Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri
Abstract
:1. Introduction
2. Liquid Biopsy
3. Cells and Molecules That Can Be Analyzed from LB Samples
3.1. ctDNA
3.2. CTC
3.3. Exosomes
3.4. mRNAs, miRNAs and lncRNAs
4. Capture, Enrichment, and Isolation of Freely Circulating Vesicles, Molecules and Cells
5. Known Abnormalities in UMT
6. miRNAs
7. DNA Mutations and Chromosomal Aberrations in ULM and Sarcomas
8. Methylation Changes in ULM and LMS
9. lncRNAs and mRNAs
10. ULM and Sarcoma Metabolites
11. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
cfDNA | circulating free DNA |
CNA | freely circulating nucleic acids |
CTC | circulating tumor cells |
ctDNA | circulating tumor DNA |
EMT | epithelial-mesenchymal transition |
ERα | estrogen receptor alpha |
ESS | endometrial stromal sarcomas |
LB | liquid biopsy |
LMS | uterine leiomyosarcomas |
lncRNA | long non-coding RNA |
mRNA | messenger RNA |
miRNA | microRNA |
MM | healthy myometrium |
NGS | next generation sequencing |
NIPT | non-invasive prenatal testing |
STUMP | smooth muscle tumors of uncertain malignant potential |
ULM | uterine leiomyomas |
UMT | uterine mesenchymal tumors |
References
- Flake, G.P.; Andersen, J.; Dixon, D. Etiology and Pathogenesis of Uterine Leiomyomas: A Review. Environ. Health Perspect. 2003, 111, 1037–1054. [Google Scholar] [CrossRef] [PubMed]
- Baird, D.D.; Dunson, D.B.; Hill, M.C.; Cousins, D.; Schectman, J.M. High Cumulative Incidence of Uterine Leiomyoma in Black and White Women: Ultrasound Evidence. Am. J. Obstet. Gynecol. 2003, 188, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Protic, O.; Giannubilo, S.R.; Toti, P.; Tranquilli, A.L.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Uterine Leiomyoma: Available Medical Treatments and New Possible Therapeutic Options. J. Clin. Endocrinol. Metab. 2013, 98, 921–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, S.E.; Zhan, M.; Cote, T.; Baquet, C.R. Surveillance, Epidemiology, and End Results Analysis of 2677 Cases of Uterine Sarcoma 1989–1999. Gynecol. Oncol. 2004, 93, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.; Cunha, T.M. Uterine Sarcomas: Clinical Presentation and MRI Features. Diagnostic Interv. Radiol. 2015, 21, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Uekuri, C.; Akasaka, J.; Ito, F.; Shigemitsu, A.; Koike, N.; Shigetomi, H. The Biology of Uterine Sarcomas: A Review and Update. Mol. Clin. Oncol. 2013, 1, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Benson, C.; Miah, A.B. Uterine Sarcoma – Current Perspectives. Int. J. Womens. Health 2017, 9, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Arleo, E.K.; Schwartz, P.E.; Hui, P.; McCarthy, S. Review of Leiomyoma Variants. Am. J. Roentgenol. 2015, 205, 912–921. [Google Scholar] [CrossRef]
- Mehine, M.; Kaasinen, E.; Heinonen, H.-R.; Mäkinen, N.; Kämpjärvi, K.; Sarvilinna, N.; Aavikko, M.; Vähärautio, A.; Pasanen, A.; Bützow, R.; et al. Integrated Data Analysis Reveals Uterine Leiomyoma Subtypes with Distinct Driver Pathways and Biomarkers. Proc. Natl. Acad. Sci. 2016, 113, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ubago, J.; Li, L.; Guo, H.; Liu, Y.; Qiang, W.; Kim, J.J.; Kong, B.; Wei, J.-J. Molecular Analyses of 6 Different Types of Uterine Smooth Muscle Tumors: Emphasis in Atypical Leiomyoma. Cancer 2014, 120, 3165–3177. [Google Scholar] [CrossRef]
- Prat, J.; ’Nomonde, M. Uterine Sarcomas. Int. J. Gynecol. Obstet. 2015, 131, S105–S110. [Google Scholar] [CrossRef] [PubMed]
- Kalogiannidis, I.; Stavrakis, T.; Dagklis, T.; Petousis, S.; Nikolaidou, C.; Venizelos, I.; Rousso, D. A Clinicopathological Study of Atypical Leiomyomas: Benign Variant Leiomyoma or Smooth-Muscle Tumor of Uncertain Malignant Potential. Oncol. Lett. 2016, 11, 1425. [Google Scholar] [CrossRef] [PubMed]
- Pickett, J.L.; Chou, A.; Andrici, J.A.; Clarkson, A.; Sioson, L.; Sheen, A.; Reagh, J.; Najdawi, F.; Kim, Y.; Riley, D.; et al. Inflammatory Myofibroblastic Tumors of the Female Genital Tract Are Under-Recognized: A Low Threshold for ALK Immunohistochemistry Is Required. Am. J. Surg. Pathol. 2017, 41, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Indraccolo, U.; Luchetti, G.; Indraccolo, S.R. Malignant Transformation of Uterine Leiomyomata. Eur. J. Gynaecol. Oncol. 2008, 29, 543–544. [Google Scholar]
- Patacchiola, F.; Palermo, P.; Di Luigi, G. Leiomyosarcoma: A Rare Malignant Transformation of a Uterine Leiomyoma. Eur. J. Gynaecol. Oncol. 2015, 36, 84–87. [Google Scholar]
- Holzmann, C.; Saager, C.; Mechtersheimer, G.; Koczan, D.; Helmke, B.M.; Bullerdiek, J. Malignant Transformation of Uterine Leiomyoma to Myxoid Leiomyosarcoma after Morcellation Associated with ALK rearrangement and Loss of 14q. Oncotarget 2018, 9, 27595–27604. [Google Scholar] [CrossRef] [PubMed]
- Blythe, J.G.; Bari, W.A. Uterine Sarcoma: Histology, Classification and Prognosis. In Gynecology and Obstetrics; Harper Row: Hagerstown, MD, USA, 2008; Volume 4, pp. 1–19. [Google Scholar] [CrossRef]
- Artioli, G.; Wabersich, J.; Ludwig, K.; Gardiman, M.P.; Borgato, L.; Garbin, F. Rare Uterine Cancer: Carcinosarcomas. Review from Histology to Treatment. Crit. Rev. Oncol. Hematol. 2015, 94, 98–104. [Google Scholar] [CrossRef]
- D’Angelo, E.; Prat, J. Uterine Sarcomas: A Review. Gynecol. Oncol. 2010, 116, 131–139. [Google Scholar] [CrossRef]
- Chen, I.; Firth, B.; Hopkins, L.; Bougie, O.; Xie, R.-H.; Singh, S. Clinical Characteristics Differentiating Uterine Sarcoma and Fibroids. JSLS J. Soc. Laparoendosc. Surg. 2018, 22, e2017.00066. [Google Scholar] [CrossRef]
- Falcone, T.; Parker, W.H. Surgical Management of Leiomyomas for Fertility or Uterine Preservation. Obstet. Gynecol. 2013, 121, 856–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodner, K.; Bodner-Adler, B.; Kimberger, O.; Czerwenka, K.; Mayerhofer, K. Estrogen and Progesterone Receptor Expression in Patients with Uterine Smooth Muscle Tumors. Fertil. Steril. 2004, 81, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Felix, A.S.; Cook, L.S.; Gaudet, M.M.; Rohan, T.E.; Schouten, L.J.; Setiawan, V.W.; Wise, L.A.; Anderson, K.E.; Bernstein, L.; De Vivo, I.; et al. The Etiology of Uterine Sarcomas: A Pooled Analysis of the Epidemiology of Endometrial Cancer Consortium. Br. J. Cancer 2013, 108, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Singh, Z. Leiomyosarcoma: A Rare Soft Tissue Cancer Arising from Multiple Organs. J. Cancer Res. Pract. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Mas, A.; Simón, C. Molecular Differential Diagnosis of Uterine Leiomyomas and Leiomyosarcomas. Biol. Reprod. 2018, 0, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tsuyoshi, H.; Yoshida, Y. Molecular Biomarkers for Uterine Leiomyosarcoma and Endometrial Stromal Sarcoma. Cancer Sci. 2018, 109, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, T. A Case of Cancer in Which Cells Similar to Those in the Tumours Were Seen in the Blood after Death. Aust. Med. J. 1869, 14, 146–149. [Google Scholar] [CrossRef]
