Combined Effects of Gold Nanoparticles and Ionizing Radiation on Human Prostate and Lung Cancer Cell Migration
Abstract
:1. Introduction
2. Results
2.1. Cellular Uptake of Gold Nanoparticles (AuNPs)
2.2. The Effects of AuNPs on Cell Viability
2.3. The Effects of Ionizing Radiation (IR) on Cell Viability
2.4. The Effects of Combination of Ionizing Radiation (IR) and AuNPs on Cell Viability
2.5. The Additive Effect of IR and AuNPs on Cell Migration
2.6. The Effect of IR on Cell Adhesion
2.7. The Effect of AuNPs on Cell Adhesion
2.8. The Effects of a Combination of IR and AuNPs on Cell Adhesion
3. Discussion and Conclusion
4. Materials and Methods
4.1. Inductively Coupled Plasma Mass Spectrometry (ICP MS) Measurment of Celluar AuNPs
4.2. Cell Culture
4.3. AuNPs Preparation
4.4. Viability Assay
4.5. Cell Irradiation
4.6. Irradiation Setup
4.7. Scratch Assay
4.8. Adhesion Assay
4.9. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
IR | ionising radiation |
LET | lineal energy transfer |
MV | mega voltage |
EMT | epithelial-mesenchymal transition |
MMP | matrix metalloproteinase |
ECM | extracellular matrix |
NPs | nanoparticles |
AuNPs | gold nanoparticles |
AuNRs | gold nanorads |
Au@Pt-Nss | gold-platinum nanoseeds |
PTC | papillary thyroid cancer |
SEM | standard error of mean |
ROS | reactive oxygen species |
FBS | foetal bovine serum |
BG | background |
ICP-MS | inductively coupled plasma-mass spectrometry |
References
- Hall, E.J.; Giaccia, A.J. Chapter 19, Dose-Response Relationships for Model Normal Tissues. In Radiobiology for the Radiologist, 4th ed.; Hall, E.J., Giaccia, A.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; ISBN 978-1-60831-193-4. [Google Scholar]
- Manzanares, M.V.; Horwitz, A.R. Chapter 1, Cell Migration: An Overview. In Cell Migration Developmental Methods and Protocols, 2nd ed.; Wells, C.M., Parsons, M., Eds.; Humana Press: New York, NY, USA, 2012; ISBN 978-1-61779-206-9. [Google Scholar]
- Hulkower, K.I.; Herber, R.L. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 2011, 3, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.; Parsons, M. Methods in Molecular Biology; Humana Press: London, UK, 2011; pp. 1–3. ISBN 978-1-61779-206-9. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Robert, K.; Walter, P. Molecular Biology of the Cell, 6th ed.; Garland Science: New York, NY, USA, 2014; ISBN 978-0-81534-464-3. [Google Scholar]
- Moncharmont, C.; Levy, A.; Guy, J.; Falk, A.; Guilbert, M.; Trone, J.; Alphonse, G.; Gilormini, M.; Ardail, D.; Toillon, R.; et al. Radiation-Enhanced Cell Migration/Invasion Process: A Review. J. Crit. Rev. Oncol. 2014, 92, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Goetze, K.; Scholz, M.; Taucher-Scholz, G.; Mueller-Klieser, W. Tumor cell migration is not influenced by p21 in colon carcinoma cell lines after irradiation with X-ray or 12C heavy ions. Radiat. Environ. Biophys. 2010, 49, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, S.; Haga, H.; Yasuda, M.; Mizutani, T.; Kawabata, K.; Shirato, H.; Nishioka, T. Integrin Beta1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix. Biochem. Biophys. Res. Commun. 2010, 396, 651–655. [Google Scholar] [CrossRef]
- De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst. 2011, 103, 645–661. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.W.; Mizumoto, K.; Urashima, T.; Nagai, E.; Maehara, N.; Sato, N.; Nakajima, M.; Tanaka, M. Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin. Cancer Res. 2002, 8, 1223–1227. [Google Scholar]
- Akino, Y.; Teshima, T.; Kihara, A.; Kodera-Suzumoto, Y.; Inaoka, M.; Higashiyama, S.; Furusawa, Y.; Matsuura, N. Carbon-Ion Beam Irradiation Effectively Suppresses Migration and Invasion of Human Non-Small-Cell Lung Cancer Cells. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T.; Teshima, T.; Inaoka, M.; Minami, K.; Tsuchiya, T.; Isono, M.; Furusawa, Y.; Matsura, N. Carbon Ion Irradiation Suppresses Metastatic Potential of Human Non-small Cell Lung Cancer Cells through the Phosphatidylinositol-3-Kinase/ Akt Signaling Pathway. J. Rdiat. Res. 2011, 52, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Hwang, S.Y.; Hwang, J.S.; Oh, E.S.; Park, S.; Han, I.O. Ionising Radiation Induces Changes associated with epithelial-mesenchymal trans differentiation and increased cell motility of A549 lung Epithelial Cells. Eur. J. Cancer 2007, 43, 1214–1224. [Google Scholar] [CrossRef]
