Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protein Structure Selection
2.2. Ligand Selection
2.3. Docking and Molecular Dynamics Simulation (MD)
3. Materials and Methods
3.1. Ligand Selection
3.2. Molecular Docking Studies
3.3. Molecular Dynamic Simulations using Graphical Processing Units (GPUs)
3.4. Binding Energy Predictions Using WaterSwap
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cross, D.; Bayliss, M.M. A commentary on the use of hepatocytes in drug metabolism studies during drug discovery and development. Drug Metab. Rev. 2000, 32, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Davila, J.C.; Rodriguez, R.J.; Melchert, R.B.; Acosta, D.D., Jr. Predictive value of in vitro model systems in toxicology. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 63–96. [Google Scholar] [CrossRef] [PubMed]
- Forbes, B.; Ehrhardt, C.C. Human respiratory epithelial cell culture for drug delivery applications. Eur. J. Pharm. Biopharm. 2005, 60, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Ring, B.J.; Grace, J.; McRobie-Belle, D.J.; Wrighton, S.A.A. Present and future in vitro approaches for drug metabolism. J. Pharmacol. Toxicol. Methods 2000, 44, 313–324. [Google Scholar] [CrossRef]
- Nebert, D.W.; Russell, D.W.W. Clinical importance of the cytochromes P450. Lancet 2002, 360, 1155–1162. [Google Scholar] [CrossRef]
- Almira Correia, M.; Sinclair, P.R.; De Matteis, F.F. Cytochrome P450 regulation: The interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab. Rev. 2011, 43, 1–26. [Google Scholar] [CrossRef]
- Wrighton, S.A.; Schuetz, E.G.; Thummel, K.E.; Shen, D.D.; Korzekwa, K.R.; Watkins, P.B.B. The human CYP3A subfamily: Practical considerations. Drug Metab. Rev. 2000, 32, 339–361. [Google Scholar] [CrossRef]
- Quintieri, L.; Palatini, P.; Nassi, A.; Ruzza, P.; Floreani, M.M. Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP 3A4 and CYP3A5 enzymes. Biochem. Pharmacol. 2008, 75, 1426–1437. [Google Scholar] [CrossRef]
- Dresser, G.K.; Spence, J.D.; Bailey, D.G.G. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharmacokinet. 2000, 38, 41–57. [Google Scholar] [CrossRef]
- Obach, R.S.; Walsky, R.L.; Venkatakrishnan, K.; Gaman, E.A.; Houston, J.B.; Tremaine, L.M.M. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug—drug interactions. J. Pharmacol. Exp. Ther. 2006, 316, 336–348. [Google Scholar] [CrossRef]
- Ohyama, K.; Nakajima, M.; Suzuki, M.; Shimada, N.; Yamazaki, H.; Yokoi, T.T. Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: Prediction of in vivo drug interactions. Br. J. Clin. Pharmacol. 2000, 49, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.W.; Newton, D.J.; Liu, N.; Atkins, W.M.; Lu, A.Y.Y. Human cytochrome P-450 3A4: In vitro drug—drug interaction patterns are substrate-dependent. Drug Metab. Dispos. 2000, 28, 360–366. [Google Scholar] [PubMed]
- De Groot, M.J.J. Designing better drugs: Predicting cytochrome P450 metabolism. Drug Discov. Today 2006, 11, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-F.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Scripture, C.D.; Figg, W.D.D. Drug interactions in cancer therapy. Nat. Rev. Cancer 2006, 6, 546. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, D.O.; Einolf, H.J. Assessment of cytochrome p450 enzyme inhibition and inactivation in drug discovery and development. Curr. Top. Med. Chem. 2011, 11, 382–403. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L.L. Understanding the mechanism of cytochrome P450 3A4: Recent advances and remaining problems. Dalton Trans. 2013, 42, 3116–3126. [Google Scholar] [CrossRef] [PubMed]