- Crowley, E.; Di Nicolantonio, F.; Loupakis, F.; Bardelli, A. Liquid Biopsy: Monitoring Cancer-Genetics in the Blood. Nat. Rev. Clin. Oncol. 2013, 10, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Lodewijk, I.; Dueñas, M.; Rubio, C.; Munera-Maravilla, E.; Segovia, C.; Bernardini, A.; Teijeira, A.; Paramio, J.M.; Suárez-Cabrera, C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int. J. Mol. Sci. 2018, 19, 2514. [Google Scholar] [CrossRef]
- Perakis, S.; Speicher, M.R. Emerging Concepts in Liquid Biopsies. BMC Med. 2017, 15, 75. [Google Scholar] [CrossRef]
- Palmirotta, R.; Lovero, D.; Cafforio, P.; Felici, C.; Mannavola, F.; Pellè, E.; Quaresmini, D.; Tucci, M.; Silvestris, F. Liquid Biopsy of Cancer: A Multimodal Diagnostic Tool in Clinical Oncology. Ther. Adv. Med. Oncol. 2018, 10, 175883591879463. [Google Scholar] [CrossRef]
- Borah, B.J.; Nicholson, W.K.; Bradley, L.; Stewart, E.A. The Impact of Uterine Leiomyomas: A National Survey of Affected Women. Am. J. Obstet. Gynecol. 2013, 209, 319.e1–319.e20. [Google Scholar] [CrossRef]
- Ilié, M.; Hofman, P. Pros: Can Tissue Biopsy Be Replaced by Liquid Biopsy? Transl. lung cancer Res. 2016, 5, 420–423. [Google Scholar] [CrossRef]
- Arneth, B. Update on the Types and Usage of Liquid Biopsies in the Clinical Setting: A Systematic Review. BMC Cancer 2018, 18, 527. [Google Scholar] [CrossRef]
- Warton, K.; Mahon, K.L.; Samimi, G. Methylated Circulating Tumor DNA in Blood: Power in Cancer Prognosis and Response. Endocr. Relat. Cancer 2016, 23, R157–R171. [Google Scholar] [CrossRef]
- Gorgannezhad, L.; Umer, M.; Islam, M.N.; Nguyen, N.-T.; Shiddiky, M.J.A. Circulating Tumor DNA and Liquid Biopsy: Opportunities, Challenges, and Recent Advances in Detection Technologies. Lab Chip 2018, 18, 1174–1196. [Google Scholar] [CrossRef]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid Biopsies Come of Age: Towards Implementation of Circulating Tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Ng, S.B.; Chua, C.; Ng, M.; Gan, A.; Poon, P.S.; Teo, M.; Fu, C.; Leow, W.Q.; Lim, K.H.; Chung, A.; et al. Individualised Multiplexed Circulating Tumour DNA Assays for Monitoring of Tumour Presence in Patients after Colorectal Cancer Surgery. Sci. Rep. 2017, 7, 40737. [Google Scholar] [CrossRef]
- Yang, N.; Li, Y.; Liu, Z.; Qin, H.; Du, D.; Cao, X.; Cao, X.; Li, J.; Li, D.; Jiang, B.; et al. The Characteristics of CtDNA Reveal the High Complexity in Matching the Corresponding Tumor Tissues. BMC Cancer 2018, 18, 319. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, J.; Xiao, J.; Wang, L.; Hu, X.; Yu, W.; Song, G.; Lou, J.; Chen, J. Heterogeneous Mutation Pattern in Tumor Tissue and Circulating Tumor DNA Warrants Parallel NGS Panel Testing. Mol. Cancer 2018, 17, 131. [Google Scholar] [CrossRef]
- Kammesheidt, A.; Tonozzi, T.R.; Lim, S.W.; Braunstein, G.D. Mutation Detection Using Plasma Circulating Tumor DNA (CtDNA) in a Cohort of Asymptomatic Adults at Increased Risk for Cancer. Int. J. Mol. Epidemiol. Genet. 2018, 9, 1–12. [Google Scholar]
- Toor, O.M.; Ahmed, Z.; Bahaj, W.; Boda, U.; Cummings, L.S.; McNally, M.E.; Kennedy, K.F.; Pluard, T.J.; Hussain, A.; Subramanian, J.; et al. Correlation of Somatic Genomic Alterations Between Tissue Genomics and CtDNA Employing Next-Generation Sequencing: Analysis of Lung and Gastrointestinal Cancers. Mol. Cancer Ther. 2018, 17, 1123–1132. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Hoon, D.S.B.; Pantel, K. Cell-Free Nucleic Acids as Biomarkers in Cancer Patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef]
- Leung, F.; Kulasingam, V.; Diamandis, E.P.; Hoon, D.S.B.; Kinzler, K.; Pantel, K.; Alix-Panabieres, C. Circulating Tumor DNA as a Cancer Biomarker: Fact or Fiction? Clin. Chem. 2016, 62, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Chung, J.; Issadore, D. Diagnostic Technologies for Circulating Tumour Cells and Exosomes. Biosci. Rep. 2016, 36, e00292. [Google Scholar] [CrossRef]
- Agarwal, A.; Balic, M.; El-Ashry, D.; Cote, R.J. Circulating Tumor Cells. Cancer J. 2018, 24, 70–77. [Google Scholar] [CrossRef]
- Boukouris, S.; Mathivanan, S. Exosomes in Bodily Fluids Are a Highly Stable Resource of Disease Biomarkers. Proteom.-Clin. Appl. 2015, 9, 358–367. [Google Scholar] [CrossRef]
- Tian, F.; Shen, Y.; Chen, Z.; Li, R.; Ge, Q. No Significant Difference between Plasma MiRNAs and Plasma-Derived Exosomal MiRNAs from Healthy People. Biomed. Res. Int. 2017, 2017, 1304816. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Komatsu, S.; Ichikawa, D.; Tsujiura, M.; Takeshita, H.; Hirajima, S.; Miyamae, M.; Okajima, W.; Ohashi, T.; Imamura, T.; et al. Circulating MicroRNAs: A Next-Generation Clinical Biomarker for Digestive System Cancers. Int. J. Mol. Sci. 2016, 17, 1459. [Google Scholar] [CrossRef]
- De Souza, M.F.; Kuasne, H.; de Camargo Barros-Filho, M.; Cilião, H.L.; Marchi, F.A.; Fuganti, P.E.; Paschoal, A.R.; Rogatto, S.R.; de Syllos Cólus, I.M. Circulating MRNAs and MiRNAs as Candidate Markers for the Diagnosis and Prognosis of Prostate Cancer. PLoS ONE 2017, 12, e0184094. [Google Scholar] [CrossRef]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating Mutant DNA to Assess Tumor Dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef]
- Fleischhacker, M.; Schmidt, B. Circulating Nucleic Acids (CNAs) and Cancer—A Survey. Biochim. Biophys. Acta-Rev. Cancer 2007, 1775, 181–232. [Google Scholar] [CrossRef]
- Yao, W.; Mei, C.; Nan, X.; Hui, L. Evaluation and Comparison of in Vitro Degradation Kinetics of DNA in Serum, Urine and Saliva: A Qualitative Study. Gene 2016, 590, 142–148. [Google Scholar] [CrossRef]
- Young, R.; Pailler, E.; Billiot, F.; Drusch, F.; Barthelemy, A.; Oulhen, M.; Besse, B.; Soria, J.-C.; Farace, F.; Vielh, P. Circulating Tumor Cells in Lung Cancer. Acta Cytol. 2012, 56, 655–660. [Google Scholar] [CrossRef]
- Su, Z.; Zhao, J.; Ke, S.; Zhang, J.; Liu, X.; Wang, Y.; Sun, Q.; Pan, Q. Clinical Significance of Circulating Tumor Cells via Combined Whole Exome Sequencing in Early Stage Cancer Screening: A Case Report. Exp. Ther. Med. 2018, 16, 2527–2533. [Google Scholar] [CrossRef]
- Rajagopal, C.; Harikumar, K.B. The Origin and Functions of Exosomes in Cancer. Front. Oncol. 2018, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Koritzinsky, E.H.; Street, J.M.; Star, R.A.; Yuen, P.S.T. Quantification of Exosomes. J. Cell. Physiol. 2017, 232, 1587–1590. [Google Scholar] [CrossRef]
- Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in Exosome Isolation Techniques. Theranostics 2017, 7, 789–804. [Google Scholar] [CrossRef]
- Taylor, D.D.; Gercel-Taylor, C. Exosomes/Microvesicles: Mediators of Cancer-Associated Immunosuppressive Microenvironments. Semin. Immunopathol. 2011, 33, 441–454. [Google Scholar] [CrossRef]
- Yang, Y.; Hong, Y.; Cho, E.; Kim, G.B.; Kim, I.-S. Extracellular Vesicles as a Platform for Membrane-Associated Therapeutic Protein Delivery. J. Extracell. Vesicles 2018, 7, 1440131. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, W.; Klinke II, D.J. Exosomes: Improved Methods to Characterize Their Morphology, RNA Content, and Surface Protein Biomarkers. Analyst 2015, 140, 6631–6642. [Google Scholar] [CrossRef]
