 0.188 | 0 (0.0) | 0.275 (0.015–5.178) | 0.580 | 0.051 |
G-C-C-A | 41 (6.8) | 32 (8.0) | 1.048 (0.628–1.750) | 0.857 | 0.188 | 21 (11.3) | 1.274 (0.705–2.300) | 0.422 | 0.051 |
G-C-T-A | 14 (2.3) | 4 (0.9) | 0.384 (0.124–1.192) | 0.087 | 0.188 | 0 (0.0) | 0.085 (0.005–1.451) | 0.014 | 0.051 |
G-C-T-C | 1 (0.1) | 0 (0.0) | 0.447 (0.018–11.070) | 1.000 | 0.188 | 0 (0.0) | 0.826 (0.033–20.510) | 1.000 | 0.051 |
DICER1/RAN/XPO5 | |||||||||
A-C-A | 254 (42.3) | 175 (43.0) | 1.000 (reference) | 89 (47.6) | 1.000 (reference) | ||||
A-C-C | 22 (3.6) | 33 (8.1) | 2.177 (1.228–3.861) | 0.007 | 0.023 | 15 (7.9) | 1.946 (0.967–3.916) | 0.059 | 0.103 |
A-T-A | 77 (12.8) | 32 (7.8) | 0.603 (0.383–0.951) | 0.028 | 0.066 | 11 (6.1) | 0.408 (0.207–0.802) | 0.008 | 0.054 |
A-T-C | 2 (0.4) | 11 (2.7) | 7.983 (1.747–36.470) | 0.002 | 0.011 | 4 (2.4) | 5.708 (1.027–31.710) | 0.046 | 0.103 |
G-C-A | 184 (30.7) | 120 (29.6) | 0.947 (0.701–1.278) | 0.720 | 0.720 | 52 (28.0) | 0.807 (0.545–1.193) | 0.281 | 0.281 |
G-C-C | 9 (1.5) | 12 (3.0) | 1.935 (0.798–4.692) | 0.138 | 0.193 | 8 (4.2) | 2.537 (0.950–6.778) | 0.088 | 0.123 |
G-T-A | 47 (7.9) | 24 (5.8) | 0.741 (0.437–1.257) | 0.265 | 0.309 | 7 (3.8) | 0.425 (0.185–0.975) | 0.038 | 0.103 |
G-T-C | 5 (0.8) | 0 (0.0) | 0.132 (0.007–2.401) | 0.085 | 0.148 | 0 (0.0) | 0.259 (0.014–4.725) | 0.187 | 0.218 |
DROSHA/RAN/XPO5 | |||||||||
T-C-A | 326 (54.3) | 231 (56.8) | 1.000 (reference) | 108 (58.3) | 1.000 (reference) | ||||
T-C-C | 23 (3.8) | 32 (7.8) | 1.963 (1.120–3.444) | 0.017 | 0.056 | 16 (8.8) | 2.100 (1.070–4.121) | 0.028 | 0.098 |
T-T-A | 97 (16.1) | 32 (7.9) | 0.466 (0.302–0.718) | 0.001 | 0.004 | 9 (4.8) | 0.280 (0.137–0.574) | 0.0002 | 0.001 |
T-T-C | 6 (1) | 10 (2.5) | 2.352 (0.843–6.564) | 0.093 | 0.163 | 5 (2.7) | 2.515 (0.752–8.409) | 0.157 | 0.274 |
C-C-A | 112 (18.7) | 63 (15.6) | 0.794 (0.558–1.129) | 0.198 | 0.277 | 33 (17.5) | 0.889 (0.570–1.388) | 0.606 | 0.848 |
C-C-C | 8 (1.4) | 15 (3.6) | 2.646 (1.103–6.346) | 0.024 | 0.056 | 6 (3.0) | 2.264 (0.768–6.672) | 0.129 | 0.274 |
C-T-A | 28 (4.6) | 24 (5.9) | 1.210 (0.684–2.141) | 0.513 | 0.598 | 9 (4.8) | 0.970 (0.444–2.121) | 0.940 | 1.000 |
C-T-C | 1 (0.2) | 0 (0.0) | 0.470 (0.019–11.600) | 1.000 | 1.000 | 0 (0.0) | 1.003 (0.041–24.820) | 1.000 | 1.000 |
RAN/XPO5 | |||||||||
C-A | 438 (73) | 294 (72.4) | 1.000 (reference) | 141 (75.7) | 1.000 (reference) | ||||
C-C | 31 (5.2) | 46 (11.3) | 2.211 (1.369–3.569) | 0.001 | 0.003 | 22 (12.0) | 2.205 (1.236–3.932) | 0.006 | 0.009 |
T-A | 124 (20.7) | 56 (13.8) | 0.673 (0.475–0.953) | 0.025 | 0.038 | 18 (9.8) | 0.451 (0.266–0.766) | 0.003 | 0.008 |
T-C | 7 (1.2) | 10 (2.5) | 2.128 (0.801–5.656) | 0.121 | 0.121 | 5 (2.5) | 2.219 (0.693–7.103) | 0.181 | 0.181 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, E.J.; Kim, E.J.; Kim, J.O.; Sung, J.H.; Park, H.S.; Ryu, C.S.; Oh, J.; Chong, S.Y.; Oh, D.; Kim, N.K. Analysis of the Association Between MicroRNA Biogenesis Gene Polymorphisms and Venous Thromboembolism in Koreans. Int. J. Mol. Sci. 2019, 20, 3771. https://doi.org/10.3390/ijms20153771
Ko EJ, Kim EJ, Kim JO, Sung JH, Park HS, Ryu CS, Oh J, Chong SY, Oh D, Kim NK. Analysis of the Association Between MicroRNA Biogenesis Gene Polymorphisms and Venous Thromboembolism in Koreans. International Journal of Molecular Sciences. 2019; 20(15):3771. https://doi.org/10.3390/ijms20153771
Chicago/Turabian StyleKo, Eun Ju, Eo Jin Kim, Jung Oh Kim, Jung Hoon Sung, Han Sung Park, Chang Soo Ryu, Jisu Oh, So Young Chong, Doyeun Oh, and Nam Keun Kim. 2019. "Analysis of the Association Between MicroRNA Biogenesis Gene Polymorphisms and Venous Thromboembolism in Koreans" International Journal of Molecular Sciences 20, no. 15: 3771. https://doi.org/10.3390/ijms20153771
APA StyleKo, E. J., Kim, E. J., Kim, J. O., Sung, J. H., Park, H. S., Ryu, C. S., Oh, J., Chong, S. Y., Oh, D., & Kim, N. K. (2019). Analysis of the Association Between MicroRNA Biogenesis Gene Polymorphisms and Venous Thromboembolism in Koreans. International Journal of Molecular Sciences, 20(15), 3771. https://doi.org/10.3390/ijms20153771