- McCawley, L.J.; Matrisian, L.M. Matrix Metalloproteinases: They’re Not Just for Matrix Anymore. Curr. Opin. Cell Biol. 2001, 13, 534–540. [Google Scholar] [CrossRef]
- Nakada, M.; Okada, Y.; Yamashita, J. The Role of Matrix Metalloproteinases in Glioma Invasion. Front. Biosci. J. Virtual. Libr. 2003, 8, e261–e269. [Google Scholar] [CrossRef] [PubMed]
- Rieken, S.; Habermehl, D.; Wuerth, L. Carbon Ion Irradiation Inhibits Glioma Cell Migration through Downregulation of Integrin Expression. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Rieken, S.; Habermehl, D.; Mohr, A. Targeting αvβ3 and αvβ5 Inhibits Photon-induced Hypermigration of Malignant Glioma Cells. Radiat. Oncol. 2011, 6, 132. [Google Scholar] [CrossRef] [PubMed]
- Panzetta, V.; Menna, M.D.; Musella, I.; Pugliese, M.; Quarto, M.; Netti, P.A.; Fusco, S. X-rays effects on cytoskeleton mechanics of healthy and tumor cells. Cytoskeleton J. 2016, 74, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Chargari, C.; Soria, J.-C.; Deutsch, E. Controversies and Challenges Regarding the Impact of Radiation Therapy on Survival. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Palmer, R. Chapter 1, Synthesis Application of Gold Nanoparticles. In Nanobiotechnology: Inorganic Nanoparticles vs Organic Nanoparticle; Elsevier: Amsterdam, The Netherland, 2012; ISBN 987-0-12415-769-9. [Google Scholar]
- Jia, Y.P.; Ma, B.Y.; Wei, X.W.; Qian, Z.Y. The In Vitro and In Vivo Toxicity of Gold Nanoparticles. Chin. Chem. Lett. 2017, 28, 691–702. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, M.; Zhang, B.; Wang, L.; Wu, X.; Zhou, H.; Du, Y.; Hao, J.; Tu, Y.; Chen, C.; et al. Inhibition of Cancer Cell Migration by Gold Nanorods: Molecular Mechanisms and Implications for Cancer Therapy. Adv. Funct. Mater. 2014, 24, 6922–6932. [Google Scholar] [CrossRef]
- Shin, S.S.; Noh, D.; Hwang, B.; Lee, J.; Park, S.L.; Park, S.; Moon, B.; Kim, W.; Moon, S. Inhibitory effect of Au@Pt-NSs on proliferation, migration, and invasion of ej bladder carcinoma cells: Involvement of cell cycle regulators, signaling pathways, and transcription factor-mediated MMP-9 expression. Int. J. Nanomed. 2018, 13, 3295–3310. [Google Scholar] [CrossRef]
- Lo, H.M.; Ma, M.C.; Shieh, J.M.; Chen, H.L.; Wu, W.B. Naked physically synthesized gold nanoparticles affect migration, mitochondrial activity, and proliferation of vascular smooth muscle cells. Int. J. Nanomed. 2018, 13, 3163–3176. [Google Scholar] [CrossRef]
- Liu, F.; Ma, D.; Chen, W.; Chen, X.; Qian, Y.; Zhao, Y.; Hu, T.; Yin, R.; Zhu, Y.; Zhang, Y.; et al. Gold Nanoparticles Suppressed Proliferation, Migration, and Invasion in Papillary Thyroid Carcinoma Cells via Downregulation of CCT3. J. Nanomater. 2019, 1, 1–12. [Google Scholar] [CrossRef]
- Dimitriou, N.; Tsekenis, G.; Balanikas, E.C.; Pavlopoulou, A.; Mitisiogianni, M.; Mantso, T.; Pashos, G.; Boudouvis, A.G.; Lykakis, I.N.; Tsigaridas, G.; et al. Gold Nanoparticles, Radiations and the Immune System: Current Insights into the Mechanisms and the Biological Interactions of this New Alliance towards Cancer Therapy. PharmThera 2017, 178, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Khan, F. Chapter 5, Interaction of Ionizing Radiation. In The Physics of Radiation Therapy, 5th ed.; Gibbons, J.P., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; ISBN 978-1-4511-8245-3. [Google Scholar]
- Azzam, E.I.; Jay-Gerin, J.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Can. Let. 2012, 327, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luanpitpong, S.; Talbott, S.J.; Rojanasakul, Y.; Nimmannit, U.; Pongrakhananon, V.; Wang, L.; Chanvorachote, P. Regulation of Lung Cancer Cell Migration and Invasion by Reactive Oxygen Species and Caveolin-1*. J. Biol. Chem. 2010, 285, 38832. [Google Scholar] [CrossRef] [PubMed]
- Roques, T. Radiotherapy Dose Fractionation, 3rd ed. The Royal College of Radiologist. March 2019. Available online: https://www.rcr.ac.uk/system/files/publication/field_publication_files/brfo193_radiotherapy_dose_fractionation_third-edition.pdf (accessed on 28 May 2019).