- Sheridan, C. Exosome Cancer Diagnostic Reaches Market. Nat. Biotechnol. 2016, 34, 359–360. [Google Scholar] [CrossRef]
- Lissa, D.; Robles, A.I. Methylation Analyses in Liquid Biopsy. Transl. Lung Cancer Res. 2016, 5, 492. [Google Scholar] [CrossRef]
- Balgkouranidou, I.; Chimonidou, M.; Milaki, G.; Tsarouxa, E.G.; Kakolyris, S.; Welch, D.R.; Georgoulias, V.; Lianidou, E.S. Breast Cancer Metastasis Suppressor-1 Promoter Methylation in Cell-Free DNA Provides Prognostic Information in Non-Small Cell Lung Cancer. Br. J. Cancer 2014, 110, 2054–2062. [Google Scholar] [CrossRef]
- Majchrzak-Celińska, A.; Paluszczak, J.; Kleszcz, R.; Magiera, M.; Barciszewska, A.-M.; Nowak, S.; Baer-Dubowska, W. Detection of MGMT, RASSF1A, P15INK4B, and P14ARF Promoter Methylation in Circulating Tumor-Derived DNA of Central Nervous System Cancer Patients. J. Appl. Genet. 2013, 54, 335–344. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Hansen, J.W.; Kristensen, S.S.; Tholstrup, D.; Harsløf, L.B.S.; Pedersen, O.B.; De Nully Brown, P.; Grønbæk, K. Aberrant Methylation of Cell-Free Circulating DNA in Plasma Predicts Poor Outcome in Diffuse Large B Cell Lymphoma. Clin. Epigenetics 2016, 8, 95. [Google Scholar] [CrossRef]
- Elazezy, M.; Joosse, S.A. Techniques of Using Circulating Tumor DNA as a Liquid Biopsy Component in Cancer Management. Comput. Struct. Biotechnol. J. 2018, 16, 370–378. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, B.; Tong, X.; Wang, Y.; Wang, C.; Jin, J.; Tian, P.; Li, W. Diagnostic Accuracy of Droplet Digital PCR for Detection of EGFR T790M Mutation in Circulating Tumor DNA. Cancer Manag. Res. 2018, 10, 1209–1218. [Google Scholar] [CrossRef]
- Calapre, L.; Warburton, L.; Millward, M.; Ziman, M.; Gray, E.S. Circulating Tumour DNA (CtDNA) as a Liquid Biopsy for Melanoma. Cancer Lett. 2017, 404, 62–69. [Google Scholar] [CrossRef]
- Widschwendter, M.; Zikan, M.; Wahl, B.; Lempiäinen, H.; Paprotka, T.; Evans, I.; Jones, A.; Ghazali, S.; Reisel, D.; Eichner, J.; et al. The Potential of Circulating Tumor DNA Methylation Analysis for the Early Detection and Management of Ovarian Cancer. Genome Med. 2017, 9, 116. [Google Scholar] [CrossRef]
- Le, A.; Szaumkessel, M.; Tan, T.; Thiery, J.-P.; Thompson, E.; Dobrovic, A. DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers. Int. J. Mol. Sci. 2018, 19, 2553. [Google Scholar] [CrossRef]
- Xu, R.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; et al. Circulating Tumour DNA Methylation Markers for Diagnosis and Prognosis of Hepatocellular Carcinoma. Nat. Mater. 2017, 16, 1155–1161. [Google Scholar] [CrossRef]
- Sun, K.; Lun, F.F.M.; Jiang, P.; Sun, H. BSviewer: A Genotype-Preserving, Nucleotide-Level Visualizer for Bisulfite Sequencing Data. Bioinformatics 2017, 33, 3495–3496. [Google Scholar] [CrossRef]
- Lun, F.M.F.; Chiu, R.W.K.; Sun, K.; Leung, T.Y.; Jiang, P.; Chan, K.C.A.; Sun, H.; Lo, Y.M.D. Noninvasive Prenatal Methylomic Analysis by Genomewide Bisulfite Sequencing of Maternal Plasma DNA. Clin. Chem. 2013, 59, 1583–1584. [Google Scholar] [CrossRef]
- Wong, I.H.N.; Liew, C.-T.; Ng, M.H.L.; Lo, Y.M.D.; Zhang, J.; Hjelm, N.M.; Wong, N.; Johnson, P.J.; Lai, P.B.S.; Lau, W.Y. Detection of Aberrant P16 Methylation in the Plasma and Serum of Liver Cancer Patients. Cancer Res. 1999, 59, 71–73. [Google Scholar]
- Cheng, J.-P.; Yan, Y.; Wang, X.-Y.; Lu, Y.-L.; Yuan, Y.-H.; Jia, J.; Ren, J. MUC1-Positive Circulating Tumor Cells and MUC1 Protein Predict Chemotherapeutic Efficacy in the Treatment of Metastatic Breast Cancer. Chin. J. Cancer 2011, 30, 54–61. [Google Scholar] [CrossRef]
- Kuhlmann, J.D.; Wimberger, P.; Bankfalvi, A.; Keller, T.; Scholer, S.; Aktas, B.; Buderath, P.; Hauch, S.; Otterbach, F.; Kimmig, R.; et al. ERCC1-Positive Circulating Tumor Cells in the Blood of Ovarian Cancer Patients as a Predictive Biomarker for Platinum Resistance. Clin. Chem. 2014, 60, 1282–1289. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-C.; Hsu, H.-C.; Hsieh, C.-H.; Wang, H.-M.; Huang, C.-Y.; Wu, M.-H.; Tseng, C.-P. A Negative Selection System PowerMag for Effective Leukocyte Depletion and Enhanced Detection of EpCAM Positive and Negative Circulating Tumor Cells. Clin. Chim. Acta. 2013, 419, 77–84. [Google Scholar] [CrossRef]
- Benini, S.; Gamberi, G.; Cocchi, S.; Garbetta, J.; Alberti, L.; Righi, A.; Gambarotti, M.; Picci, P.; Ferrari, S. Detection of Circulating Tumor Cells in Liquid Biopsy from Ewing Sarcoma Patients. Cancer Manag. Res. 2018, 10, 49–60. [Google Scholar] [CrossRef]
- Satelli, A.; Brownlee, Z.; Mitra, A.; Meng, Q.H.; Li, S. Circulating Tumor Cell Enumeration with a Combination of Epithelial Cell Adhesion Molecule-and Cell-Surface Vimentin-Based Methods for Monitoring Breast Cancer Therapeutic Response. Clin. Chem. 2015, 61, 259–266. [Google Scholar] [CrossRef]
- Hayashi, M.; Zhu, P.; McCarty, G.; Meyer, C.F.; Pratilas, C.A.; Levin, A.; Morris, C.D.; Albert, C.M.; Jackson, K.W.; Tang, C.-M.; et al. Size-Based Detection of Sarcoma Circulating Tumor Cells and Cell Clusters. Oncotarget 2017, 8, 78965. [Google Scholar] [CrossRef]
- Khetani, S.; Mohammadi, M.; Nezhad, A.S. Filter-Based Isolation, Enrichment, and Characterization of Circulating Tumor Cells. Biotechnol. Bioeng. 2018, 115, 2504–2529. [Google Scholar] [CrossRef]
- Chung, J.; Shao, H.; Reiner, T.; Issadore, D.; Weissleder, R.; Lee, H. Microfluidic Cell Sorter (μ FCS) for On-Chip Capture and Analysis of Single Cells. Adv. Healthc. Mater. 2012, 1, 432–436. [Google Scholar] [CrossRef]
- Sarioglu, A.F.; Aceto, N.; Kojic, N.; Donaldson, M.C.; Zeinali, M.; Hamza, B.; Engstrom, A.; Zhu, H.; Sundaresan, T.K.; Miyamoto, D.T.; et al. A Microfluidic Device for Label-Free, Physical Capture of Circulating Tumor Cell Clusters. Nat. Methods 2015, 12, 685–691. [Google Scholar] [CrossRef]
- Issadore, D.; Chung, J.; Shao, H.; Liong, M.; Ghazani, A.A.; Castro, C.M.; Weissleder, R.; Lee, H. Ultrasensitive Clinical Enumeration of Rare Cells Ex Vivo Using a Micro-Hall Detector. Sci. Transl. Med. 2012, 4, 141ra92. [Google Scholar] [CrossRef]
- Muluneh, M.; Issadore, D. A Multi-Scale PDMS Fabrication Strategy to Bridge the Size Mismatch between Integrated Circuits and Microfluidics. Lab Chip 2014, 14, 4552–4558. [Google Scholar] [CrossRef]
- Yao, N.; Jan, Y.-J.; Cheng, S.; Chen, J.-F.; Chung, L.W.; Tseng, H.-R.; Posadas, E.M. Structure and Function Analysis in Circulating Tumor Cells: Using Nanotechnology to Study Nuclear Size in Prostate Cancer. Am. J. Clin. Exp. Urol. 2018, 6, 43–54. [Google Scholar]
- Hui, L. Noninvasive Prenatal Testing for Aneuploidy Using Cell-Free DNA – New Implications for Maternal Health. Obstet. Med. 2016, 9, 148–152. [Google Scholar] [CrossRef]
