HSP-Target of Therapeutic Agents in Sepsis Treatment
Abstract
:1. Introduction
2. Sepsis
3. Heat Shock Proteins and Sepsis
4. HSPs as Targets of Therapeutic Agents in Sepsis Treatment
5. Current Status of Knowledge on HSP Modulation by Therapeutic Agents in Sepsis
6. Limits of Current Research Concerning Potential HSP Modulators in Sepsis
7. Future Perspective on HSP Modulators in Sepsis Treatment
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rello, J.; Valenzuela-Sanchez, F.; Ruiz-Rodriguez, M.; Moyano, S. Sepsis: A Review of Advances in Management. Adv. Ther. 2017, 34, 2393–2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, M.H.; King, K. Severe sepsis and septic shock: Improving outcomes in the emergency department. Emerg. Med. Clin. North. Am. 2008, 26, 603–623. [Google Scholar] [CrossRef] [PubMed]
- Gaieski, D.F.; Edwards, J.M.; Kallan, M.J.; Carr, B.G. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit. Care Med. 2013, 41, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Gelain, D.P.; de Bittencourt Pasquali, M.A.; M. Comim, C.; Grunwald, M.S.; Ritter, C.; Tomasi, C.D.; Alves, S.C.; Quevedo, J.; Dal-Pizzol, F.; Moreira, J.C. Serum heat shock protein 70 levels, oxidant status, and mortality in sepsis. Shock 2011, 35, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet. Infect. Dis. 2013, 13, 260–268. [Google Scholar] [CrossRef]
- Taeb, A.M.; Hooper, M.H.; Marik, P.E. Sepsis: Current Definition, Pathophysiology, Diagnosis, and Management. Nutr. Clin. Pract. 2017, 32, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Stoller, J.; Halpin, L.; Weis, M.; Aplin, B.; Qu, W.; Georgescu, C.; Nazzal, M. Epidemiology of severe sepsis: 2008–2012. J. Crit. Care 2016, 31, 58–62. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 775–787. [Google Scholar] [CrossRef]
- Annane, D.; Sharshar, T. Cognitive decline after sepsis. Lancet Respir. Med. 2015, 3, 61–69. [Google Scholar] [CrossRef]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Torio, C.M.; Moore, B.J. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief #204. 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK368492/ (accessed on 22 July 2019).
- Briassoulis, G.; Briassouli, E.; Fitrolaki, D.M.; Plati, I.; Apostolou, K.; Tavladaki, T.; Spanaki, A.M. Heat shock protein 72 expressing stress in sepsis: Unbridgeable gap between animal and human studies—A hypothetical “comparative” study. Biomed. Res. Int. 2014, 2014, 101023. [Google Scholar] [CrossRef] [PubMed]
- Bruemmer-Smith, S.; Stuber, F.; Schroeder, S. Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis. Intensive Care Med. 2001, 27, 1835–1841. [Google Scholar] [CrossRef] [PubMed]
- Zininga, T.; Ramatsui, L.; Shonhai, A. Heat Shock Proteins as Immunomodulants. Molecules 2018, 23. [Google Scholar] [CrossRef] [PubMed]
- Quintana, F.J.; Cohen, I.R. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J. Immunol. 2005, 175, 2777–2782. [Google Scholar] [CrossRef] [PubMed]
- Briassouli, E.; Goukos, D.; Daikos, G.; Apostolou, K.; Routsi, C.; Nanas, S.; Briassoulis, G. Glutamine suppresses Hsp72 not Hsp90alpha and is not inducing Th1, Th2, or Th17 cytokine responses in human septic PBMCs. Nutrition 2014, 30, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Christians, E.S.; Yan, L.J.; Benjamin, I.J. Heat shock factor 1 and heat shock proteins: Critical partners in protection against acute cell injury. Crit. Care Med. 2002, 30, S43–S50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruzat, V.F.; Pantaleao, L.C.; Donato, J., Jr.; de Bittencourt, P.I., Jr.; Tirapegui, J. Oral supplementations with free and dipeptide forms of L-glutamine in endotoxemic mice: Effects on muscle glutamine-glutathione axis and heat shock proteins. J. Nutr. Biochem. 