- Nanoprobes, Aurovist–Production Information and Instructions, The fIRt Gold Nanoparticle X-ray Contrast Agent for In Vivo Use. Available online: http://www.nanoprobes.com/instructions/Inf1115-AuroVist-II-15-nm-Instructions.pdf (accessed on 15 February 2019).
- Trono, J.D.; Mizuno, K.; Yusa, N.; Matsukawa, T.; Yokoyama, K.; Useaka, M. Size, Concentration and Incubation Time Dependence of Gold Nanoparticles into Pancreas Cancer Cells and its Future Application to X-ray Drug Delivery System. J. Radiat. Res. 2011, 52, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Vedantam, P.; Huang, G. Size-dependent Cellular Toxicity and Uptake of Commercial Colloidal Gold Nanoparticles in DU145 Cells. Cancer Nano 2013, 4, 13–20. [Google Scholar] [CrossRef] [PubMed]
Experimental Groups | Gap Filling Rate % Change/h 0–6 h | Gap Filling Rate % Change/h 8–24 h | ||
---|---|---|---|---|
Prostate Cancer DU145 | Control | −0.050 | −0.033 | * (p < 0.05) |
IR | −0.032 | −0.032 | - | |
AuNPs | −0.027 | −0.026 | - | |
IR + AuNPs | −0.015 | −0.021 | - | |
Lung Cancer A549 | Control | −0.053 | −0.021 | * (p < 0.05) |
IR | −0.032 | −0.024 | - | |
AuNPs | −0.030 | −0.020 | - | |
IR + AuNPs | −0.015 | −0.020 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahhoseini, E.; Feltis, B.N.; Nakayama, M.; Piva, T.J.; Pouniotis, D.; Alghamdi, S.S.; Geso, M. Combined Effects of Gold Nanoparticles and Ionizing Radiation on Human Prostate and Lung Cancer Cell Migration. Int. J. Mol. Sci. 2019, 20, 4488. https://doi.org/10.3390/ijms20184488
Shahhoseini E, Feltis BN, Nakayama M, Piva TJ, Pouniotis D, Alghamdi SS, Geso M. Combined Effects of Gold Nanoparticles and Ionizing Radiation on Human Prostate and Lung Cancer Cell Migration. International Journal of Molecular Sciences. 2019; 20(18):4488. https://doi.org/10.3390/ijms20184488
Chicago/Turabian StyleShahhoseini, Elham, Bryce N. Feltis, Masao Nakayama, Terrence J. Piva, Dodie Pouniotis, Salem S. Alghamdi, and Moshi Geso. 2019. "Combined Effects of Gold Nanoparticles and Ionizing Radiation on Human Prostate and Lung Cancer Cell Migration" International Journal of Molecular Sciences 20, no. 18: 4488. https://doi.org/10.3390/ijms20184488
APA StyleShahhoseini, E., Feltis, B. N., Nakayama, M., Piva, T. J., Pouniotis, D., Alghamdi, S. S., & Geso, M. (2019). Combined Effects of Gold Nanoparticles and Ionizing Radiation on Human Prostate and Lung Cancer Cell Migration. International Journal of Molecular Sciences, 20(18), 4488. https://doi.org/10.3390/ijms20184488