- Dharajiya, N.G.; Grosu, D.S.; Farkas, D.H.; McCullough, R.M.; Almasri, E.; Sun, Y.; Kim, S.K.; Jensen, T.J.; Saldivar, J.-S.; Topol, E.J.; et al. Incidental Detection of Maternal Neoplasia in Noninvasive Prenatal Testing. Clin. Chem. 2018, 64, 329–335. [Google Scholar] [CrossRef]
- Giles, M.E.; Murphy, L.; Krstić, N.; Sullivan, C.; Hashmi, S.S.; Stevens, B. Prenatal CfDNA Screening Results Indicative of Maternal Neoplasm: Survey of Current Practice and Management Needs. Prenat. Diagn. 2017, 37, 126–132. [Google Scholar] [CrossRef]
- Hemming, M.L.; Klega, K.S.; Acker, K.E.; Nag, A.; Thorner, A.; Nathenson, M.; Raut, C.P.; Crompton, B.D.; George, S. Identification of Leiomyosarcoma Circulating Tumor DNA through Ultra-Low Passage Whole Genome Sequencing and Correlation with Tumor Burden: A Pilot Experience. J. Clin. Oncol. 2018, 36, 11565. [Google Scholar] [CrossRef]
- Hemming, M.L.; Klega, K.; Rhoades, J.; Ha, G.; Acker, K.E.; Andersen, J.L.; Thai, E.; Nag, A.; Thorner, A.R.; Raut, C.P.; et al. Detection of Circulating Tumor DNA in Patients With Leiomyosarcoma With Progressive Disease. JCO Precis. Oncol. 2019, 3, 1–11. [Google Scholar] [CrossRef]
- Izzotti, A.; Carozzo, S.; Pulliero, A.; Zhabayeva, D.; Ravetti, J.L.; Bersimbaev, R. Extracellular MicroRNA in Liquid Biopsy: Applicability in Cancer Diagnosis and Prevention. Am. J. Cancer Res. 2016, 6, 1461–1493. [Google Scholar]
- Giannopoulou, L.; Zavridou, M.; Kasimir-Bauer, S.; Lianidou, E.S. Liquid Biopsy in Ovarian Cancer: The Potential of Circulating MiRNAs and Exosomes. Transl. Res. 2019, 205, 77–91. [Google Scholar] [CrossRef]
- De Groot, J.S.; Moelans, C.B.; Elias, S.G.; Fackler, M.J.; Van Domselaar, R.; Suijkerbuijk, K.P.M.; Witkamp, A.J.; Sukumar, S.; Van Diest, P.J.; Van Der Wall, E. DNA Promoter Hypermethylation in Nipple Fluid: A Potential Tool for Early Breast Cancer Detection. Oncotarget 2016, 7, 24778. [Google Scholar] [CrossRef]
- Takashima, Y.; Kawaguchi, A.; Iwadate, Y.; Hondoh, H.; Fukai, J.; Kajiwara, K.; Hayano, A.; Yamanaka, R. MicroRNA Signature Constituted of MiR-30d, MiR-93, and MiR-181b Is a Promising Prognostic Marker in Primary Central Nervous System Lymphoma. PLoS ONE 2019, 14, e0210400. [Google Scholar] [CrossRef]
- Komatsu, S.; Kiuchi, J.; Imamura, T.; Ichikawa, D.; Otsuji, E. Circulating MicroRNAs as a Liquid Biopsy: A next-Generation Clinical Biomarker for Diagnosis of Gastric Cancer. J. Cancer Metastasis Treat. 2018, 4, 36. [Google Scholar] [CrossRef]
- Li, L.; Fu, K.; Zhou, W.; Snyder, M. Applying Circulating Tumor DNA Methylation in the Diagnosis of Lung Cancer. Precis. Clin. Med. 2019, 2, 45–56. [Google Scholar] [CrossRef]
- Barault, L.; Amatu, A.; Bleeker, F.E.; Moutinho, C.; Falcomatà, C.; Fiano, V.; Cassingena, A.; Siravegna, G.; Milione, M.; Cassoni, P.; et al. Digital PCR Quantification of MGMT Methylation Refines Prediction of Clinical Benefit from Alkylating Agents in Glioblastoma and Metastatic Colorectal Cancer. Ann. Oncol. 2015, 26, 1994–1999. [Google Scholar] [CrossRef]
- Martínez-Ricarte, F.; Mayor, R.; Martínez-Sáez, E.; Rubio-Pérez, C.; Pineda, E.; Cordero, E.; Cicuéndez, M.; Poca, M.A.; López-Bigas, N.; Ramon Y Cajal, S.; et al. Molecular Diagnosis of Diffuse Gliomas through Sequencing of Cell-Free Circulating Tumour DNA from Cerebrospinal Fluid. Author Manuscr. Publ. OnlineFirst 2018, 24, 2812–2819. [Google Scholar] [CrossRef]
- Vandekerkhove, G.; Todenhöfer, T.; Annala, M.; Struss, W.J.; Wong, A.; Beja, K.; Ritch, E.; Brahmbhatt, S.; Volik, S.V.; Hennenlotter, J.; et al. Circulating Tumor DNA Reveals Clinically Actionable Somatic Genome of Metastatic Bladder Cancer. Clin. Cancer Res. 2017, 23, 6487–6497. [Google Scholar] [CrossRef] [Green Version]
- Cimadamore, A.; Gasparrini, S.; Massari, F.; Santoni, M.; Cheng, L.; Lopez-Beltran, A.; Scarpelli, M.; Montironi, R. Emerging Molecular Technologies in Renal Cell Carcinoma: Liquid Biopsy. Cancers. 2019, 11, 196. [Google Scholar] [CrossRef]
- Kirkizlar, E.; Zimmermann, B.; Constantin, T.; Swenerton, R.; Hoang, B.; Wayham, N.; Babiarz, J.E.; Demko, Z.; Pelham, R.J.; Kareht, S.; et al. Detection of Clonal and Subclonal Copy-Number Variants in Cell-Free DNA from Patients with Breast Cancer Using a Massively Multiplexed PCR Methodology. Transl. Oncol. 2015, 8, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Best, M.G.; Sol, N.; Zijl, S.; Reijneveld, J.C.; Wesseling, P.; Wurdinger, T. Liquid Biopsies in Patients with Diffuse Glioma. Acta Neuropathologica. 2015, 129, 849–865. [Google Scholar] [CrossRef]
- Miller, A.M.; Shah, R.H.; Pentsova, E.I.; Pourmaleki, M.; Briggs, S.; Distefano, N.; Zheng, Y.; Skakodub, A.; Mehta, S.A.; Campos, C.; et al. Tracking Tumour Evolution in Glioma through Liquid Biopsies of Cerebrospinal Fluid. Nature 2019, 654–658. [Google Scholar] [CrossRef]
- Yin, C.Q.; Yuan, C.H.; Qu, Z.; Guan, Q.; Chen, H.; Wang, F.B. Liquid Biopsy of Hepatocellular Carcinoma: Circulating Tumor-Derived Biomarkers. Dis. Markers 2016. [Google Scholar] [CrossRef]
- Hammond, S.M. An Overview of MicroRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef]
- Pan, Q.; Luo, X.; Chegini, N. Differential Expression of MicroRNAs in Myometrium and Leiomyomas and Regulation by Ovarian Steroids. J. Cell. Mol. Med. 2008, 12, 227–240. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, H.; Wu, J.; Zavadil, J.; Ghanny, S.; Ghuo, S.; Wei, J. Differential Expression of MiRNAs in Uterine Leiomyoma and Adjacent Myometrium of Different Races. Am J Clin Exp Obstet Gynecol. 2015, 2, 45–256. [Google Scholar]
- Wang, T.; Zhang, X.; Obijuru, L.; Laser, J.; Aris, V.; Lee, P.; Mittal, K.; Soteropoulos, P.; Wei, J.-J. A Micro-RNA Signature Associated with Race, Tumor Size, and Target Gene Activity in Human Uterine Leiomyomas. Genes, Chromosom. Cancer 2007, 46, 336–347. [Google Scholar] [CrossRef]
- Guan, Y.; Guo, L.; Zukerberg, L.; Rueda, B.R.; Styer, A.K. MicroRNA-15b Regulates Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) Expression in Human Uterine Leiomyoma. Reprod. Biol. Endocrinol. 2016, 14, 45. [Google Scholar] [CrossRef]
- Xin, C.; Buhe, B.; Hongting, L.; Chuanmin, Y.; Xiwei, H.; Hong, Z.; Lulu, H.; Qian, D.; Renjie, W. MicroRNA-15a Promotes Neuroblastoma Migration by Targeting Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) and Regulating Matrix Metalloproteinase-9 Expression. FEBS J. 2013, 280, 855–866. [Google Scholar] [CrossRef]
- Takagi, S.; Simizu, S.; Osada, H. Reck Negatively Regulates Matrix Metalloproteinase-9 Transcription. Cancer Res. 2009, 69, 1502–1508. [Google Scholar] [CrossRef]
- Kristjánsdóttir, K.; Fogarty, E.A.; Grimson, A. Systematic Analysis of the Hmga2 3′ UTR Identifies Many Independent Regulatory Sequences and a Novel Interaction between Distal Sites. RNA 2015, 21, 1346–1360. [Google Scholar] [CrossRef]
- De Almeida, B.C.; Garcia, N.; Maffazioli, G.; Dos Anjos, L.G.; Baracat, E.C.; Carvalho, K.C. Oncomirs Expression Profiling in Uterine Leiomyosarcoma Cells. Int. J. Mol. Sci. 2018, 19, 52. [Google Scholar] [CrossRef]