- Martiny, V.Y.; Carbonell, P.; Chevillard, F.; Moroy, G.; Nicot, A.B.; Vayer, P.; Villoutreix, B.O.; Miteva, M.A.A. Integrated structure-and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6. Bioinformatics 2015, 31, 3930–3937. [Google Scholar] [PubMed]
- Bello, M.; Mendieta-Wejebe, J.E.; Correa-Basurto, J.J. Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity. Biochem. Pharmacol. 2014, 90, 145–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, C.Y.; Su, B.-H.; Tu, Y.S.; Lin, C.; Lin, O.A.; Tseng, Y.J.J. CypRules: A rule-based P450 inhibition prediction server. Bioinformatics 2015, 31, 1869–1871. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Basith, S.; Cui, M.; Kim, B.; Choi, S.S. In silico prediction of multiple-category classification model for cytochrome P450 inhibitors and non-inhibitors using machine-learning method. SAR QSAR Environ. Res. 2017, 28, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Kiani, Y.S.; Jabeen, I.I. Exploring the chemical space of cytochrome p450 inhibitors using integrated physicochemical parameters, drug efficiency metrics and decision tree models. Computation 2019, 7, 26. [Google Scholar] [CrossRef]
- Nembri, S.; Grisoni, F.; Consonni, V.; Todeschini, R.R. In silico prediction of cytochrome P450-drug interaction: QSARs for CYP3A4 and CYP2C9. Int. J. Mol. Sci. 2016, 17, 914. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.F.; Modi, S.; Dickins, M.M. Structure—Activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab. Rev. 2002, 34, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, A.; Stein, G.Y.; Oron, Y.; Ruppin, E.; Sharan, R. INDI: A computational framework for inferring drug interactions and their associated recommendations. Mol. Syst. Biol. 2012, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Stresser, D.M.; Williams, J.A. In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol. Sci. 2003, 24, 161–166. [Google Scholar] [CrossRef]
- Ekins, S.; Bravi, G.; Binkley, S.; Gillespie, J.S.; Ring, B.J.; Wikel, J.H.; Wrighton, S.A. Three-and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J. Pharmacol. Exp. Ther. 1999, 290, 429–438. [Google Scholar] [PubMed]
- Ekins, S.; Bravi, G.; Wikel, J.H.; Wrighton, S.A. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J. Pharmacol. Exp. Ther. 1999, 291, 424–433. [Google Scholar] [PubMed]
- Silva, F.C.; Varlamova, E.V.; Braga, R.C.; Andrade, C.H. Development of QSAR models for identification of CYP3A4 substrates and inhibitors. Mol2Net 2015, 1, 1–6. [Google Scholar]
- Mao, B.; Gozalbes, R.; Barbosa, F.; Migeon, J.; Merrick, S.; Kamm, K.; Wong, E.; Costales, C.; Shi, W.; Wu, C. QSAR modeling of in vitro inhibition of cytochrome P450 3A4. J. Chem. Inf. Model. 2006, 46, 2125–2134. [Google Scholar] [CrossRef]
- Kriegl, J.M.; Arnhold, T.; Beck, B.; Fox, T. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J. Comput. Aided Mol. Des. 2005, 19, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem. 2014, 14, 1923–1938. [Google Scholar] [CrossRef] [PubMed]
- Marechal, J.-D.; Yu, J.; Brown, S.; Kapelioukh, I.; Rankin, E.M.; Wolf, C.R.; Roberts, G.C.; Paine, M.J.; Sutcliffe, M.J. In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by comedications commonly used by patients with cancer. Drug Metab. Dispos. 2006, 34, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, S.; Kiani, Y.S.; Jabeen, I. Molecular docking simulations and GRID-independent molecular descriptor (GRIND) analysis to probe stereoselective interactions of CYP3A4 inhibitors. Med. Chem. Res. 2017, 26, 2322–2335. [Google Scholar] [CrossRef]
