Relevance of Surface Neuronal Protein Autoantibodies as Biomarkers in Seizure-Associated Disorders
Abstract
:1. Introduction
2. General Features of Autoantibodies against Surface Neuronal Proteins
2.1. LGI1 and CASPR2
2.2. GlyR
2.3. NMDAR
2.4. GABABR
2.5. AMPAR
3. Seizure Disorders Associated with Surface Neuronal Protein Autoantibodies
3.1. LGI1 and CASPR2 Autoantibodies
3.2. GlyR Autoantibodies
3.3. NMDAR Autoantibodies
3.4. GABABR Autoantibodies
3.5. AMPAR Autoantibodies
4. Surface Neuronal Proteins and Animals
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LGI1 | Leucine-rich glioma-inactivated-1 |
CASPR2 | Contactin-associated protein-like 2 |
NMDAR | Nmethyl-D-aspartate receptor |
NR1 and NR2b | Subunits of the NMDAR |
GABAB-R | γ-aminobutyric acid receptor-B |
GluA1 and GluA2 | Subunits of the AMPAR |
GlyR | Glycine receptor |
Ab | Antibody |
AMPAR | a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors |
LE | Limbic encephalitis |
SE | Status epilepticus |
EEG | Electroencephalogram |
FBDS | Facio-brachial dystonic seizures |
GTC | Generalized tonic-clonic |
CPS | Complex partial seizure |
M | Male |
F | Female |
CSF | Cerebrospinal fluid |
MRI | Magnetic resonance imaging |
PET | Positron emission tomography |
iIHC | Indirect immunohistochemistry (immunofluorescence) |
RIA | Radioimmunoprecipitation assay |
CBA | Cell-based assay |
References
- Li, W.; Wu, S.; Meng, Q.; Zhang, X.; Guo, Y.; Cong, L.; Cong, S.; Zheng, D. Clinical characteristics and short-term prognosis of LGI1 antibody encephalitis: A retrospective case study. BMC Neurology 2018, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, L.; Graus, F.; Giometto, B.; Bien, C.; Vincent, A. Central nervous system neuronal surface antibody associated syndromes: Review and guidelines for recognition. J. Neurol. Neurosurg. Psychiatry 2012, 83, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Bien, C.G.; Irani, S.R.; Waters, P. Autoantibodies associated with diseases of the CNS: New developments and future challenges. Lancet Neurol. 2011, 10, 759–772. [Google Scholar] [CrossRef]
- Fukata, Y.; Lovero, K.L.; Iwanaga, T.; Watanabe, A.; Yokoi, N.; Tabuchi, K.; Shigemoto, R.; Nicoll, R.A.; Fukata, M. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc. Natl. Acad. Sci. USA 2010, 107, 3799–3804. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Hughes, E.G.; Peng, X.; Zhou, L.; Gleichman, A.J.; Shu, H.; Matà, S.; Kremens, D.; Vitaliani, R.; Geschwind, M.D.; et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann. Neurol. 2009, 65, 424–434. [Google Scholar] [CrossRef]
- Binks, S.N.M.; Klein, C.J.; Waters, P.; Pittock, S.J.; Irani, S.R. LGI1, CASPR2 and related antibodies: A molecular evolution of the phenotypes. J. Neurol. Neurosurg. Psychiatry 2018, 89, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-D.; Zhang, D.; Ozkaynak, E.; Wang, X.; Kasper, E.M.; Leguern, E.; Baulac, S.; Anderson, M.P. Epilepsy gene LGI1 regulates postnatal developmental remodeling of retinogeniculate synapses. J. Neurosci. 2012, 32, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Buckley, C.; Schott, J.M.; Baker, I.; Dewar, B.K.; Detert, N.; Clover, L.; Parkinson, A.; Bien, C.G.; Omer, S.; et al. Potassium channel antibody-associated encephalopathy: A potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004, 127, 701–712. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, Y.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. Advances in autoimmune epilepsy associated with antibodies, their potential pathogenic molecular mechanisms, and current recommended immunotherapies. Front. Immunol. 2017, 8, 395. [Google Scholar] [CrossRef]
- Hart, I.K.; Waters, C.; Vincent, A.; Newland, C.; Beeson, D.; Pongs, O.; Morris, C.; Newsom-Davis, J. Autoantibodies detected to expressed K + channels are implicated in neuromyotonia. Ann. Neurol. 1997, 41, 238–246. [Google Scholar] [CrossRef]