- Schiavon, B.N.; Carvalho, K.C.; Coutinho-Camillo, C.M.; Baiocchi, G.; Valieris, R.; Drummond, R.; da Silva, I.T.; De Brot, L.; Soares, F.A.; da Cunha, I.W. MiRNAs 144-3p, 34a-5p, and 206 Are a Useful Signature for Distinguishing Uterine Leiomyosarcoma from Other Smooth Muscle Tumors. Surg. Exp. Pathol. 2019, 2, 5. [Google Scholar] [CrossRef]
- Danielson, L.S.; Menendez, S.; Attolini, C.S.-O.; Guijarro, M.V.; Bisogna, M.; Wei, J.; Socci, N.D.; Levine, D.A.; Michor, F.; Hernando, E. A Differentiation-Based MicroRNA Signature Identifies Leiomyosarcoma as a Mesenchymal Stem Cell-Related Malignancy. Am. J. Pathol. 2010, 177, 908–917. [Google Scholar] [CrossRef]
- Kowalewska, M.; Bakula-Zalewska, E.; Chechlinska, M.; Goryca, K.; Nasierowska-Guttmejer, A.; Danska-Bidzinska, A.; Bidzinski, M. MicroRNAs in Uterine Sarcomas and Mixed Epithelial–Mesenchymal Uterine Tumors: A Preliminary Report. Tumor Biol. 2013, 34, 2153–2160. [Google Scholar] [CrossRef]
- Gonzalez dos Anjos, L.; de Almeida, B.; Gomes de Almeida, T.; Mourão Lavorato Rocha, A.; De Nardo Maffazioli, G.; Soares, F.; Werneck da Cunha, I.; Chada Baracat, E.; Candido Carvalho, K.; Gonzalez dos Anjos, L.; et al. Could MiRNA Signatures Be Useful for Predicting Uterine Sarcoma and Carcinosarcoma Prognosis and Treatment? Cancers (Basel) 2018, 10, 315. [Google Scholar] [CrossRef]
- Ravid, Y.; Formanski, M.; Smith, Y.; Reich, R.; Davidson, B. Uterine Leiomyosarcoma and Endometrial Stromal Sarcoma Have Unique MiRNA Signatures. Gynecol. Oncol. 2016, 140, 512–517. [Google Scholar] [CrossRef]
- Zavadil, J.; Ye, H.; Liu, Z.; Wu, J.; Lee, P.; Hernando, E.; Soteropoulos, P.; Toruner, G.A.; Wei, J.-J. Profiling and Functional Analyses of MicroRNAs and Their Target Gene Products in Human Uterine Leiomyomas. PLoS ONE 2010, 5, e12362. [Google Scholar] [CrossRef]
- Marsh, E.E.; Lin, Z.; Yin, P.; Milad, M.; Chakravarti, D.; Bulun, S.E. Differential Expression of MicroRNA Species in Human Uterine Leiomyoma versus Normal Myometrium. Fertil. Steril. 2008, 89, 1771–1776. [Google Scholar] [CrossRef]
- Georgieva, B.; Milev, I.; Minkov, I.; Dimitrova, I.; Bradford, A.P.; Baev, V. Characterization of the Uterine Leiomyoma MicroRNAome by Deep Sequencing. Genomics 2012, 99, 275–281. [Google Scholar] [CrossRef]
- Marsh, E.E.; Steinberg, M.L.; Parker, J.B.; Wu, J.; Chakravarti, D.; Bulun, S.E. Decreased Expression of MicroRNA-29 Family in Leiomyoma Contributes to Increased Major Fibrillar Collagen Production. Fertil. Steril. 2016, 106, 766–772. [Google Scholar] [CrossRef]
- Chuang, T.-D.; Luo, X.; Panda, H.; Chegini, N. MiR-93/106b and Their Host Gene, MCM7, Are Differentially Expressed in Leiomyomas and Functionally Target F3 and IL-8. Mol. Endocrinol. 2012, 26, 1028–1042. [Google Scholar] [CrossRef]
- Pazzaglia, L.; Novello, C.; Conti, A.; Pollino, S.; Picci, P.; Benassi, M.S. MiR-152 down-Regulation Is Associated with MET up-Regulation in Leiomyosarcoma and Undifferentiated Pleomorphic Sarcoma. Cell. Oncol. 2017, 40, 77–88. [Google Scholar] [CrossRef]
- Chuang, T.-D.; Panda, H.; Luo, X.; Chegini, N. MiR-200c Is Aberrantly Expressed in Leiomyomas in an Ethnic-Dependent Manner and Targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr. Relat. Cancer 2012, 19, 541–556. [Google Scholar] [CrossRef]
- Wu, X.; Ling, J.; Fu, Z.; Ji, C.; Wu, J.; Xu, Q. Effects of MiRNA-197 Overexpression on Proliferation, Apoptosis and Migration in Levonorgestrel Treated Uterine Leiomyoma Cells. Biomed. Pharmacother. 2015, 71, 1–6. [Google Scholar] [CrossRef]
- Makinen, N.; Mehine, M.; Tolvanen, J.; Kaasinen, E.; Li, Y.; Lehtonen, H.J.; Gentile, M.; Yan, J.; Enge, M.; Taipale, M.; et al. MED12, the Mediator Complex Subunit 12 Gene, Is Mutated at High Frequency in Uterine Leiomyomas. Science 2011, 334, 252–255. [Google Scholar] [CrossRef]
- Harrison, W.J.; Andrici, J.; Maclean, F.; Madadi-Ghahan, R.; Farzin, M.; Sioson, L.; Toon, C.W.; Clarkson, A.; Watson, N.; Pickett, J.; et al. Fumarate Hydratase–Deficient Uterine Leiomyomas Occur in Both the Syndromic and Sporadic Settings. Am. J. Surg. Pathol. 2016, 40, 599–607. [Google Scholar] [CrossRef]
- Stewart, L.; Glenn, G.M.; Stratton, P.; Goldstein, A.M.; Merino, M.J.; Tucker, M.A.; Linehan, W.M.; Toro, J.R. Association of Germline Mutations in the Fumarate Hydratase Gene and Uterine Fibroids in Women with Hereditary Leiomyomatosis and Renal Cell Cancer. Arch. Dermatol. 2008, 144, 1584–1592. [Google Scholar] [CrossRef]
- Ylisaukko-oja, S.K.; Kiuru, M.; Lehtonen, H.J.; Lehtonen, R.; Pukkala, E.; Arola, J.; Launonen, V.; Aaltonen, L.A. Analysis of Fumarate Hydratase Mutations in a Population-Based Series of Early Onset Uterine Leiomyosarcoma Patients. Int. J. Cancer 2006, 119, 283–287. [Google Scholar] [CrossRef]
- Kämpjärvi, K.; Mäkinen, N.; Kilpivaara, O.; Arola, J.; Heinonen, H.-R.; Böhm, J.; Abdel-Wahab, O.; Lehtonen, H.J.; Pelttari, L.M.; Mehine, M.; et al. Somatic MED12 Mutations in Uterine Leiomyosarcoma and Colorectal Cancer. Br. J. Cancer 2012, 107, 1761–1765. [Google Scholar] [CrossRef]
- Mäkinen, N.; Aavikko, M.; Heikkinen, T.; Taipale, M.; Taipale, J.; Koivisto-Korander, R.; Bützow, R.; Vahteristo, P. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12. PLOS Genet. 2016, 12, e1005850. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Li, L.; Li, D.; Liu, J.; Li, X.; Li, W.; Xu, X.; Zhang, M.J.; Chandler, L.A.; Lin, H.; et al. The First Approved Gene Therapy Product for Cancer Ad-P53 (Gendicine): 12 Years in the Clinic. Hum. Gene Ther. 2018, 29, 160–179. [Google Scholar] [CrossRef]
- Slatter, T.L.; Hsia, H.; Samaranayaka, A.; Sykes, P.; Clow, W.B.; Devenish, C.J.; Sutton, T.; Royds, J.A.; PC, P.; Cheung, A.N.; et al. Loss of ATRX and DAXX Expression Identifies Poor Prognosis for Smooth Muscle Tumours of Uncertain Malignant Potential and Early Stage Uterine Leiomyosarcoma. J. Pathol. Clin. Res. 2015, 1, 95–105. [Google Scholar] [CrossRef]
- Bennett, J.A.; Weigelt, B.; Chiang, S.; Selenica, P.; Chen, Y.-B.; Bialik, A.; Bi, R.; Schultheis, A.M.; Lim, R.S.; Ng, C.K.Y.; et al. Leiomyoma with Bizarre Nuclei: A Morphological, Immunohistochemical and Molecular Analysis of 31 Cases. Mod. Pathol. 2017, 30, 1476–1488. [Google Scholar] [CrossRef]
- Dyson, N.J. RB1: A Prototype Tumor Suppressor and an Enigma. Genes Dev. 2016, 30, 1492–1502. [Google Scholar] [CrossRef]
- Hovelson, D.H.; Liu, C.-J.; Wang, Y.; Kang, Q.; Henderson, J.; Gursky, A.; Brockman, S.; Ramnath, N.; Krauss, J.C.; Talpaz, M.; et al. Rapid, Ultra Low Coverage Copy Number Profiling of Cell-Free DNA as a Precision Oncology Screening Strategy. Oncotarget 2017, 8, 89848–89866. [Google Scholar] [CrossRef]
- Klega, K.; Imamovic-Tuco, A.; Ha, G.; Clapp, A.N.; Meyer, S.; Ward, A.; Clinton, C.; Nag, A.; Van Allen, E.; Mullen, E.; et al. Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precis. Oncol. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Velagaleti, G.V.N.; Wang, X.; Erickson-Johnson, M.R.; Medeiros, F.; Oliveira, A.M.; Tonk, V.S.; Hakim, N.M.; Zhang, H. Fusion of HMGA2 to COG5 in Uterine Leiomyoma. Cancer Genet. Cytogenet. 2010, 202, 11–16. [Google Scholar] [CrossRef]