2014, 25, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.S.; Catalao, C.H.; Felippotti, T.T.; Oliveira-Pelegrin, G.R.; Petenusci, S.; de Freitas, L.A.; Rocha, M.J. Curcumin suppresses inflammatory cytokines and heat shock protein 70 release and improves metabolic parameters during experimental sepsis. Pharm. Biol. 2017, 55, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, C.; Welch, W.J. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 1993, 9, 601–634. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.; Gehrmann, M.; Brunet, M.; Multhoff, G.; Garrido, C. Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. J. Leukoc. Biol. 2007, 81, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Voegeli, T.S.; Liu, P.P.; Noble, E.G.; Currie, R.W. Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm. Allergy Drug Targets 2007, 6, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, A.S.; Pedersen-Skovsgaard, T.; Mortensen, O.H.; van Hall, G.; Moseley, P.L.; Pedersen, B.K. The effect of glutamine infusion on the inflammatory response and HSP70 during human experimental endotoxaemia. Crit. Care 2009, 13, R7. [Google Scholar] [CrossRef] [PubMed]
- Oehler, R.; Pusch, E.; Dungel, P.; Zellner, M.; Eliasen, M.M.; Brabec, M.; Roth, E. Glutamine depletion impairs cellular stress response in human leucocytes. Br. J. Nutr. 2002, 87, S17–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, S.P.; Villar, J.; Downey, G.P.; Edelson, J.D.; Slutsky, A.S. Sodium arsenite induces heat shock protein-72 kilodalton expression in the lungs and protects rats against sepsis. Crit. Care Med. 1994, 22, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Unoshima, M.; Nishizono, A.; Takita-Sonoda, Y.; Iwasaka, H.; Noguchi, T. Effects of zinc acetate on splenocytes of endotoxemic mice: Enhanced immune response, reduced apoptosis, and increased expression of heat shock protein 70. J. Lab. Clin. Med. 2001, 137, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Moss, M. Epidemiology of sepsis: Race, sex, and chronic alcohol abuse. Clin. Infect. Dis. 2005, 41, S490–S497. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C. The pathogenesis of sepsis. Ann. Intern. Med. 1991, 115, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.R.; Assunção, M.S.; Cavalcanti, A.B.; Japiassú, A.M.; Azevedo, L.C.; Oliveira, M.C. Getting a consensus: Advantages and disadvantages of Sepsis 3 in the context of middle-income settings. Rev. Bras. Ter. Intensiva 2016, 28, 361–365. [Google Scholar] [CrossRef]
- Verdonk, F.; Blet, A.; Mebazaa, A. The new sepsis definition: Limitations and contribution to research and diagnosis of sepsis. Curr. Opin. Anaesthesiol. 2017, 30, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Remick, D.G.; Newcomb, D.E.; Bolgos, G.L.; Call, D.R. Comparison of the mortality and inflammatory response of two models of sepsis: Lipopolysaccharide vs. cecal ligation and puncture. Shock 2000, 13, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Rittirsch, D.; Hoesel, L.M.; Ward, P.A. The disconnect between animal models of sepsis and human sepsis. J. Leukoc. Biol. 2007, 81, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Deitch, E.A. Rodent models of intra-abdominal infection. Shock 2005, 24, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Buras, J.A.; Holzmann, B.; Sitkovsky, M. Animal models of sepsis: Setting the stage. Nat. Rev. Drug Discov. 2005, 4, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Rittirsch, D.; Huber-Lang, M.S.; Flierl, M.A.; Ward, P.A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 2009, 4, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Remick, D.G.; Ward, P.A. Evaluation of endotoxin models for the study of sepsis. Shock 2005, 24, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Singleton, K.D.; Wischmeyer, P.E. Distance of cecum ligated influences mortality, tumor necrosis factor-alpha and interleukin-6 expression following cecal ligation and puncture in the rat. Eur. Surg. Res. 2003, 35, 486–491. [Google Scholar] [CrossRef]