- Lonsdale, R.; Rouse, S.L.; Sansom, M.S.; Mulholland, A.J. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes. PLoS Comput. Biol. 2014, 10, e1003714. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, S.; Yesudhas, D.; Durai, P.; Anwar, M.; Gosu, V.; Choi, S. A combined molecular docking/dynamics approach to probe the binding mode of cancer drugs with cytochrome P450 3A4. Molecules 2015, 20, 14915–14935. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, G.; Woods, C.J.; Powlesland, F.; Mey, A.S.; Mulholland, A.J.; Michel, J. Elucidation of nonadditive effects in protein–ligand binding energies: Thrombin as a case study. J. Phys. Chem. B 2016, 120, 5340–5350. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Caflisch, A. Molecular dynamics in drug design. Eur. J. Med. Chem. 2015, 91, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; van der Kamp, M.; Malaisree, M.; Liu, D.; Liu, Y.; Mulholland, A.J. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations. J. Comput. Aided Mol. Des. 2017, 31, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.J.; Malaisree, M.; Hannongbua, S.; Mulholland, A.J. A water-swap reaction coordinate for the calculation of absolute protein–ligand binding free energies. J. Chem. Phys. 2011, 134, 02B611. [Google Scholar] [CrossRef] [PubMed]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc. Natl. Acad. Sci. USA 2010, 107, 18422–18427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, J.K.; Wester, M.R.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J. Biol. Chem. 2004, 279, 38091–38094. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Poulos, T.L. Structural and mechanistic insights into the interaction of cytochrome P4503A4 with bromoergocryptine, a type I ligand. J. Biol. Chem. 2012, 287, 3510–3517. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Dissecting cytochrome P450 3A4–ligand interactions using ritonavir analogues. Biochemistry 2013, 52, 4474–4481. [Google Scholar] [CrossRef]
- Shahrokh, K.; Cheatham, T.E., III; Yost, G.S. Conformational dynamics of CYP3A4 demonstrate the important role of Arg212 coupled with the opening of ingress, egress and solvent channels to dehydrogenation of 4-hydroxy-tamoxifen. Biochim. Biophys. Acta BBA Gen. Subj. 2012, 1820, 1605–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef]
- Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 2014, 13, 105–121. [Google Scholar] [CrossRef]
- Navrátilová, V.; Paloncýová, M.T.; Berka, K.; Otyepka, M. Effect of lipid charge on membrane immersion of cytochrome P450 3A4. J. Phys. Chem. B 2016, 120, 11205–11213. [Google Scholar] [CrossRef]
- Šrejber, M.; Navrátilová, V.; Paloncýová, M.; Bazgier, V.; Berka, K.; Anzenbacher, P.; Otyepka, M. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem. 2018, 183, 117–136. [Google Scholar] [CrossRef] [PubMed]
- Berka, K.; Paloncýová, M.T.; Anzenbacher, P.; Otyepka, M. Behavior of human cytochromes P450 on lipid membranes. J. Phys. Chem. B 2013, 117, 11556–11564. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, R.; Houghton, K.T.; Żurek, J.; Bathelt, C.M.; Foloppe, N.; de Groot, M.J.; Harvey, J.N.; Mulholland, A.J. Quantum mechanics/molecular mechanics modeling of regioselectivity of drug metabolism in cytochrome P450 2C9. J. Am. Chem. Soc. 2013, 135, 8001–8015. [Google Scholar] [CrossRef] [PubMed]
- Yuki, H.; Honma, T.; Hata, M.; Hoshino, T. Prediction of sites of metabolism in a substrate molecule, instanced by carbamazepine oxidation by CYP3A4. Bioorg. Med. Chem. 2012, 20, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Magistrato, A.; Sgrignani, J.; Krause, R.; Cavalli, A. Single or multiple access channels to the CYP450s active site? An answer from free energy simulations of the human aromatase enzyme. J. Phys. Chem. Lett. 2017, 8, 2036–2042. [Google Scholar] [CrossRef] [PubMed]