- Kleopa, K.A.; Elman, L.B.; Lang, B.; Vincent, A.; Scherer, S.S. Neuromyotonia and limbic encephalitis sera target mature Shaker-type K + channels: Subunit specificity correlates with clinical manifestations. Brain 2006, 129, 1570–1584. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Huijbers, M.G.; Lancaster, E.; Graus, F.; Bataller, L.; Balice-Gordon, R.; Cowell, J.K.; Dalmau, J. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: A case series. Lancet Neurol. 2010, 9, 776–785. [Google Scholar] [CrossRef]
- Leypoldt, F.; Hoftberger, R.; Titulaer, M.J.; Armangue, T.; Gresa-Arribas, N.; Jahn, H.; Rostasy, K.; Schlumberger, W.; Meyer, T.; Wandinger, K.P.; et al. Investigations on CXCL13 in anti-N-methyl-d-aspartate receptor encephalitis: a potential biomarker of treatment response. JAMA Neurol 2015, 72, 180–186. [Google Scholar] [CrossRef]
- Hernandes, M.S.; Troncone, L.R.P. Glycine as a neurotransmitter in the forebrain: A short review. J. Neural Transm. 2009, 116, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, E.; Dalmau, J. Neuronal autoantigens-pathogenesis, associated disorders and antibody testing. Nat. Rev. Neurol. 2012, 8, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Ekizoglu, E.; Baykan, B.; Sezgin, M.; Erdag, E.; Gundogdu-Unverengil, G.; Nur Vanlı-Yavuz, E.; Tekturk, P.; Yılmaz, E.; Bebek, N.; Tuzun, E. Follow-up of patients with epilepsy harboring antiglycine receptor antibodies. Epilepsy Behav. 2019, 92, 103–107. [Google Scholar] [CrossRef]
- Li, F.; Tsien, J.Z. Memory and the NMDA Receptors. N. Engl. J. Med. 2009, 361, 302–303. [Google Scholar] [CrossRef] [Green Version]
- Dalmau, J.; Tüzün, E.; Wu, H.; Masjuan, J.; Rossi, J.E.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; et al. Paraneoplastic anti-N-methyl-d-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 2007, 61, 25–36. [Google Scholar] [CrossRef]
- Florance, N.R.; Davis, R.L.; Lam, C.; Szperka, C.; Zhou, L.; Ahmad, S.; Campen, C.J.; Moss, H.; Peter, N.; Gleichman, A.J.; et al. Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann. Neurol. 2009, 66, 11–18. [Google Scholar] [CrossRef]
- Dalmau, J.; Gleichman, A.J.; Hughes, E.G.; Rossi, J.E.; Peng, X.; Lai, M.; Dessain, S.K.; Rosenfeld, M.R.; Balice-Gordon, R.; Lynch, D.R. Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. Lancet Neurol. 2008, 7, 1091–1098. [Google Scholar] [CrossRef]
- Lancaster, E.; Lai, M.; Peng, X.; Hughes, E.; Constantinescu, R.; Raizer, J.; Friedman, D.; Skeen, M.B.; Grisold, W.; Kimura, A.; et al. Antibodies to the GABAB receptor in limbic encephalitis with seizures: Case series and characterisation of the antigen. Lancet Neurol. 2010, 9, 67–76. [Google Scholar] [CrossRef]
- Hughes, E.G.; Peng, X.; Gleichman, A.J.; Lai, M.; Zhou, L.; Tsou, R.; Parsons, T.D.; Lynch, D.R.; Dalmau, J.; Balice-Gordon, R.J. Cellular and Synaptic Mechanisms of Anti-NMDA Receptor Encephalitis. J. Neurosci. 2010, 30, 5866–5875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettler, B.; Kaupmann, K.; Mosbacher, J.; Gassmann, M. Molecular Structure and Physiological Functions of GABA B Receptors. Physiol. Rev. 2004, 84, 835–867. [Google Scholar] [CrossRef] [PubMed]
- Granger, A.J.; Gray, J.A.; Lu, W.; Nicoll, R.A. Genetic analysis of neuronal ionotropic glutamate receptor subunits. J. Physiol. 2011, 589, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Samad, N.; Wong, J. Anti-AMPA receptor encephalitis associated with Medullary thyroid cancer. BMJ Case Rep. 2018, 2018, bcr-2018-225745. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Epilepsy Across the Spectrum: Promoting Health and Understanding; England, M.J., Liverman, C.T., Schultz, A.M., Strawbridge, S.L., Eds.; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-25953-8. [Google Scholar]