- CHO, Y.; BAE, S.; KOO, M.; KIM, K.; CHUN, H.; KIM, C.; RO, D.; KIM, J.; LEE, C.; KIM, Y. Array Comparative Genomic Hybridization Analysis of Uterine Leiomyosarcoma. Gynecol. Oncol. 2005, 99, 545–551. [Google Scholar] [CrossRef]
- Koontz, J.I.; Soreng, A.L.; Nucci, M.; Kuo, F.C.; Pauwels, P.; van den Berghe, H.; Cin, P.D.; Fletcher, J.A.; Sklar, J. Frequent Fusion of the JAZF1 and JJAZ1 Genes in Endometrial Stromal Tumors. Proc. Natl. Acad. Sci. 2001, 98, 6348–6353. [Google Scholar] [CrossRef]
- Schoenmakers, E.F.P.M.; Huysmans, C.; Van De Ven, W.J.M. Allelic Knockout of Novel Splice Variants of Human Recombination Repair Gene RAD51B in t(12;14) Uterine Leiomyomas. Cancer Res. 1999, 59, 19–23. [Google Scholar]
- Beck, A.H.; Lee, C.-H.; Witten, D.M.; Gleason, B.C.; Edris, B.; Espinosa, I.; Zhu, S.; Li, R.; Montgomery, K.D.; Marinelli, R.J.; et al. Discovery of Molecular Subtypes in Leiomyosarcoma through Integrative Molecular Profiling. Oncogene 2010, 29, 845–854. [Google Scholar] [CrossRef]
- Micci, F.; Panagopoulos, I.; Bjerkehagen, B.; Heim, S. Consistent Rearrangement of Chromosomal Band 6p21 with Generation of Fusion Genes JAZF1/PHF1 and EPC1/PHF1 in Endometrial Stromal Sarcoma. Cancer Res. 2006, 66, 107–112. [Google Scholar] [CrossRef]
- Sandberg, A.; Bridge, J. Updates on the Cytogenetics and Molecular Genetics of Bone and Soft Tissue Tumors: Alveolar Soft Part Sarcoma. Cancer Genet. Cytogenet. 2002, 136, 1–9. [Google Scholar] [CrossRef]
- Sornberger, K.S.; Ligon, A.H.; Pedeutour, F.; Morton, C.C.; Weremowicz, S.; Williams, A.J.; Quade, B.J.; Vanni, R. Expression of HMGIY in Three Uterine Leiomyomata with Complex Rearrangements of Chromosome 6. Cancer Genet. Cytogenet. 1999, 114, 9–16. [Google Scholar] [CrossRef]
- Micci, F.; Gorunova, L.; Gatius, S.; Matias-Guiu, X.; Davidson, B.; Heim, S.; Panagopoulos, I. MEAF6/PHF1 Is a Recurrent Gene Fusion in Endometrial Stromal Sarcoma. Cancer Lett. 2014, 347, 75–78. [Google Scholar] [CrossRef]
- Moore, S.; Herrick, S.; Ince, T. Uterine Leiomyomata with t (10; 17) Disrupt the Histone Acetyltransferase MORF. Cancer Res. 2004, 64, 5570–5577. [Google Scholar] [CrossRef]
- Dewaele, B.; Przybyl, J.; Quattrone, A.; Finalet Ferreiro, J.; Vanspauwen, V.; Geerdens, E.; Gianfelici, V.; Kalender, Z.; Wozniak, A.; Moerman, P.; et al. Identification of a Novel, Recurrent MBTD1-CXorf67 Fusion in Low-Grade Endometrial Stromal Sarcoma. Int. J. Cancer 2014, 134, 1112–1122. [Google Scholar] [CrossRef]
- Panagopoulos, I.; Thorsen, J.; Gorunova, L.; Haugom, L.; Bjerkehagen, B.; Davidson, B.; Heim, S.; Micci, F. Fusion of the ZC3H7B and BCOR Genes in Endometrial Stromal Sarcomas Carrying an X;22-Translocation. Genes, Chromosom. Cancer 2013, 52, 610–618. [Google Scholar] [CrossRef]
- Garcia-Torres, R.; Cruz, D.; Orozco, L.; Heidet, L.; Gubler, M.C. Alport Syndrome and Diffuse Leiomyomatosis. Clinical Aspects, Pathology, Molecular Biology and Extracellular Matrix Studies. A Synthesis. Nephrologie 2000, 21, 9–12. [Google Scholar]
- Regauer, S.; Emberger, W.; Reich, O.; Pfragner, R. Cytogenetic Analyses of Two New Cases of Endometrial Stromal Sarcoma—Non-Random Reciprocal Translocation t(10;17)(Q22;P13) Correlates with Fibrous ESS. Histopathology 2008, 52, 780–783. [Google Scholar] [CrossRef]
- Van Rijk, A.; Sweers, M.; Huys, E.; Kersten, M.; Merkx, G.; van Kessel, A.G.; Debiec-Rychter, M.; Schoenmakers, E.F. Characterization of a Recurrent t (1; 2)(P36; P24) in Human Uterine Leiomyoma. Cancer Genet. Cytogenet. 2009, 193, 54–62. [Google Scholar] [CrossRef]
- Cho, Y.L.; Koo, M.S.; Bae, S.; Lee, C.-H.; Kim, K.M.; Ro, D.Y.; Kim, J.H.; Ahn, W.S.; Chun, H.-J.; Kim, C.K.; et al. Array Comparative Genomic Hybridization Analysis of Uterine Leiomyosarcoma. Gynecol. Oncol. 2005, 99, 545–551. [Google Scholar] [CrossRef]
- Panagopoulos, I.; Gorunova, L.; Brunetti, M.; Agostini, A.; Andersen, H.K.; Lobmaier, I.; Bjerkehagen, B.; Heim, S.; Panagopoulos, I.; Gorunova, L.; et al. Genetic Heterogeneity in Leiomyomas of Deep Soft Tissue. Oncotarget 2017, 8, 48769–48781. [Google Scholar] [CrossRef]
- Yang, J.; Du, X.; Chen, K.; Ylipää, A.; Lazar, A.J.F.; Trent, J.; Lev, D.; Pollock, R.; Hao, X.; Hunt, K.; et al. Genetic Aberrations in Soft Tissue Leiomyosarcoma. Cancer Lett. 2009, 275, 1–8. [Google Scholar] [CrossRef]
- Buza, N.; Carr, R.J.; Hui, P.; Xu, F.; Wu, W.; Li, P. Recurrent Chromosomal Aberrations in Intravenous Leiomyomatosis of the Uterus: High-Resolution Array Comparative Genomic Hybridization Study. Hum. Pathol. 2014, 45, 1885–1892. [Google Scholar] [CrossRef]
- Hu, J.; Khanna, V.; Jones, M.; Surti, U. Genomic Alterations in Uterine Leiomyosarcomas: Potential Markers for Clinical Diagnosis and Prognosis. Genes, Chromosom. Cancer 2001, 31, 117–124. [Google Scholar] [CrossRef]
- Vanni, R.; Van Roy, N.; Lecca, U.; Speleman, F. Interphase Cytogenetic Analysis of Karyotypically Normal Uterine Leiomyoma Excludes Undetected Trisomy 12. Cancer Genet. Cytogenet. 2003, 63, 131. [Google Scholar] [CrossRef]
- Gai, W.; Sun, K. Epigenetic Biomarkers in Cell-Free DNA and Applications in Liquid Biopsy. Genes. 2019, 10. [Google Scholar] [CrossRef]
- Maekawa, R.; Sato, S.; Yamagata, Y.; Asada, H.; Tamura, I.; Lee, L.; Okada, M.; Tamura, H.; Takaki, E.; Nakai, A.; et al. Genome-Wide DNA Methylation Analysis Reveals a Potential Mechanism for the Pathogenesis and Development of Uterine Leiomyomas. PLoS ONE 2013, 8, e66632. [Google Scholar] [CrossRef]
- Eisenberg-Lerner, A.; Kimchi, A. DAPk Silencing by DNA Methylation Conveys Resistance to Anti EGFR Drugs in Lung Cancer Cells. Cell Cycle 2012, 11, 2051. [Google Scholar] [CrossRef]
- Häfner, N.; Diebolder, H.; Jansen, L.; Hoppe, I.; Dürst, M.; Runnebaum, I.B. Hypermethylated DAPK in Serum DNA of Women with Uterine Leiomyoma Is a Biomarker Not Restricted to Cancer. Gynecol. Oncol. 2011, 121, 224–229. [Google Scholar] [CrossRef]
- Asada, H.; Yamagata, Y.; Taketani, T.; Matsuoka, A.; Tamura, H.; Hattori, N.; Ohgane, J.; Hattori, N.; Shiota, K.; Sugino, N. Potential Link between Estrogen Receptor-α Gene Hypomethylation and Uterine Fibroid Formation. Mol. Hum. Reprod. 2008, 14, 539–545. [Google Scholar] [CrossRef]
- Hori, M.; Iwasaki, M.; Shimazaki, J.; Inagawa, S.; Itabashi, M. Assessment of Hypermethylated DNA in Two Promoter Regions of the Estrogen Receptor α Gene in Human Endometrial Diseases. Gynecol. Oncol. 2000, 76, 89–96. [Google Scholar] [CrossRef]
- Sato, S.; Maekawa, R.; Yamagata, Y.; Asada, H.; Tamura, I.; Lee, L.; Okada, M.; Tamura, H.; Sugino, N. Potential Mechanisms of Aberrant DNA Hypomethylation on the x Chromosome in Uterine Leiomyomas. J. Reprod. Dev. 2014, 60, 47–54. [Google Scholar] [CrossRef]
- Navarro, A.; Yin, P.; Monsivais, D.; Lin, S.M.; Du, P.; Wei, J.-J.; Bulun, S.E. Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma. PLoS ONE 2012, 7, e33284. [Google Scholar] [CrossRef]