- Baker, C.C.; Chaudry, I.H.; Gaines, H.O.; Baue, A.E. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 1983, 94, 331–335. [Google Scholar]
- Poli-de-Figueiredo, L.F.; Garrido, A.G.; Nakagawa, N.; Sannomiya, P. Experimental models of sepsis and their clinical relevance. Shock 2008, 30, 53–59. [Google Scholar] [CrossRef]
- Hubbard, W.J.; Choudhry, M.; Schwacha, M.G.; Kerby, J.D.; Rue, L.W.; Bland, K.I.; Chaudry, I.H. Cecal ligation and puncture. Shock 2005, 24, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Deitch, E.A. Animal models of sepsis and shock: A review and lessons learned. Shock 1998, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T. Why do animal models (sometimes) fail to mimic human sepsis? Crit. Care Med. 2004, 32, S219–S222. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Chaudry, I.H. Immune dysfunction in murine polymicrobial sepsis: Mediators, macrophages, lymphocytes and apoptosis. Shock 1996, 6, S27–S38. [Google Scholar] [CrossRef] [PubMed]
- Mollitt, D.L. Infection control: Avoiding the inevitable. Surg. Clin. North. Am. 2002, 82, 365–378. [Google Scholar] [CrossRef]
- Villa, P.; Sartor, G.; Angelini, M.; Sironi, M.; Conni, M.; Gnocchi, P.; Isetta, A.M.; Grau, G.; Buurman, W.; van Tits, L.J. Pattern of cytokines and pharmacomodulation in sepsis induced by cecal ligation and puncture compared with that induced by endotoxin. Clin. Diagn. Lab. Immunol. 1995, 2, 549–553. [Google Scholar] [PubMed]
- Landry, D.W.; Levin, H.R.; Gallant, E.M.; Ashton, R.C.; Seo, S.; D’Alessandro, D.; Oz, M.C.; Oliver, J.A. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 1997, 95, 1122–1125. [Google Scholar] [CrossRef]
- Sharshar, T.; Blanchard, A.; Paillard, M.; Raphael, J.C.; Gajdos, P.; Annane, D. Circulating vasopressin levels in septic shock. Crit. Care Med. 2003, 31, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.L.; Russell, J.A.; Walley, K.R. Genetic polymorphisms in sepsis and septic shock: Role in prognosis and potential for therapy. Chest 2003, 124, 1103–1115. [Google Scholar] [CrossRef]
- De Maio, A.; Torres, M.B.; Reeves, R.H. Genetic determinants influencing the response to injury, inflammation, and sepsis. Shock 2005, 23, 11–17. [Google Scholar] [CrossRef]
- Torres, M.B.; De Maio, A. An exaggerated inflammatory response after CLP correlates with a negative outcome. J. Surg. Res. 2005, 125, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Parrillo, J.E. Pathogenetic mechanisms of septic shock. N. Engl. J. Med. 1993, 328, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Grodzin, C.J.; Balk, R.A. Sepsis: A new hypothesis for pathogenesis of the disease process. Chest 1997, 112, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Cartin-Ceba, R. Balance between Hyperinflammation and Immunosuppression in Sepsis. Semin. Respir. Crit. Care Med. 2016, 37, 42–50. [Google Scholar] [CrossRef]
- Cohen, J. The immunopathogenesis of sepsis. Nature 2002, 420, 885–891. [Google Scholar] [CrossRef]
- Bermejo-Martin, J.F.; Andaluz-Ojeda, D.; Almansa, R.; Gandia, F.; Gomez-Herreras, J.I.; Gomez-Sanchez, E.; Heredia-Rodriguez, M.; Eiros, J.M.; Kelvin, D.J.; Tamayo, E. Defining immunological dysfunction in sepsis: A requisite tool for precision medicine. J. Infect. 2016, 72, 525–536. [Google Scholar] [CrossRef]
- Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D., 2nd; Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011, 306, 2594–2605. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef]
- Minasyan, H. Sepsis and septic shock: Pathogenesis and treatment perspectives. J. Crit. Care 2017, 40, 229–242. [Google Scholar] [CrossRef]
- Tsan, M.F.; Gao, B. Heat shock proteins and immune system. J. Leukoc. Biol. 2009, 85, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H. Heat shock proteins and the immune response. Immunol. Today 1990, 11, 129–136. [Google Scholar] [CrossRef]
- Garbuz, D.G. Regulation of heat shock gene expression in response to stress. Mol. Biol. (Mosk) 2017, 51, 400–417. [Google Scholar] [CrossRef] [PubMed]
- Parsell, D.A.; Lindquist, S. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet. 1993, 27, 437–496. [Google Scholar] [CrossRef] [PubMed]
- Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009, 14, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Van Noort, J.M.; Bsibsi, M.; Nacken, P.; Gerritsen, W.H.; Amor, S. The link between small heat shock proteins and the immune system. Int. J. Biochem. Cell Biol. 2012, 44, 1670–1679. [Google Scholar] [CrossRef] [PubMed]
- Abulafia-Lapid, R.; Elias, D.; Raz, I.; Keren-Zur, Y.; Atlan, H.; Cohen, I.R. T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J. Autoimmun. 1999, 12, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Abulafia-Lapid, R.; Gillis, D.; Yosef, O.; Atlan, H.; Cohen, I.R. T cells and autoantibodies to human HSP70 in type 1 diabetes in children. J. Autoimmun. 2003, 20, 313–321. [Google Scholar] [CrossRef]
- Bellini, S.; Barutta, F.; Mastrocola, R.; Imperatore, L.; Bruno, G.; Gruden, G. Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [PubMed]
- Spierings, J.; van Eden, W. Heat shock proteins and their immunomodulatory role in inflammatory arthritis. Rheumatology (Oxford) 2017, 56, 198–208. [Google Scholar] [CrossRef]
- Blass, S.; Union, A.; Raymackers, J.; Schumann, F.; Ungethum, U.; Muller-Steinbach, S.; De Keyser, F.; Engel, J.M.; Burmester, G.R. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 2001, 44, 761–771. [Google Scholar] [CrossRef]
- Goldstein, M.G.; Li, Z. Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis. J. Hematol. Oncol. 2009, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat Shock Proteins and Cancer. Trends Pharmacol. Sci. 2017, 38, 226–256. [Google Scholar] [CrossRef] [PubMed]
- Soudry, E.; Stern Shavit, S.; Hardy, B.; Morgenstern, S.; Hadar, T.; Feinmesser, R. Heat shock proteins HSP90, HSP70 and GRP78 expression in medullary thyroid carcinoma. Ann. Diagn. Pathol. 2017, 26, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Leentjens, J.; Kox, M.; van der Hoeven, J.G.; Netea, M.G.; Pickkers, P. Immunotherapy for the adjunctive treatment of sepsis: From immunosuppression to immunostimulation. Time for a paradigm change? Am. J. Respir. Crit. Care Med. 2013, 187, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Beere, H.M. Death versus survival: Functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J. Clin. Invest. 2005, 115, 2633–2639. [Google Scholar] [CrossRef] [PubMed]
- Kilgore, J.L.; Musch, T.I.; Ross, C.R. Physical activity, muscle, and the HSP70 response. Can. J. Appl. Physiol. 1998, 23, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Burns, T.F. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [PubMed]
- Favet, N.; Duverger, O.; Loones, M.T.; Poliard, A.; Kellermann, O.; Morange, M. Overexpression of murine small heat shock protein HSP25 interferes with chondrocyte differentiation and decreases cell adhesion. Cell Death Differ. 2001, 8, 603–613. [Google Scholar] [CrossRef]