- Lim, J.-A.; Lee, S.-T.; Jung, K.-H.; Kim, S.; Shin, J.-W.; Moon, J.; Byun, J.-I.; Kim, T.-J.; Shin, Y.-W.; Lee, K.-J.; et al. Anti-N-methyl-d-aspartate receptor encephalitis in Korea: Clinical features, treatment, and outcome. J. Clin. Neurol. 2014, 10, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Gultekin, S.H.; Rosenfeld, M.R.; Voltz, R.; Eichen, J.; Posner, J.B.; Dalmau, J. Paraneoplastic Limbic Encephalitis: Neurological Symptoms, Immunological Findings and Tumour Association in 50 Patients. Brain 2000, 123, 1481–1494. [Google Scholar] [CrossRef]
- Graus, F.; Delattre, J.Y.; Antoine, J.C.; Dalmau, J.; Giometto, B.; Grisold, W.; Honnorat, J.; Smitt, P.S.; Vedeler, C.; Verschuuren, J.J.G.M.; et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Ances, B.M.; Vitaliani, R.; Taylor, R.A.; Liebeskind, D.S.; Voloschin, A.; Houghton, D.J.; Galetta, S.L.; Dichter, M.; Alavi, A.; Rosenfeld, M.R.; et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 2005, 128, 1764–1777. [Google Scholar] [CrossRef]
- Bataller, L.; Kleopa, K.A.; Wu, G.F.; Rossi, J.E.; Rosenfeld, M.R.; Dalmau, J. Autoimmune limbic encephalitis in 39 patients: Immunophenotypes and outcomes. J. Neurol. Neurosurg. Psychiatry 2007, 78, 381–385. [Google Scholar] [CrossRef]
- Lv, R.J.; Ren, H.T.; Guan, H.Z.; Cui, T.; Shao, X.Q. Seizure semiology: An important clinical clue to the diagnosis of autoimmune epilepsy. Ann. Clin. Transl. Neurol. 2018, 5, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Sabater, L.; Gaig, C.; Gelpi, E.; Bataller, L.; Lewerenz, J.; Torres-Vega, E.; Contreras, A.; Giometto, B.; Compta, Y.; Embid, C.; et al. A novel NREM and REM parasomnia with sleep breathing disorder associated with antibodies against IgLON5: A case series, pathological features, and characterization of the antigen. Lancet Neurol 2014, 13, 575–586. [Google Scholar] [CrossRef]
- De Tiège, X.; Rozenberg, F.; Des Portes, V.; Lobut, J.B.; Lebon, P.; Ponsot, G.; Héron, B. Herpes simplex encephalitis relapses in children: Differentiation of two neurologic entities. Neurology 2003, 61, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.R.; Dalmau, J.; Lancaster, E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia. Ann. Neurol. 2018, 83, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Thieben, M.J.; Lennon, V.A.; Boeve, B.F.; Aksamit, A.J.; Keegan, M.; Vernino, S. Potentially reversible autoimmune limbic encephalitis with neuronal potassium channel antibody. Neurology 2004, 62, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, J.; Brenner, T.; Gill, D.; Brilot, F.; Antony, J.; Vincent, A.; Lang, B.; Dale, R.C. VGKC antibodies in pediatric encephalitis presenting with status epilepticus. Neurology 2011, 76, 1252–1255. [Google Scholar] [CrossRef]
- Shin, Y.W.; Lee, S.T.; Shin, J.W.; Moon, J.; Lim, J.A.; Byun, J.I.; Kim, T.J.; Lee, K.J.; Kim, Y.S.; Park, K.I.; et al. VGKC-complex/LGI1-antibody encephalitis: Clinical manifestations and response to immunotherapy. J. Neuroimmunol. 2013, 265, 75–81. [Google Scholar] [CrossRef] [PubMed]
- McKnight, K.; Jiang, Y.; Hart, Y.; Cavey, A.; Wroe, S.; Blank, M.; Shoenfeld, Y.; Vincent, A.; Palace, J.; Lang, B. Serum antibodies in epilepsy and seizure-associated disorders. Neurology 2005, 65, 1730–1736. [Google Scholar] [CrossRef]
- Quek, A.M.L.; Britton, J.W.; McKeon, A.; So, E.; Lennon, V.A.; Shin, C.; Klein, C.; Watson, R.E.; Kotsenas, A.L.; Lagerlund, T.D.; et al. Autoimmune Epilepsy. Arch. Neurol. 2012, 69, 582–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledano, M.; Britton, J.W.; McKeon, A.; Shin, C.; Lennon, V.A.; Quek, A.M.L.; So, E.; Worrell, G.A.; Cascino, G.D.; Klein, C.J.; et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology 2014, 82, 1578–1586. [Google Scholar] [CrossRef] [Green Version]
- Iorio, R.; Assenza, G.; Tombini, M.; Colicchio, G.; Della Marca, G.; Benvenga, A.; Damato, V.; Rossini, P.M.; Vollono, C.; Plantone, D.; et al. The detection of neural autoantibodies in patients with antiepileptic-drug-resistant epilepsy predicts response to immunotherapy. Eur. J. Neurol. 2015, 22, 70–78. [Google Scholar] [CrossRef] [PubMed]