- Sato, S.; Maekawa, R.; Yamagata, Y.; Tamura, I.; Lee, L.; Okada, M.; Jozaki, K.; Asada, H.; Tamura, H.; Sugino, N. Identification of Uterine Leiomyoma-Specific Marker Genes Based on DNA Methylation and Their Clinical Application. Sci. Rep. 2016, 6, 30652. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Oda, Y.; Saito, T.; Yamamoto, H.; Tamiya, S.; Takahira, T.; Miyajima, K.; Iwamoto, Y.; Tsuneyoshi, M. Mechanisms of Inactivation of Thep16INK4a Gene in Leiomyosarcoma of Soft Tissue: Decreased P16 Expression Correlates with Promoter Methylation and Poor Prognosis. J. Pathol. 2003, 201, 487–495. [Google Scholar] [CrossRef]
- Xing, D.; Scangas, G.; Nitta, M.; He, L.; Xu, A.; Ioffe, Y.J.M.; Aspuria, P.J.; Hedvat, C.Y.; Anderson, M.L.; Oliva, E.; et al. A Role for BRCA1 in Uterine Leiomyosarcoma. Cancer Res. 2009, 69, 8231–8235. [Google Scholar] [CrossRef]
- Miyata, T.; Sonoda, K.; Tomikawa, J.; Tayama, C.; Okamura, K.; Maehara, K.; Kobayashi, H.; Wake, N.; Kato, K.; Hata, K.; et al. Genomic, Epigenomic, and Transcriptomic Profiling towards Identifying Omics Features and Specific Biomarkers That Distinguish Uterine Leiomyosarcoma and Leiomyoma at Molecular Levels. Sarcoma 2015, 2015, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kaasinen, E.; Alkodsi, A.; Mehine, M.; Heinonen, H.-R.; Mäkinen, N.; Aavikko, M.; Kampjärvi, K.; Taipale, M.; Vahteristo, P.; Lehtonen, R.; et al. Abstract 4435: Genome-Scale DNA Methylation Changes Delineate Uterine Leiomyoma Subgroups. In Molecular and Cellular Biology, Genetics; American Association for Cancer Research: Philadelphia, PA, USA, 2016; Volume 76, p. 4435. [Google Scholar] [CrossRef]
- Bujko, M.; Kowalewska, M.; Danska-Bidzinska, A.; Bakula-Zalewska, E.; Siedechi, J.A.; BIDZINSKI, M. The Promoter Methylation and Expression of the O6-Methylguanine-DNA Methyltransferase Gene in Uterine Sarcoma and Carcinosarcoma. Oncol. Lett. 2012, 4, 551. [Google Scholar] [CrossRef]
- Seidel, C.; Bartel, F.; Rastetter, M.; Bluemke, K.; Wurl, P.; Taubert, H.; Dammann, R. Alterations of Cancer-Related Genes in Soft Tissue Sarcomas: Hypermethylation OfRASSF1A Is Frequently Detected in Leiomyosarcoma and Associated with Poor Prognosis in Sarcoma. Int. J. Cancer 2005, 114, 442–447. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Oda, Y.; Saito, T.; Yamamoto, H.; Takahira, T.; Kobayashi, C.; Tamiya, S.; Tateishi, N.; Iwamoto, Y.; Tsuneyoshi, M. DNA Hypermethylation Status of Multiple Genes in Soft Tissue Sarcomas. Mod. Pathol. 2006, 19, 106–114. [Google Scholar] [CrossRef]
- Skubitz, K.M.; Skubitz, A.P.N. Differential Gene Expression in Uterine Leiomyoma. J. Lab. Clin. Med. 2003, 141, 297–308. [Google Scholar] [CrossRef]
- Arslan, A.A.; Gold, L.I.; Mittal, K.; Suen, T.-C.; Belitskaya-Levy, I.; Tang, M.-S.; Toniolo, P. Gene Expression Studies Provide Clues to the Pathogenesis of Uterine Leiomyoma: New Evidence and a Systematic Review. Hum. Reprod. 2005, 20, 852–863. [Google Scholar] [CrossRef]
- Hoffman, P.J.; Milliken, D.B.; Gregg, L.C.; Davis, R.R.; Gregg, J.P. Molecular Characterization of Uterine Fibroids and Its Implication for Underlying Mechanisms of Pathogenesis. Fertil. Steril. 2004, 82, 639–649. [Google Scholar] [CrossRef]
- Skubitz, K.M.; Skubitz, A.P.N. Differential Gene Expression in Leiomyosarcoma. Cancer 2003, 98, 1029–1038. [Google Scholar] [CrossRef]
- Roberts, M.E.; Aynardi, J.T.; Chu, C.S. Uterine Leiomyosarcoma: A Review of the Literature and Update on Management Options. Gynecol. Oncol. 2018, 151, 562–572. [Google Scholar] [CrossRef]
- Davidson, B.; Abeler, V.M.; Førsund, M.; Holth, A.; Yang, Y.; Kobayashi, Y.; Chen, L.; Kristensen, G.B.; Shih, I.-M.; Wang, T.-L. Gene Expression Signatures of Primary and Metastatic Uterine Leiomyosarcoma. Hum. Pathol. 2014, 45, 691–700. [Google Scholar] [CrossRef]
- Davidson, B.; Abeler, V.M.; Hellesylt, E.; Holth, A.; Shih, I.M.; Skeie-Jensen, T.; Chen, L.; Yang, Y.; Wang, T.-L. Gene Expression Signatures Differentiate Uterine Endometrial Stromal Sarcoma from Leiomyosarcoma. Gynecol. Oncol. 2013, 128, 349–355. [Google Scholar] [CrossRef]
- Rapisuwon, S.; Vietsch, E.E.; Wellstein, A. Circulating Biomarkers to Monitor Cancer Progression and Treatment. Comput. Struct. Biotechnol. J. 2016, 14, 211–222. [Google Scholar] [CrossRef]
- Porras, T.B.; Kaur, P.; Ring, A.; Schechter, N.; Lang, J.E. Challenges in Using Liquid Biopsies for Gene Expression Profiling. Oncotarget 2018, 9, 7036–7053. [Google Scholar] [CrossRef]
- Gorges, T.M.; Kuske, A.; Röck, K.; Mauermann, O.; Müller, V.; Peine, S.; Verpoort, K.; Novosadova, V.; Kubista, M.; Riethdorf, S.; et al. Accession of Tumor Heterogeneity by Multiplex Transcriptome Profiling of Single Circulating Tumor Cells. Clin. Chem. 2016, 62, 1504–1515. [Google Scholar] [CrossRef]
- Ring, A.; Mineyev, N.; Zhu, W.; Park, E.; Lomas, C.; Punj, V.; Yu, M.; Barrak, D.; Forte, V.; Porras, T.; et al. EpCAM Based Capture Detects and Recovers Circulating Tumor Cells from All Subtypes of Breast Cancer except Claudin-Low. Oncotarget 2015, 6, 44623–44634. [Google Scholar] [CrossRef]
- Prendergast, E.N.; De Souza Fonseca, M.A.; Dezem, F.S.; Lester, J.; Karlan, B.Y.; Noushmehr, H.; Lin, X.; Lawrenson, K. Optimizing Exosomal RNA Isolation for RNA-Seq Analyses of Archival Sera Specimens. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X.; Dong, R.; Liu, X.; Li, Y.; Lu, S.; Xu, L.; Wang, Y.; Wang, X.; Hou, D.; et al. Integrated Analysis of Long Noncoding RNAs and MRNAs Reveals Their Potential Roles in the Pathogenesis of Uterine Leiomyomas. Oncotarget 2014, 5, 8625–8636. [Google Scholar] [CrossRef]
- Cao, T.; Jiang, Y.; Wang, Z.; Zhang, N.; Al-Hendy, A.; Mamillapalli, R.; Kallen, A.N.; Kodaman, P.; Taylor, H.S.; Li, D.; et al. H19 LncRNA Identified as a Master Regulator of Genes That Drive Uterine Leiomyomas. Oncogene 2019, 38, 5356–5366. [Google Scholar] [CrossRef]
- Heinonen, H.-R.; Mehine, M.; Mäkinen, N.; Pasanen, A.; Pitkänen, E.; Karhu, A.; Sarvilinna, N.S.; Sjöberg, J.; Heikinheimo, O.; Bützow, R.; et al. Global Metabolomic Profiling of Uterine Leiomyomas. Br. J. Cancer 2017, 117, 1855–1864. [Google Scholar] [CrossRef]
- Zaitseva, M.; Vollenhoven, B.J.; Rogers, P.A.W. Retinoic Acid Pathway Genes Show Significantly Altered Expression in Uterine Fibroids When Compared with Normal Myometrium. MHR Basic Sci. Reprod. Med. 2007, 13, 577–585. [Google Scholar] [CrossRef]
- Malik, M.; Webb, J.; Catherino, W.H. Retinoic Acid Treatment of Human Leiomyoma Cells Transformed the Cell Phenotype to One Strongly Resembling Myometrial Cells. Clin. Endocrinol. (Oxf.) 2008, 69, 462–470. [Google Scholar] [CrossRef]
- Tak, Y.J.; Lee, S.Y.; Park, S.K.; Kim, Y.J.; Lee, J.G.; Jeong, D.W.; Kim, S.C.; Kim, I.J.; Yi, Y.H. Association between Uterine Leiomyoma and Metabolic Syndrome in Parous Premenopausal Women. Medicine (Baltim.) 2016, 95, e5325. [Google Scholar] [CrossRef]
- Lou, S.; Balluff, B.; de Graaff, M.A.; Cleven, A.H.G.; Briaire-de Bruijn, I.; Bovée, J.V.M.G.; McDonnell, L.A. High-Grade Sarcoma Diagnosis and Prognosis: Biomarker Discovery by Mass Spectrometry Imaging. Proteomics 2016, 16, 1802–1813. [Google Scholar] [CrossRef]