- De Maio, A. Heat shock proteins: Facts, thoughts, and dreams. Shock 1999, 11, 1–12. [Google Scholar] [CrossRef]
- Nokin, M.J.; Durieux, F.; Peixoto, P.; Chiavarina, B.; Peulen, O.; Blomme, A.; Turtoi, A.; Costanza, B.; Smargiasso, N.; Baiwir, D.; et al. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. eLife 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Landry, J.; Chretien, P.; Lambert, H.; Hickey, E.; Weber, L.A. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol. 1989, 109, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, R.P.; Mizzen, L.E.; Welch, W.J. Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly. Science 1990, 248, 850–854. [Google Scholar] [CrossRef] [PubMed]
- Vigh, L.; Maresca, B.; Harwood, J.L. Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem. Sci. 1998, 23, 369–374. [Google Scholar] [CrossRef]
- Van Eden, W.; van der Zee, R.; Prakken, B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol. 2005, 5, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Erkeller-Yuksel, F.M.; Isenberg, D.A.; Dhillon, V.B.; Latchman, D.S.; Lydyard, P.M. Surface expression of heat shock protein 90 by blood mononuclear cells from patients with systemic lupus erythematosus. J. Autoimmun. 1992, 5, 803–814. [Google Scholar] [CrossRef]
- Multhoff, G.; Botzler, C. Heat-shock proteins and the immune response. Ann. N. Y. Acad. Sci. 1998, 851, 86–93. [Google Scholar] [CrossRef]
- Kuppner, M.C.; Gastpar, R.; Gelwer, S.; Nossner, E.; Ochmann, O.; Scharner, A.; Issels, R.D. The role of heat shock protein (hsp70) in dendritic cell maturation: Hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur. J. Immunol. 2001, 31, 1602–1609. [Google Scholar] [CrossRef]
- Basu, S.; Binder, R.J.; Suto, R.; Anderson, K.M.; Srivastava, P.K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol. 2000, 12, 1539–1546. [Google Scholar] [CrossRef]
- Asea, A.; Kraeft, S.K.; Kurt-Jones, E.A.; Stevenson, M.A.; Chen, L.B.; Finberg, R.W.; Koo, G.C.; Calderwood, S.K. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 2000, 6, 435–442. [Google Scholar] [CrossRef]
- Sondermann, H.; Becker, T.; Mayhew, M.; Wieland, F.; Hartl, F.U. Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol. Chem. 2000, 381, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.J. Therapeutic cancer vaccines: Using unique antigens. Proc. Natl. Acad. Sci. USA 2004, 101, 14653–14656. [Google Scholar] [CrossRef] [Green Version]
- Nicchitta, C.V. Re-evaluating the role of heat-shock protein-peptide interactions in tumour immunity. Nat. Rev. Immunol. 2003, 3, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 2002, 20, 395–425. [Google Scholar] [CrossRef] [PubMed]
- Wieten, L.; Broere, F.; van der Zee, R.; Koerkamp, E.K.; Wagenaar, J.; van Eden, W. Cell stress induced HSP are targets of regulatory T cells: A role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett. 2007, 581, 3716–3722. [Google Scholar] [CrossRef] [Green Version]
- Cohen, I.R. Autoimmunity to hsp65 and the immunologic paradigm. Adv. Intern. Med. 1992, 37, 295–311. [Google Scholar]
- Coelho, V.; Faria, A.M. HSP60: Issues and insights on its therapeutic use as an immunoregulatory agent. Front. Immunol. 2011, 2, 97. [Google Scholar] [CrossRef]
- Anderton, S.M.; van der Zee, R.; Prakken, B.; Noordzij, A.; van Eden, W. Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. J. Exp. Med. 1995, 181, 943–952. [Google Scholar] [CrossRef]
- Van Eden, W.; van der Zee, R.; Prakken, B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol. 2019, 5, 318. [Google Scholar] [CrossRef]