- van Sonderen, A.; Thijs, R.D.; Coenders, E.C.; Jiskoot, L.C.; Sanchez, E.; de Bruijn, M.A.A.M.; van Coevorden-Hameete, M.H.; Wirtz, P.W.; Schreurs, M.W.J.; Sillevis Smitt, P.A.E.; et al. Anti-LGI1 encephalitis. Neurology 2016, 87, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Irani, S.R.; Michell, A.W.; Lang, B.; Pettingill, P.; Waters, P.; Johnson, M.R.; Schott, J.M.; Armstrong, R.J.E.; Zagami, A.S.; Bleasel, A.; et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann. Neurol. 2011, 69, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Titulaer, M.J.; McCracken, L.; Gabilondo, I.; Armangué, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol. 2013, 12, 157–165. [Google Scholar] [CrossRef]
- van Sonderen, A.; Ariño, H.; Petit-Pedrol, M.; Leypoldt, F.; Körtvélyessy, P.; Wandinger, K.-P.; Lancaster, E.; Wirtz, P.W.; Schreurs, M.W.J.; Sillevis Smitt, P.A.E.; et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016, 87, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, A.; Zhan, S.; Wang, L.; Li, L.; Guan, L.; Zhao, X.; Zhang, X.; Wang, Y. Clinical characterization of autoimmune LGI1 antibody limbic encephalitis. Epilepsy Behav. 2016, 56, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gosling, M.; Poll, C.; Westwick, J.; Cox, B. Therapeutic scope of modulation of non-voltage-gated cation channels. Drug Discov. Today 2005, 10, 129–137. [Google Scholar] [CrossRef]
- Olberg, H.; Haugen, M.; Storstein, A.; Vedeler, C.A. Neurological manifestations related to level of voltage-gated potassium channel antibodies. J. Neurol. Neurosurg. Psychiatry 2013, 84, 941–943. [Google Scholar] [CrossRef]
- Paterson, R.W.; Zandi, M.S.; Armstrong, R.; Vincent, A.; Schott, J.M. Clinical relevance of positive voltage-gated potassium channel (VGKC)-complex antibodies: Experience from a tertiary referral centre. J. Neurol. Neurosurg. Psychiatry 2014, 85, 625–630. [Google Scholar] [CrossRef]
- Ariño, H.; Armangué, T.; Petit-Pedrol, M.; Sabater, L.; Martinez-Hernandez, E.; Hara, M.; Lancaster, E.; Saiz, A.; Dalmau, J.; Graus, F. Anti-LGI1-associated cognitive impairment: Presentation and long-term outcome. Neurology 2016, 87, 759–765. [Google Scholar] [CrossRef]
- Navarro, V.; Kas, A.; Apartis, E.; Chami, L.; Rogemond, V.; Levy, P.; Psimaras, D.; Habert, M.-O.; Baulac, M.; Delattre, J.-Y.; et al. Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain 2016, 139, 1079–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocamora, R.; Becerra, J.L.; Fossas, P.; Gomez, M.; Vivanco-Hidalgo, R.M.; Mauri, J.A.; Molins, A. Pilomotor seizures: An autonomic semiology of limbic encephalitis? Seizure 2014, 23, 670–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majoie, H.J.M.; de Baets, M.; Renier, W.; Lang, B.; Vincent, A. Antibodies to voltage-gated potassium and calcium channels in epilepsy. Epilepsy Res. 2006, 71, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.M.; Tai, P.; Dalmau, J.; Wennberg, R. Tonic seizures: A diagnostic clue of anti-LGI1 encephalitis? Neurology 2011, 76, 1355–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steriade, C.; Mirsattari, S.M.; Murray, B.J.; Wennberg, R. Subclinical temporal EEG seizure pattern in LGI1-antibody-mediated encephalitis. Epilepsia 2016, 57, e155–e160. [Google Scholar] [CrossRef]
- Lancaster, E.; Huijbers, M.G.M.; Bar, V.; Boronat, A.; Wong, A.; Martinez-Hernandez, E.; Wilson, C.; Jacobs, D.; Lai, M.; Walker, R.W.; et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann. Neurol. 2011, 69, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Irani, S.R.; Bera, K.; Waters, P.; Zuliani, L.; Maxwell, S.; Zandi, M.S.; Friese, M.A.; Galea, I.; Kullmann, D.M.; Beeson, D.; et al. N-methyl-d-aspartate antibody encephalitis: Temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010, 133, 1655–1667. [Google Scholar] [CrossRef]