- Spinello, A.; Ritacco, I.; Magistrato, A. The catalytic mechanism of steroidogenic cytochromes P450 from all-atom simulations: Entwinement with membrane environment, redox partners, and post-transcriptional regulation. Catalysts 2019, 9, 81. [Google Scholar] [CrossRef]
- Williams, P.A.; Cosme, J.; Sridhar, V.; Johnson, E.F.; McRee, D.E. Mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membrane binding and functional diversity. Mol. Cell 2000, 5, 121–131. [Google Scholar] [CrossRef]
- Kumar, S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin. Drug Metab. Toxicol. 2010, 6, 115–131. [Google Scholar] [CrossRef]
- Gharaghani, S.; Khayamian, T.; Keshavarz, F. Docking, molecular dynamics simulation studies, and structure-based QSAR model on cytochrome P450 2A6 inhibitors. Struct. Chem. 2012, 23, 341–350. [Google Scholar] [CrossRef]
- Sato, A.; Yuki, H.; Watanabe, C.; Saito, J.-I.; Konagaya, A.; Honma, T. Prediction of the site of CYP3A4 metabolism of tolterodine by molecular dynamics simulation from multiple initial structures of the CYP3A4-tolterodine complex. Chem Bio Inform. J. 2017, 17, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Seifert, A.; Tatzel, S.; Schmid, R.D.; Pleiss, J. Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: The molecular basis of substrate binding and regioselectivity toward warfarin. Proteins Struct. Funct. Bioinform. 2006, 64, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.-X.; Zhao, P.; Li, Z.; Liu, M.; Liu, P.; Huang, M.; Luo, H.-B. The molecular basis for the inhibition of human cytochrome P450 1A2 by oroxylin and wogonin. Eur. Biophys. J. 2012, 41, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.D.; Shahrokh, K.; Sontum, S.F.; Cheatham, T.E., III; Yost, G.S. Improved cytochrome P450 3A4 molecular models accurately predict the Phe215 requirement for raloxifene dehydrogenation selectivity. Biochemistry 2010, 49, 9011–9019. [Google Scholar] [CrossRef] [PubMed]
- Case, D.; Babin, V.; Berryman, J.; Betz, R.; Cai, Q.; Cerutti, D.; Cheatham, T., III; Darden, T.; Duke, R.; Gohlke, H. AMBER 14; University of California: San Francisco, CA, USA, 2014. [Google Scholar]
- Lobanov, M.Y.; Bogatyreva, N.; Galzitskaya, O. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008, 42, 623–628. [Google Scholar] [CrossRef]
- Lonsdale, R.; Fort, R.M.; Rydberg, P.; Harvey, J.N.; Mulholland, A.J. Quantum mechanics/molecular mechanics modeling of drug metabolism: Mexiletine N-hydroxylation by cytochrome P450 1A2. Chem. Res. Toxicol. 2016, 29, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.N.; Bathelt, C.M.; Mulholland, A.J. QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase. J. Comput. Chem. 2006, 27, 1352–1362. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, R.; Mulholland, J.A. QM/MM modelling of drug-metabolizing enzymes. Curr. Top. Med. Chem. 2014, 14, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Okuda, T.; Yamamoto, Y. Characterization of the CYP3A4 active site by homology modeling. Chem. Pharm. Bull. 2004, 52, 830–835. [Google Scholar] [CrossRef]
- Williams, P.A.; Cosme, J.; Vinković, D.M.; Ward, A.; Angove, H.C.; Day, P.J.; Vonrhein, C.; Tickle, I.J.; Jhoti, H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004, 305, 683–686. [Google Scholar] [CrossRef]
- Fowler, S.M.; Taylor, J.M.; Friedberg, T.; Wolf, C.R.; Riley, R.J. CYP3A4 active site volume modification by mutagenesis of leucine 211. Drug Metab. Dispos. 2002, 30, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.M.; Riley, R.J.; Pritchard, M.P.; Sutcliffe, M.J.; Friedberg, T.; Wolf, C.R. Amino acid 305 determines catalytic center accessibility in CYP3A4. Biochemistry 2000, 39, 4406–4414. [Google Scholar] [CrossRef] [PubMed]