- Wieten, L.; Berlo, S.E.; Ten Brink, C.B.; van Kooten, P.J.; Singh, M.; van der Zee, R.; Glant, T.T.; Broere, F.; van Eden, W. IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis. PLoS ONE 2009, 4, e4186. [Google Scholar] [CrossRef]
- Stocki, P.; Dickinson, A.M. The immunosuppressive activity of heat shock protein 70. Autoimmune Dis. 2012, 2012, 617213. [Google Scholar] [CrossRef] [PubMed]
- Tukaj, S. Immunoregulatory properties of Hsp70. Postepy Hig. Med. Dosw. (Online) 2014, 68, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Van Eden, W.; Hauet-Broere, F.; Berlo, S.; Paul, L.; van der Zee, R.; de Kleer, I.; Prakken, B.; Taams, L. Stress proteins as inducers and targets of regulatory T cells in arthritis. Int. Rev. Immunol. 2005, 24, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Van Eden, W.; Jansen, M.A.A.; Ludwig, I.; van Kooten, P.; van der Zee, R.; Broere, F. The Enigma of Heat Shock Proteins in Immune Tolerance. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Ou, C.C.; Wang, L.L.; Chan, S.H. Heat shock protein 70 confers cardiovascular protection during endotoxemia via inhibition of nuclear factor-kappaB activation and inducible nitric oxide synthase expression in the rostral ventrolateral medulla. Circulation 2004, 110, 3560–3566. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.J.; Wang, H.; Liu, X.; Sun, M.; Kazuhiro, H. Protective effects of glutamine in a rat model of endotoxemia. Mol. Med. Rep. 2012, 6, 739–744. [Google Scholar] [CrossRef]
- Karinch, A.M.; Pan, M.; Lin, C.M.; Strange, R.; Souba, W.W. Glutamine metabolism in sepsis and infection. J. Nutr. 2001, 131, 2535S–2538S. [Google Scholar] [CrossRef]
- Singleton, K.D.; Serkova, N.; Beckey, V.E.; Wischmeyer, P.E. Glutamine attenuates lung injury and improves survival after sepsis: Role of enhanced heat shock protein expression. Crit. Care Med. 2005, 33, 1206–1213. [Google Scholar] [CrossRef]
- Singleton, K.D.; Serkova, N.; Banerjee, A.; Meng, X.; Gamboni-Robertson, F.; Wischmeyer, P.E. Glutamine attenuates endotoxin-induced lung metabolic dysfunction: Potential role of enhanced heat shock protein 70. Nutrition 2005, 21, 214–223. [Google Scholar] [CrossRef]
- Wischmeyer, P.E.; Kahana, M.; Wolfson, R.; Ren, H.; Musch, M.M.; Chang, E.B. Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J. Appl. Physiol. (1985) 2001, 90, 2403–2410. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic Exposure and Toxicology: A Historical Perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberbeck, R.; Deckert, H.; Bangen, J.; Kobbe, P.; Schmitz, D. Dehydroepiandrosterone: A modulator of cellular immunity and heat shock protein 70 production during polymicrobial sepsis. Intensive Care Med. 2007, 33, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Cascao, R.; Fonseca, J.E.; Moita, L.F. Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Front. Med. (Lausanne) 2017, 4, 69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Lam, K.K.; Cheng, P.Y.; Lee, Y.M. Celastrol prevents circulatory failure via induction of heme oxygenase-1 and heat shock protein 70 in endotoxemic rats. J. Ethnopharmacol. 2015, 162, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Hojyo, S.; Fukada, T. Roles of Zinc Signaling in the Immune System. J. Immunol. Res. 2016, 2016, 6762343. [Google Scholar] [CrossRef] [PubMed]
- Kocaadam, B.; Sanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. [Google Scholar] [CrossRef] [PubMed]
- Schulte, W.; Bernhagen, J.; Bucala, R. Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets—An Updated View. Mediators Inflamm. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Ogura, H.; Shimizu, K.; Ikeda, M.; Hirose, T.; Matsuura, H.; Kang, S.; Takahashi, K.; Tanaka, T.; Shimazu, T. The clinical importance of a cytokine network in the acute phase of sepsis. Sci. Rep. 2018, 8, 13995. [Google Scholar] [CrossRef]