- Lou, S.; Balluff, B.; Cleven, A.H.G.; Bovée, J.V.M.G.; McDonnell, L.A. Prognostic Metabolite Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2017, 28, 376–383. [Google Scholar] [CrossRef]
- Osborne, C.M.; Hardisty, E.; Devers, P.; Kaiser-Rogers, K.; Hayden, M.A.; Goodnight, W.; Vora, N.L. Discordant Noninvasive Prenatal Testing Results in a Patient Subsequently Diagnosed with Metastatic Disease. Prenat. Diagn. 2013, 33, 609–611. [Google Scholar] [CrossRef]
- Eastley, N.C.; Ottolini, B.; Neumann, R.; Luo, J.-L.; Hastings, R.K.; Khan, I.; Moore, D.A.; Esler, C.P.; Shaw, J.A.; Royle, N.J.; et al. Circulating Tumour-Derived DNA in Metastatic Soft Tissue Sarcoma. Oncotarget 2018, 9, 10549–10560. [Google Scholar] [CrossRef]
- Przybyl, J.; Chabon, J.J.; Spans, L.; Ganjoo, K.N.; Vennam, S.; Newman, A.M.; Forgó, E.; Varma, S.; Zhu, S.; Debiec-Rychter, M.; et al. Combination Approach for Detecting Different Types of Alterations in Circulating Tumor DNA in Leiomyosarcoma. Clin. Cancer Res. 2018, 24, 2688–2699. [Google Scholar] [CrossRef] [Green Version]
ULM | LMS | ||||
---|---|---|---|---|---|
miRNA | Observed in | Expression in Tumorous Tissue | miRNA | Observed in | Expression in Tumorous Tissue |
Let-7 family * [110] | ULM/MM tissue | Up | miR-15a * [120] | Primary/metastatic LMS tissue | Up in metastases |
miR-27a * [110] | ULM/MM tissue | Up | miR-92a * [120] | Primary/metastatic LMS tissue | Up in metastases |
miR-21 * [110] | ULM/MM tissue | Up | miR-31 * [120] | Primary/metastatic LMS tissue | Up in primary |
miR-23b * [110] | ULM/MM tissue | Up | miR-122-5p [116] | LMS/ULM tissue | Up |
miR-200a * [121] | UtLM-hTert | Up | miR-206 * [116] | LMS/ULM tissue | Up |
miR-542-3b [122] | ULM/MM tissue | Up | miR-373-3p * [116] | LMS/ULM tissue | Up |
miR-377 [122] | ULM/MM tissue | Up | miR-144-3p [116] | LMS/ULM tissue | Up |
miR-363 [123] | ULM/MM tissue | Up | miR-372-3p * [116] | LMS/ULM tissue | Up |
miR-490 * [123] | ULM/MM tissue | Up | miR-34a-5p [116] | LMS/ULM tissue | Down |
miR-137 [123] | ULM/MM tissue | Up | miR-27b-3p [116] | LMS/ULM tissue | Down |
miR-15b * [111] | ULM/MM tissue; ULM/MM cell lines | Up | miR-135b-5p [116] | LMS/ULM tissue | Down |
miR-30a [121] | ULM/MM tissue; UtlM-hTERT cell lines | Up | miR-9-5p [116] | LMS/ULM tissue | Down |
miR-32 [110] | ULM/MM tissue | Down | miR-10b-5p * [115] | LMS/ULM tissue | Up |
miR-29b * [110,124] | ULM/MM tissue | Down | miR-125b-1-3p [115] | LMS/ULM tissue | Up |
miR-542-5p [122] | ULM/MM tissue | Down | miR-140-5p * [115] | LMS/ULM tissue | Up |
miR-642 [122] | ULM/MM tissue | Down | miR-145-5p [115] | LMS/ULM tissue | Up |
miR-93/106 [125] | ULM/MM tissue | Down | miR-130b-3p * [92] | LMS/ULM tissue | Down |
miR-486-5p * [123] | ULM/MM tissue | Down | miR-148-3p [115] | LMS/ULM tissue | Down |
miR-217 [123] | ULM/MM tissue | Down | miR-204-5p [92] | LMS/ULM tissue | Down |
miR-4792 [123] | ULM/MM tissue | Down | miR-203a-3p [92] | LMS/ULM tissue | Down |
miR-200a * [109] | ULM/MM tissue; UtlM-hTERT cell lines | Down | miR-152 * [126] | LMS/ULM tissue /SKLMS1cell lines | Down |
mir-143 * [108] | ULM/MM tissue | Down | |||
miR-200c * [127] | ULM/MM tissue | Down | |||
miR-197 * [128] | ULM/MM tissue | Down | |||
miR-212 [121] | ULM/MM tissue; UtlM-hTERT cell lines | Down |
Chromosomal Aberrations in ULM | Chromosomal Aberrations in LMS | Chromosomal Aberrations in ESS | ||||||
---|---|---|---|---|---|---|---|---|
Chromosome/Locus | Type | Affected Genes | Chromosome/Locus | Type | Affected Genes | Chromosome/Locus | Type | Affected Genes |
12q15 [141] | Translocation | HMGA2 | 12q13-15 [142] | Amplification | RB1 | (7;17)(p15;q21) [143] | Translocation | JAZF1,SUZ12 |
14q24 [144] | Translocation | RAD51B | 10q21.3 * [145] | Loss | PTEN | (6;7)(p21;p15) [146] | Translocation | JAZF1-PHF1 |
7(q22q32) [147] | Deletion | CUX1 | 13q14.2-q14.3 * [145] | Loss | LEU | (6;10)(p21;p11) [146] | Translocation | EPC1-PHF1 |
6p21 [148] | Translocation | HMGA1 | 7q36.3 [142] | Gain | PTPRN2 | (1;6)(p34;p21) [149] | Translocation | MEAF6-PHF1 |
10q22 [150] | Translocation | KAT6B | 7q33-q35 [142] | Gain | HAVCR1 | (X;17)(p11;q21) [151] | Translocation | CXorf67-MBTD1 |
1(q31q43) [130] | Deletion | FH | 1p21.1 * [142] | Loss | AMY2A | (X;22)(p11;q13) [152] | Translocation | ZC3H7B-BCOR |
Xq22 [153] | Deletion | COL4A5/COl4A6 | 9p.21 | Gain | CDKN2 | (10;17)(q22;p13) [154] | Translocation | YWHAE-NUTM |
1p36 [155] | Translocation/deletion | AJAPI, NPHP | 12q.15 [156] | Gain | MDM2 | der(22)t(X;22)(p11;q13) [152] | Deletion | / |
8q12 [157] | Insertion/translocation | PLAG1 | 1q21 * [158] | Amplification | FLF, PRUNE | del(16)(q22) [149] | Deletion | / |
19q * [159] | Deletion | / | 5p14-pter [158,160] | Amplification | / | |||
12 [161] | Trisomy | / | 13q31 [158,160] | Amplification | / | |||
10 [147] | Monosomy | / | 19p13 [158,160] | Amplification | / | |||
22q * [159] | Deletion/monosomy | / | 20q13 [158,160] | Amplification | / |
ULM | LMS | ||
---|---|---|---|
Gene | Methylation Change | Gene | Methylation Change |
IRS1 [163] | Hypermethylation | MGMT * [175] | Hypermethylation |
COL4A1 [163] | Hypermethylation | BRCA1 * [172] | Hypermethylation |
GSTM5 [163] | Hypermethylation | CDKN2 * [137] | Hypermethylation |
DAPK1 * [165] | Hypermethylation | PTEN [6] | Hypermethylation |
KLF11 [169] | Hypermethylation | RASSF1A *a [176] | Hypermethylation |
DLEC1 * [169] | Hypermethylation | DAPK1 *a [177] | Hypermethylation |
KRT19 [169] | Hypermethylation | ||
ALX1 ‡ [170] | Hypermethylation | ||
CBLN1 ‡ [170] | Hypermethylation | ||
CORIN ‡ [170] | Hypermethylation | ||
DUSP6 [170] | Hypermethylation | ||
FOXP1 ‡ [170] | Hypermethylation | ||
GATA2 ‡* [170] | Hypermethylation | ||
IGLON5 ‡ [170] | Hypermethylation | ||
NPTX2 ‡* [170] | Hypermethylation | ||
NTRK2 ‡ [170] | Hypermethylation | ||
STEAP4 ‡* [170] | Hypermethylation | ||
PRL ‡ [170] | Hypomethylation | ||
PART1 [170] | Hypomethylation | ||
TSPYL2 [168] | Hypomethylation | ||
OCRL [168] | Hypomethylation |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvorská, D.; Škovierová, H.; Braný, D.; Halašová, E.; Danková, Z. Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri. Int. J. Mol. Sci. 2019, 20, 3825. https://doi.org/10.3390/ijms20153825
Dvorská D, Škovierová H, Braný D, Halašová E, Danková Z. Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri. International Journal of Molecular Sciences. 2019; 20(15):3825. https://doi.org/10.3390/ijms20153825
Chicago/Turabian StyleDvorská, Dana, Henrieta Škovierová, Dušan Braný, Erika Halašová, and Zuzana Danková. 2019. "Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri" International Journal of Molecular Sciences 20, no. 15: 3825. https://doi.org/10.3390/ijms20153825
APA StyleDvorská, D., Škovierová, H., Braný, D., Halašová, E., & Danková, Z. (2019). Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri. International Journal of Molecular Sciences, 20(15), 3825. https://doi.org/10.3390/ijms20153825