- Roussel, F.; Khan, K.K.; Halpert, J.R. The importance of SRS-1 residues in catalytic specificity of human cytochrome P450 3A4. Arch. Biochem. Biophys. 2000, 374, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Szklarz, G.D.; Halpert, J.R. Molecular modeling of cytochrome P450 3A4. J. Comput. Aided Mol. Des. 1997, 11, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.J.; Malaisree, M.; Michel, J.; Long, B.; McIntosh-Smith, S.; Mulholland, A.J. Rapid decomposition and visualisation of protein–ligand binding free energies by residue and by water. Faraday Discuss. 2014, 169, 477–499. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.J.; Malaisree, M.; Long, B.; McIntosh-Smith, S.; Mulholland, A.J. Computational assay of H7N9 influenza neuraminidase reveals R292K mutation reduces drug binding affinity. Sci. Rep. 2013, 3, 3561. [Google Scholar] [CrossRef] [PubMed]
- Callegari, D.; Ranaghan, K.; Woods, C.; Minari, R.; Tiseo, M.; Mor, M.; Mulholland, A.; Lodola, A. L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib. Chem. Sci. 2018, 9, 2740–2749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi, S.; Van der Kamp, M.W.; Ranaghan, K.E.; Mulholland, A.J.; Colombo, G. Understanding Complex Mechanisms of Enzyme Reactivity: The Case of Limonene-1, 2-Epoxide Hydrolases. ACS Catal. 2018, 8, 5698–5707. [Google Scholar] [CrossRef]
- Thai, K.-M.; Le, D.-P.; Tran, T.-D.; Le, M.-T. Computational assay of Zanamivir binding affinity with original and mutant influenza neuraminidase 9 using molecular docking. J. Theor. Biol. 2015, 385, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Raza, S.; Abbasi, S.W.; Azam, S.S. Identification of natural inhibitors against Acinetobacter baumanniid-alanine-d-alanine ligase enzyme: A multi-spectrum in silico approach. J. Mol. Liq. 2018, 262, 460–475. [Google Scholar] [CrossRef]
- Ahmad, S.; Raza, S.; Uddin, R.; Rungrotmongkol, T.; Azam, S.S. From phylogeny to protein dynamics: A computational hierarchical quest for potent drug identification against an emerging enteropathogen “Yersinia enterocolitica”. J. Mol. Liq. 2018, 265, 372–389. [Google Scholar] [CrossRef]
- Ahmad, S.; Raza, S.; Abro, A.; Liedl, K.R.; Azam, S.S. Toward novel inhibitors against KdsB: A highly specific and selective broad-spectrum bacterial enzyme. J. Biomol. Struct. Dyn. 2019, 37, 1326–1345. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Murtaza, U.A.; Raza, S.; Azam, S.S. Blocking the catalytic mechanism of MurC ligase enzyme from Acinetobacter baumannii: An in Silico guided study towards the discovery of natural antibiotics. J. Mol. Liq. 2019, 281, 117–133. [Google Scholar] [CrossRef]
- Agoni, C.; Ramharack, P.; Soliman, M.E. Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: Atomistic insights. Future Med. Chem. 2018, 10, 1665–1675. [Google Scholar] [CrossRef]
- Raza, S.; Ranaghan, K.E.; van der Kamp, M.W.; Woods, C.J.; Mulholland, A.J.; Azam, S.S. Visualizing protein–ligand binding with chemical energy-wise decomposition (CHEWD): Application to ligand binding in the kallikrein-8 S1 Site. J. Comput. Aided Mol. Des. 2019, 33, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Park, S.; Yim, C.; Kwak, H.; Gajendrarao, P.; Krishnamoorthy, N.; Yun, S.C.; Lee, K.; Han, K. The CYP3A4* 18 genotype in the cytochrome P450 3A4 gene, a rapid metabolizer of sex steroids, is associated with low bone mineral density. Clin. Pharmacol. Ther. 2009, 85, 312–318. [Google Scholar] [CrossRef]
- Fan, J.-R.; Zheng, Q.-C.; Cui, Y.-L.; Li, W.-K.; Zhang, H.-X. Investigation of ligand selectivity in CYP3A7 by molecular dynamics simulations. J. Biomol. Struct. Dyn. 2015, 33, 2360–2367. [Google Scholar] [CrossRef]