- Joubert, B.; Saint-Martin, M.; Noraz, N.; Picard, G.; Rogemond, V.; Ducray, F.; Desestret, V.; Psimaras, D.; Delattre, J.-Y.; Antoine, J.-C.; et al. Characterization of a Subtype of Autoimmune Encephalitis With Anti–Contactin-Associated Protein-like 2 Antibodies in the Cerebrospinal Fluid, Prominent Limbic Symptoms, and Seizures. JAMA Neurol. 2016, 73, 1115–1124. [Google Scholar] [CrossRef]
- Newey CR, S.A. Hyponatremia and Voltage Gated Potassium Channel Antibody Associated Limbic Encephalitis. J. Neurol. Neurophysiol. 2014, 05, 1–4. [Google Scholar] [CrossRef]
- Klein, C.J.; Lennon, V.A.; Aston, P.A.; McKeon, A.; O’Toole, O.; Quek, A.; Pittock, S.J. Insights From LGI1 and CASPR2 Potassium Channel Complex Autoantibody Subtyping. JAMA Neurol. 2013, 70, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Sunwoo, J.-S.; Lee, S.-T.; Byun, J.-I.; Moon, J.; Shin, J.-W.; Jeong, D.-E.; Lee, G.-H.; Jeong, S.H.; Shin, Y.-W.; Jung, K.-H.; et al. Clinical manifestations of patients with CASPR2 antibodies. J. Neuroimmunol. 2015, 281, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Bien, C.G. Value of autoantibodies for prediction of treatment response in patients with autoimmune epilepsy: Review of the literature and suggestions for clinical management. Epilepsia 2013, 54, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Cao, X.; Liu, Q.; Ma, W.; Guo, X.; Liu, X. Clinical features of limbic encephalitis with LGI1 antibody. Neuropsychiatr. Dis. Treat. 2017, 13, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Sandu, I.; Canache, M.; Mihaescu, T.; Chirazi, M.; Sandu, A.V.; Trandafir, L.M.; Luca, A.C.; Checherea, L.E. Influence of NaCl aerosols on the functional characteristics of children. Rev. Chim. (Bucharest) 2015, 66, 60–65. [Google Scholar]
- Viaccoz, A.; Desestret, V.; Ducray, F.; Picard, G.; Cavillon, G.; Rogemond, V.; Antoine, J.-C.; Delattre, J.-Y.; Honnorat, J. Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology 2014, 82, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Lennox, B.R.; Palmer-Cooper, E.C.; Pollak, T.; Hainsworth, J.; Marks, J.; Jacobson, L.; Lang, B.; Fox, H.; Ferry, B.; Scoriels, L.; et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: A case-control study Europe PMC Funders Group. Lancet Psychiatry 2017, 4, 42–48. [Google Scholar] [CrossRef]
- Symmonds, M.; Moran, C.H.; Leite, M.I.; Buckley, C.; Irani, S.R.; Stephan, K.E.; Friston, K.J.; Moran, R.J. Ion channels in EEG: Isolating channel dysfunction in NMDA receptor antibody encephalitis. Brain 2018, 141, 1691–1702. [Google Scholar] [CrossRef] [PubMed]
- Wuerfel, E.; Bien, C.G.; Vincent, A.; Woodhall, M.; Brockmann, K. Glycine receptor antibodies in a boy with focal epilepsy and episodic behavioral disorder. J. Neurol. Sci. 2014, 343, 180–182. [Google Scholar] [CrossRef]
- Carvajal-González, A.; Leite, M.I.; Waters, P.; Woodhall, M.; Coutinho, E.; Balint, B.; Lang, B.; Pettingill, P.; Carr, A.; Sheerin, U.-M.; et al. Glycine receptor antibodies in PERM and related syndromes: Characteristics, clinical features and outcomes. Brain 2014, 137, 2178–2192. [Google Scholar] [CrossRef]
- Martinez-Martinez, P.; Molenaar, P.C.; Losen, M.; de Baets, M.H. Glycine receptor antibodies in PERM: A new channelopathy. Brain 2014, 137, 2115–2116. [Google Scholar] [CrossRef]
- Suleiman, J.; Wright, S.; Gill, D.; Brilot, F.; Waters, P.; Peacock, K.; Procopis, P.; Nibber, A.; Vincent, A.; Dale, R.C.; et al. Autoantibodies to neuronal antigens in children with new-onset seizures classified according to the revised ILAE organization of seizures and epilepsies. Epilepsia 2013, 54, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Piquet, A.L.; Khan, M.; Warner, J.E.A.; Wicklund, M.P.; Bennett, J.L.; Leehey, M.A.; Seeberger, L.; Schreiner, T.L.; Paz Soldan, M.M.; Clardy, S.L. Novel clinical features of glycine receptor antibody syndrome. Neurol. Neuroimmunol. Neuroinflammation 2019, 6, e592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swayne, A.; Tjoa, L.; Broadley, S.; Dionisio, S.; Gillis, D.; Jacobson, L.; Woodhall, M.R.; McNabb, A.; Schweitzer, D.; Tsang, B.; et al. Antiglycine receptor antibody related disease: A case series and literature review. Eur. J. Neurol. 2018, 25, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Ude, C.; Ambegaonkar, G. Glycine receptor antibody-associated epilepsy in a boy aged 4 years. BMJ Case Rep. 2016, . 25, 1290–1298. [Google Scholar] [CrossRef]