- Volk, H.D.; Reinke, P.; Docke, W.D. Clinical aspects: From systemic inflammation to ‘immunoparalysis’. Chem. Immunol. 2000, 74, 162–177. [Google Scholar]
- Shephard, R.J.; Shek, P.N. Acute and chronic over-exertion: Do depressed immune responses provide useful markers? Int. J. Sports Med. 1998, 19, 159–171. [Google Scholar] [CrossRef]
- Hansen, R.K.; Oesterreich, S.; Lemieux, P.; Sarge, K.D.; Fuqua, S.A. Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem. Biophys. Res. Commun. 1997, 239, 851–856. [Google Scholar] [CrossRef] [PubMed]
- El-Brolosy, M.A.; Stainier, D.Y.R. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017, 13, e1006780. [Google Scholar] [CrossRef] [PubMed]
- Cary, M.P.; Bader, G.D.; Sander, C. Pathway information for systems biology. FEBS. Lett. 2005, 579, 1815–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires-daSilva, A.; Sommer, R.J. The evolution of signalling pathways in animal development. Nat. Rev. Genet. 2003, 4, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Varghese, J.M.; Roberts, J.A.; Lipman, J. Pharmacokinetics and pharmacodynamics in critically ill patients. Curr. Opin. Anaesthesiol. 2010, 23, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Gonzalez, D.; Derendorf, H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 2010, 99, 1107–1122. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, T.R.; Ogden, L.G.; Singleton, K.D.; Luo, M.; Fernandez-Estivariz, C.; Griffith, D.P.; Galloway, J.R.; Wischmeyer, P.E. Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med. 2005, 31, 1079–1086. [Google Scholar] [CrossRef]
- Wahab, F.; Atika, B.; Oliveira-Pelegrin, G.R.; Rocha, M.J. Recent advances in the understanding of sepsis-induced alterations in the neuroendocrine system. Endocr. Metab. Immune Disord. Drug Targets 2013, 13, 335–347. [Google Scholar] [CrossRef]
- Rivers, E.P.; Kruse, J.A.; Jacobsen, G.; Shah, K.; Loomba, M.; Otero, R.; Childs, E.W. The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Crit. Care Med. 2007, 35, 2016–2024. [Google Scholar] [CrossRef]
- Trentzsch, H.; Stewart, D.; Paidas, C.N.; De Maio, A. The combination of polymicrobial sepsis and endotoxin results in an inflammatory process that could not be predicted from the independent insults. J. Surg. Res. 2003, 111, 203–208. [Google Scholar] [CrossRef]
- Overhaus, M.; Togel, S.; Pezzone, M.A.; Bauer, A.J. Mechanisms of polymicrobial sepsis-induced ileus. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G685–G694. [Google Scholar] [CrossRef] [PubMed]
- Fink, M.P.; Heard, S.O. Laboratory models of sepsis and septic shock. J. Surg. Res. 1990, 49, 186–196. [Google Scholar] [CrossRef]
- Riedemann, N.C.; Guo, R.F.; Ward, P.A. The enigma of sepsis. J. Clin. Invest. 2003, 112, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Osuchowski, M.F.; Ayala, A.; Bahrami, S.; Bauer, M.; Boros, M.; Cavaillon, J.M.; Chaudry, I.H.; Coopersmith, C.M.; Deutschman, C.; Drechsler, S.; et al. Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): An international expert consensus initiative for improvement of animal modeling in sepsis. Infection 2018, 46, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Wichterman, K.A.; Baue, A.E.; Chaudry, I.H. Sepsis and septic shock—A review of laboratory models and a proposal. J. Surg. Res. 1980, 29, 189–201. [Google Scholar] [CrossRef]
- Westphal, M.; Freise, H.; Kehrel, B.E.; Bone, H.G.; Van Aken, H.; Sielenkamper, A.W. Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit. Care Med. 2004, 32, 194–200. [Google Scholar] [CrossRef]