- Cui, Y.-L.; Xu, F.; Wu, R. Molecular dynamics investigations of regioselectivity of anionic/aromatic substrates by a family of enzymes: A case study of diclofenac binding in CYP2C isoforms. Phys. Chem. Chem. Phys. 2016, 18, 17428–17439. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2010, 51, 69–82. [Google Scholar] [CrossRef]
- Qian, H.; Duan, M.; Sun, X.; Chi, M.; Zhao, Y.; Liang, W.; Du, J.; Huang, J.; Li, B. The binding mechanism between azoles and FgCYP51B, sterol 14α-demethylase of Fusarium graminearum. Pest. Manag. Sci. 2018, 74, 126–134. [Google Scholar] [CrossRef]
- Fan, J.R.; Li, H.; Zhang, H.X.; Zheng, Q.C. Exploring the structure characteristics and major channels of cytochrome P450 2A6, 2A13, and 2E1 with pilocarpine. Biopolymers 2018, 109, e23108. [Google Scholar] [CrossRef]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef] [PubMed]
- Dennington, R.; Keith, T.; Millam, J. GaussView, version 5; Semichem Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2014, 47, 5.6.1–5.6.32. [Google Scholar] [CrossRef] [PubMed]
- Kapelyukh, Y.; Paine, M.J.; Maréchal, J.-D.; Sutcliffe, M.J.; Wolf, C.R.; Roberts, G. Multiple substrate binding by cytochrome P450 3A4: Estimation of the number of bound substrate molecules. Drug Metab. Dispos. 2008, 36, 2136–2144. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef] [Green Version]
- Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 2007, 28, 1145–1152. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696. [Google Scholar] [CrossRef]
- Shahrokh, K.; Orendt, A.; Yost, G.S.; Cheatham, T.E., III. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J. Comput. Chem. 2012, 33, 119–133. [Google Scholar] [CrossRef]
- Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Madhulatha, T.S. An overview on clustering methods. IOSR J. Eng. 2012, 2, 719–725. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Tyka, M.D.; Sessions, R.B.; Clarke, A.R. Absolute free-energy calculations of liquids using a harmonic reference state. J. Phys. Chem. B 2007, 111, 9571–9580. [Google Scholar] [CrossRef] [PubMed]
- Hamelberg, D.; McCammon, J.A. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: Double-decoupling method. J. Am. Chem. Soc. 2004, 126, 7683–7689. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, D.A. A comparison of alternative approaches to free energy calculations. J. Phys. Chem. 1994, 98, 1487–1493. [Google Scholar] [CrossRef]
- Woods, C.J.; Essex, J.W.; King, M.A. The development of replica-exchange-based free-energy methods. J. Phys. Chem. B 2003, 107, 13703–13710. [Google Scholar] [CrossRef]
- Woods, C.J.; Essex, J.W.; King, M.A. Enhanced configurational sampling in binding free-energy calculations. J. Phys. Chem. B 2003, 107, 13711–13718. [Google Scholar] [CrossRef]
CYP3A4 Inhibitors | Autodock Energy (kcal/mol) | van der Waals Interactions Before MD | Hydrogen Bond Interactions in the Docked Poses | van der Waals Interactions in Centroid Structure from Clustering | Hydrogen Bond Interactions in the Centroid Structures | van der Waals Interactions after MD | Hydrogen Bond Interactions at 50 ns | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acceptor Atom | Donor Atom | Distance Å | Acceptor Atom | Donor Atom | Distance Å | Acceptor Atom | Donor Atom | Distance Å | |||||
CYP3A4-YK1 | −9.9 | Leu482, Thr309, Phe304, Asp76, Thr224, Arg372, Leu373, Arg375 | Lig: Sulphonyl=O3 Lig: Carbonyl=O10 | Arg212-NH1 Arg105-NE | 3.01 2.93 | Phe220, Gly109, Pro107, Leu373, Tyr53, Thr224, Glu374, Gly481, Ala370, Leu482, Arg212 | Arg372=O Lig: Carbonyl=O3 Lig: Carbonyl=O3 | Lig: Hydroxyl-O2 Arg105-NE Glu374-NH | 2.62 3.68 3.70 | Tyr53, Arg105, Arg106, Pro107, Gly109, Phe213, Leu216, Phe220, Ala370, Leu373, Gly481, Leu482 | Arg372=O Lig: Carbonyl=O3 | Lig: Hydroxyl-O2 Glu374-NH | 2.58 3.05 |