- Zuliani, L.; Ferlazzo, E.; Andrigo, C.; Casano, A.; Cianci, V.; Zoccarato, M.; Leite, M.I.; Waters, P.; Woodhall, M.; Della Mora, E.; et al. Glycine receptor antibodies in 2 cases of new, adult-onset epilepsy. Neurol. Neuroimmunol. Neuroinflammation 2014, 1, e16. [Google Scholar] [CrossRef] [PubMed]
- Malter, M.P.; Helmstaedter, C.; Urbach, H.; Vincent, A.; Bien, C.G. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann. Neurol. 2010, 67, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, N.; Roemer, V.; Janzen, D.; Villmann, C. Impaired Glycine Receptor Trafficking in Neurological Diseases. Front. Mol. Neurosci. 2018, 11, 291. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, T.; Sakai, F.; Ide, T.; Monzen, T.; Yoshii, S.; Iigaya, M.; Suzuki, K.; Lynch, D.R.; Suzuki, N.; Hata, T.; et al. Anti-NMDA receptor encephalitis in Japan: Long-term outcome without tumor removal. Neurology 2008, 70, 504–511. [Google Scholar] [CrossRef]
- Niehusmann, P.; Dalmau, J.; Rudlowski, C.; Vincent, A.; Elger, C.E.; Rossi, J.E.; Bien, C.G. Diagnostic Value of N-methyl-D-aspartate Receptor Antibodies in Women With New-Onset Epilepsy. Arch. Neurol. 2009, 66, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Irani, S.R.; Alexander, S.; Waters, P.; Kleopa, K.A.; Pettingill, P.; Zuliani, L.; Peles, E.; Buckley, C.; Lang, B.; Vincent, A. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010, 133, 2734–2748. [Google Scholar] [CrossRef]
- Armangue, T.; Leypoldt, F.; Málaga, I.; Raspall-Chaure, M.; Marti, I.; Nichter, C.; Pugh, J.; Vicente-Rasoamalala, M.; Lafuente-Hidalgo, M.; Macaya, A.; et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann. Neurol. 2014, 75, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Boronat, A.; Sabater, L.; Saiz, A.; Dalmau, J.; Graus, F. GABAB receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology 2011, 76, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Hoftberger, R.; Titulaer, M.J.; Sabater, L.; Dome, B.; Rozsas, A.; Hegedus, B.; Hoda, M.A.; Laszlo, V.; Ankersmit, H.J.; Harms, L.; et al. Encephalitis and GABAB receptor antibodies: Novel findings in a new case series of 20 patients. Neurology 2013, 81, 1500–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogan Onugoren, M.; Deuretzbacher, D.; Haensch, C.A.; Hagedorn, H.J.; Halve, S.; Isenmann, S.; Kramme, C.; Lohner, H.; Melzer, N.; Monotti, R.; et al. Limbic encephalitis due to GABA B and AMPA receptor antibodies: A case series. J. Neurol. Neurosurg. Psychiatry 2015, 86, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Das, A.; Mani, V. Immunotherapy in autoimmune encephalitis-A need for “presumptive” diagnosis and treatment. Neurol. India 2018, 66, 1584–1589. [Google Scholar] [CrossRef] [PubMed]
- Graus, F.; Boronat, A.; Xifro, X.; Boix, M.; Svigelj, V.; Garcia, A.; Palomino, A.; Sabater, L.; Alberch, J.; Saiz, A. The expanding clinical profile of anti-ampa receptor encephalitis. Neurology 2010, 74, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Höftberger, R.; van Sonderen, A.; Leypoldt, F.; Houghton, D.; Geschwind, M.; Gelfand, J.; Paredes, M.; Sabater, L.; Saiz, A.; Titulaer, M.J.; et al. Encephalitis and AMPA receptor antibodies: Novel findings in a case series of 22 patients. Neurology 2015, 84, 2403–2412. [Google Scholar] [CrossRef] [Green Version]