- Benjamim, C.F.; Canetti, C.; Cunha, F.Q.; Kunkel, S.L.; Peters-Golden, M. Opposing and hierarchical roles of leukotrienes in local innate immune versus vascular responses in a model of sepsis. J. Immunol. 2005, 174, 1616–1620. [Google Scholar] [CrossRef]
- Walley, K.R.; Lukacs, N.W.; Standiford, T.J.; Strieter, R.M.; Kunkel, S.L. Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infect. Immun. 1996, 64, 4733–4738. [Google Scholar] [Green Version]
- Echtenacher, B.; Freudenberg, M.A.; Jack, R.S.; Mannel, D.N. Differences in innate defense mechanisms in endotoxemia and polymicrobial septic peritonitis. Infect. Immun. 2001, 69, 7271–7276. [Google Scholar] [CrossRef]
- Garrido, A.G.; Poli-de-Figueiredo, L.F.; Rocha e Silva, M. Experimental models of sepsis and septic shock: An overview. Acta Cirurgica Brasileira 2004, 19. [Google Scholar] [CrossRef]
- Ward, P.A.; Bosmann, M. A Historical Perspective on Sepsis. Am. J. Pathol. 2012, 181, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Family | Heat Shock Protein (Molecular Weight) | Localization | Function |
---|---|---|---|
Small HSPs [79,80] | HSP 25 * (22 kDa) | Cytosol-nucleus [80] | Chaperone [79] Immune cell activation [15] |
HSP 27 (22 kDa) | Cytosol-nucleus [79,81] | ||
HSP 40 (38 kDa) | Cytosol [79,81] nucleus [81] | ||
HSP 60 [79] | HSP 60 (61 kDa) | Cytosol-mitochondria [79,81] | Chaperone [79] Immune cell activation [15,16] |
HSP 70 [79] | HSP 70 (70 kDa) | Cytoplasm [79,81]-nucleus [81] | Chaperone [79] Immune cell activation [15,16] |
HSP 72 (71 kDa) | Cytosol-Nucleus [81] | ||
HSP 73 / HSC 70 (71 kDa) | Cytosol [79,81] Nucleus [81] | ||
HSP 90 [79] | HSP 90A (86 kDa) | Cytosol [79,81] Nucleus [81] | Chaperone [79] Immune cell activation [15,16] |
HSP 90B (84 kDa) | Cytosol [79,81] Nucleus [81] | ||
GRP94 (92 kDa) | ER [79,81] Cytosol [79] | ||
Large HSPs [79] | HSP 110 (96 kDa) | Nucleus [81] Cytosol [79] | Chaperone [79] |
Therapeutic Agent | Protocol (Pre/Post-Sepsis) | Dosage | Sepsis Model | HSP Expression |
---|---|---|---|---|
Glutamine [109] | 1 h (post) | [400 mg/Kg] i.v. | CLP | ↑ |
Glutamine [110] | 5 min (post) | [750 mg/Kg] i.v. | LPS | ↑ |
Glutamine [111] | 10–20 min (post) | [750 mg/Kg] i.v. | LPS | ↑ |
Glutamine [107] | 7 days (pre) | [1.346 mg/Kg] i.p. | LPS | ↑ |
L-Glutamine [19] | 2 h, 24 h and 45 h (post) | [1000 mg/Kg] oral | LPS | −− |
Sodium Arsenite [27] | 8 h (post) | [6 mg/Kg] i.v. | CLP | ↑ |
DHEA [113] | 6 h (post) | [20 mg/Kg] s.c. | CLP | ↑ |
Celastrol [115] | 30 min (pre) | [1 mg/Kg] i.v. | LPS | ↑ |
Zinc [28] | 5 days (pre) | [3 mg/Kg] i.p. | LPS | ↑ |
Curcumin [20] | 7 days (pre)/2 h (post) | [100 mg/Kg] oral | CLP | ↑ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulczak, A.; Catalão, C.H.R.; Freitas, L.A.P.d.; Rocha, M.J.A. HSP-Target of Therapeutic Agents in Sepsis Treatment. Int. J. Mol. Sci. 2019, 20, 4255. https://doi.org/10.3390/ijms20174255
Vulczak A, Catalão CHR, Freitas LAPd, Rocha MJA. HSP-Target of Therapeutic Agents in Sepsis Treatment. International Journal of Molecular Sciences. 2019; 20(17):4255. https://doi.org/10.3390/ijms20174255
Chicago/Turabian StyleVulczak, Anderson, Carlos Henrique Rocha Catalão, Luiz Alexandre Pedro de Freitas, and Maria José Alves Rocha. 2019. "HSP-Target of Therapeutic Agents in Sepsis Treatment" International Journal of Molecular Sciences 20, no. 17: 4255. https://doi.org/10.3390/ijms20174255
APA StyleVulczak, A., Catalão, C. H. R., Freitas, L. A. P. d., & Rocha, M. J. A. (2019). HSP-Target of Therapeutic Agents in Sepsis Treatment. International Journal of Molecular Sciences, 20(17), 4255. https://doi.org/10.3390/ijms20174255