CYP3A4-YK2 | −11.6 | Phe316, Glu308, Gln484, Thr309, Phe304, Phe108, Arg105, Phe213, Glu374, Gly481, Leu482, Leu483 | Ser312-OG Ala370=O Arg372=O | Lig: Hydroxyl-O Lig: Hydroxyl-O2 Lig: Hydroxyl-O2 | 3.01 2.81 3.13 | Ser312, Glu308, Arg212, Thr309, Phe304, Phe108, Arg105, Phe57, Glu374, Leu373, Leu483, Gln484 | Arg372=O | Lig: Hydroxyl-O2 | 2.71 | Phe57, Arg105, Arg212, Phe304, Thr309, Ser312, Leu373, Glu374, Leu462, Gln484 | Arg372=O | Lig: Hydroxyl-O2 | 2.96 |
CYP3A4-YK3 | −9.5 | Phe57, Arg105, Arg106, Phe108, Ala305, Phe304, Thr309, Met371 | Lig: Sulphonyl=O2 Lig: Carbonyl=O1 Lig: Carbonyl=O1 Lig: Carbonyl=O1 | Arg212-NH1 - Ser119-OG Arg212-NH1 Arg212-NH2 | 3.05 3.53 3.18 3.02 | Ile50, Tyr53, Asp76, Leu216, Leu221, Thr224, Val225, Gly481, Leu482, Arg212, Ala370, Leu373 | Lig: Sulphonyl=O1 Lig: Hydroxyl-O3 Lig: N2 | Arg106:NE Arg105:NH1 Arg372:NH | 3.11 3.20 3.50 | Asp76, Ile47, Arg105, Phe215, Leu216, Phe220, Leu221, Thr224, Ala370, Leu373, Glu374, Leu482 | No hydrogen bonds formed | No hydrogen bonds formed | -- |
CYP3A4-YK4 | −11.7 | Phe108, Thr309, Phe304, Glu308, Ser312, Phe316, Leu373, Met371, Leu482, | Ser312-OG Leu483=O | Lig: Amine-N5 Lig: Amine-N5 | 3.16 3.12 | Ser312, Gln484, Leu482, Thr309, Asp214, Phe316, Leu483, Pro485, Pro368, Met371, Ala370, Phe108, Ser119, Arg105 | Phe213=O Arg212-NE Arg212-NH1 | Lig: Amine-N2 Lig: Amine-N3 Lig: Amine-N3 | 3.22 3.64 3.66 | Phe57, Arg106, Phe215, Phe241, Ile301, Pro368, Ala370, Glu374, Gly480, Gly481, Leu482 | Ser119-O | Lig: Hydroxyl-O1 | 2.96 |
CYP3A4-YK5 | −10.4 | Arg105, Arg106, Ser119, Phe241, Ile301, Phe215, | Glu374-OE2 Lig: Carbonyl=O3 | Lig: Hydroxyl-O Arg212-NH1 | 3.32 3.13 | Phe316, Ile369, Leu483, Met371, Arg372, Phe215, Glu374, Ser312, Gln484, Glu308, | Lig: Carbonyl=O Ala349=O Lig: Carbonyl=O1 | Leu483-NH Lig: Amine-N2 Arg212:NH1 | 2.82 3.38 2.91 | Arg105, Ser119, Phe304, Gly306, Glu308, Ser312, Phe316, Ile369, Ala370, Met371, Gln484, Pro485 | Thr309-OG1 Lig: Carbonyl=O | Lig: Hydroxyl-O3 Leu483-N | 2.77 3.00 |
Inhibitor-Bound Complex | WaterSwap | |||||||
---|---|---|---|---|---|---|---|---|
IC50 nM | Autodock Score kcal/mol | MM/PBSA kcal/mol | MM/GBSA kcal/mol | BAR kcal/mol | FEP kcal/mol | TI kcal/mol | Average kcal/mol | |
CYP3A4-YK1 | 0.1 | −9.9 | −40.78 ± 0.43 | −61.22 ± 0.43 | −41.1 | −40.2 | −40.6 | −40.6 ± 0.5 |
CYP3A4-YK2 | 0.4 | −11.6 | −25.50 ± 0.33 | −37.44 ± 0.24 | −37.5 | −36.8 | −37.7 | −37.3 ± 0.5 |
CYP3A4-YK3 | 10 | −9.5 | −32.37 ± 0.31 | −49.48 ± 0.31 | −47.3 | −46.3 | −46.5 | −46.7 ± 0.5 |
CYP3A4-YK4 | 2.6 | −11.7 | −30.87 ± 0.31 | −34.96 ± 0.23 | −40.3 | −39.5 | −39.3 | −39.7 ± 0.5 |
−31.6 | −30.6 | −30.5 | −30.9 ± 0.6 | |||||
CYP3A4-YK5 | 38 | −10.4 | −22.52 ± 0.34 | −38.46 ± 0.25 | −36.1 | −36.3 | −35.6 | −36.0 ± 0.4 |
−40.4 | −39.8 | −39.9 | −40.0 ± 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiani, Y.S.; Ranaghan, K.E.; Jabeen, I.; Mulholland, A.J. Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors. Int. J. Mol. Sci. 2019, 20, 4468. https://doi.org/10.3390/ijms20184468
Kiani YS, Ranaghan KE, Jabeen I, Mulholland AJ. Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors. International Journal of Molecular Sciences. 2019; 20(18):4468. https://doi.org/10.3390/ijms20184468
Chicago/Turabian StyleKiani, Yusra Sajid, Kara E. Ranaghan, Ishrat Jabeen, and Adrian J. Mulholland. 2019. "Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors" International Journal of Molecular Sciences 20, no. 18: 4468. https://doi.org/10.3390/ijms20184468
APA StyleKiani, Y. S., Ranaghan, K. E., Jabeen, I., & Mulholland, A. J. (2019). Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors. International Journal of Molecular Sciences, 20(18), 4468. https://doi.org/10.3390/ijms20184468