- Joubert, B.; Kerschen, P.; Zekeridou, A.; Desestret, V.; Rogemond, V.; Chaffois, M.-O.; Ducray, F.; Larrue, V.; Daubail, B.; Idbaih, A.; et al. Clinical Spectrum of Encephalitis Associated With Antibodies Against the α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor. JAMA Neurol. 2015, 72, 1163–1169. [Google Scholar] [CrossRef]
- Stanciu, G.D.; Solcan, G. Acute idiopathic polyradiculoneuritis concurrent with acquired myasthenia gravis in a West Highland white terrier dog. BMC Vet. Res. 2016, 12, 111. [Google Scholar] [CrossRef]
- Titulaer, M.; McCracken, L.; Gabilondo Cuellar, I.; Martinez-Hernandez, E.; Graus, F.; Balice-Gordon, R.; Dalmau, J. Clinical Features, Treatment, and Outcome of 500 Patients with Anti-NMDA Receptor Encephalitis (PL01.001). Neurology 2012, 78, PL01-001. [Google Scholar] [CrossRef]
- Dalmau, J.; Lancaster, E.; Martinez-Hernandez, E.; Rosenfeld, M.R.; Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011, 10, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, G.; Jiang, M.D.; Li, L.P.; Su, Y.Y. Analysis of electroencephalogram characteristics of anti-NMDA receptor encephalitis patients in China. Clin. Neurophysiol. 2017, 128, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.E.; Pargeon, K.; Frechette, E.S.; Hirsch, L.J.; Dalmau, J.; Friedman, D. Extreme delta brush: A unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 2012, 79, 1094–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armangue, T.; Titulaer, M.J.; Málaga, I.; Bataller, L.; Gabilondo, I.; Graus, F.; Dalmau, J. Spanish Anti-N-methyl-D-Aspartate Receptor (NMDAR) Encephalitis Work Group Pediatric Anti-N-methyl-D-Aspartate Receptor Encephalitis—Clinical Analysis and Novel Findings in a Series of 20 Patients. J. Pediatr. 2013, 162, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Motta, E.; Gołba, A.; Kazibutowska, Z.; Huć, M.; Stęposz, A. Anti-NMDA receptor encephalitis-case report. Neurol. Neurochir. Pol. 2012, 46, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Gomes Ferreira, M.; Lapresa Alcalde, V.; García Sánchez, M.H.; Hernández Hernández, L.; Doyague Sánchez, M.J. Successful treatment of anti-NMDA receptor encephalitis with early teratoma removal and plasmapheresis: A case report. Medicine (Baltimore) 2018, 97, e11325. [Google Scholar] [CrossRef] [PubMed]
- Gresa-Arribas, N.; Titulaer, M.J.; Torrents, A.; Aguilar, E.; McCracken, L.; Leypoldt, F.; Gleichman, A.J.; Balice-Gordon, R.; Rosenfeld, M.R.; Lynch, D.; et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: A retrospective study. Lancet Neurol. 2014, 13, 167–177. [Google Scholar] [CrossRef]
- Lancaster, E.; Martinez-Hernandez, E.; Dalmau, J. Encephalitis and antibodies to synaptic and neuronal cell surface proteins. Neurology 2011, 77, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.Z.; Ren, H.T.; Yang, X.Z.; Lu, Q.; Peng, B.; Zhu, Y.C.; Shao, X.Q.; Hu, Y.Q.; Zhou, D.; Cui, L.Y. Limbic encephalitis associated with anti-γ-aminobutyric acid b receptor antibodies: A case series from China. Chin. Med. J. Engl. 2015, 128, 3023–3028. [Google Scholar] [CrossRef]
- Kim, T.-J.; Lee, S.-T.; Shin, J.-W.; Moon, J.; Lim, J.-A.; Byun, J.-I.; Shin, Y.-W.; Lee, K.-J.; Jung, K.-H.; Kim, Y.-S.; et al. Clinical manifestations and outcomes of the treatment of patients with GABAB encephalitis. J. Neuroimmunol. 2014, 270, 45–50. [Google Scholar] [CrossRef]
- Irani, S.R.; Gelfand, J.M.; Al-Diwani, A.; Vincent, A. Cell-surface central nervous system autoantibodies: Clinical relevance and emerging paradigms. Ann. Neurol. 2014, 76, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Elisak, M.; Krysl, D.; Hanzalova, J.; Volna, K.; Bien, C.G.; Leypoldt, F.; Marusic, P. The prevalence of neural antibodies in temporal lobe epilepsy and the clinical characteristics of seropositive patients. Seizure 2018, 63, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakpa, O.D.; Reuber, M.; Irani, S.R. Antibody-associated epilepsies: Clinical features, evidence for immunotherapies and future research questions. Seizure 2016, 41, 26–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabrol, E.; Navarro, V.; Provenzano, G.; Cohen, I.; Dinocourt, C.; Rivaud-Péchoux, S.; Fricker, D.; Baulac, M.; Miles, R.; LeGuern, E.; et al. Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice. Brain 2010, 133, 2749–2762. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-J.; Zhou, L.; Jiang, N.; Zhang, N.; Zou, N.; Zhou, L.; Wang, Y.; Cowell, J.K.; Shen, Y. Essential roles of leucine-rich glioma inactivated 1 in the development of embryonic and postnatal cerebellum. Sci. Rep. 2015, 5, 7827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñagarikano, O.; Abrahams, B.S.; Herman, E.I.; Winden, K.D.; Gdalyahu, A.; Dong, H.; Sonnenblick, L.I.; Gruver, R.; Almajano, J.; Bragin, A.; et al. Absence of CNTNAP2 Leads to Epilepsy, Neuronal Migration Abnormalities, and Core Autism-Related Deficits. Cell 2011, 147, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prosser, H.M.; Gill, C.H.; Hirst, W.D.; Grau, E.; Robbins, M.; Calver, A.; Soffin, E.M.; Farmer, C.E.; Lanneau, C.; Gray, J.; et al. Epileptogenesis and Enhanced Prepulse Inhibition in GABAB1-Deficient Mice. Mol. Cell. Neurosci. 2001, 17, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
Antibodies | LGI1 > CASPR2 | GlyR | NMDAR | GABABR | AMPAR |
---|---|---|---|---|---|
Syndrome | LE, epilepsy, and a subacute encephalopathy | Stiff-person syndrom, PERM, limbic encephalitis, cerebellar degeneration, or optic neuritis | Encephalitis | LE | LE and encephalitis |
Main known target | LGI1 and CASPR2 | GlyRα1 | Mainly NR1 and NR2b subunits | GABABR1 | GluA1/2 |
Gender/number of cases | M ˃ F, more than 500 cases | M > F, dozens of patients | F ˃ M, ˃ 1000 patients | M > F, only dozens of patients | F > M, only dozens of cases |
Clinical features and characteristic seizures | Cognitive impairments, seizures, psychiatric and behavioral conditions, sleep abnormalities and autonomic disturbances, three types of epileptic seizures: FBDS, CPS, GTC | Stiffness, rigidity, brainstem disturbance, cognitive involvement, rare but occasional seizures: GTC, CPS | Subacute psychiatric disturbance, consciousness decline, autonomic dysfunction, movement disorders, and hypoventilation, seizures: GTC, SE, CPS | LE with prominent seizures: CPS, GTC, SE | Early or prominent epileptic seizures: GTC, CPS |
EEG: focal or generalized slowing; CSF: ↑ cell count or unmatched oligoclonal bands, except LGI1; encephalitic lesions on MRI | Focal epileptic activity on EEG; encephalitic lesions on MRI and ↑ cell count | A pathognomonic EEG pattern, extreme delta brush; encephalitic lesions on MRI and ↑ cell count | EEG with focal/generalized epileptic activity; encephalitic lesions on MRI and ↑ cell count | EEG with focal epileptic activity; encephalitic lesions on MRI and ↑ cell count or unmatched oligoclonal bands | |
Favorable immune therapy response | Yes | Yes | Yes | Yes | Yes, relapses are common |
Antibody screening | iIHC, RIA, CBA | CBA | iIHC, ELISA, CBA | iIHC, CBA | iIHC, CBA |
References | [3,8,12,36,37,39,40,41,60,77] | [2,16,69,74,75,78] | [18,19,20,27,45,66,67,68,79,80,81,82] | [21,83,84,85,86] | [5,85,87,88,89,90] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanciu, G.D.; Bild, V.; Ababei, D.C.; Rusu, R.N.; Beschea Chiriac, S.I.; Rezuş, E.; Luca, A. Relevance of Surface Neuronal Protein Autoantibodies as Biomarkers in Seizure-Associated Disorders. Int. J. Mol. Sci. 2019, 20, 4529. https://doi.org/10.3390/ijms20184529
Stanciu GD, Bild V, Ababei DC, Rusu RN, Beschea Chiriac SI, Rezuş E, Luca A. Relevance of Surface Neuronal Protein Autoantibodies as Biomarkers in Seizure-Associated Disorders. International Journal of Molecular Sciences. 2019; 20(18):4529. https://doi.org/10.3390/ijms20184529
Chicago/Turabian StyleStanciu, Gabriela Dumitrita, Veronica Bild, Daniela Carmen Ababei, Razvan Nicolae Rusu, Sorin Ioan Beschea Chiriac, Elena Rezuş, and Andrei Luca. 2019. "Relevance of Surface Neuronal Protein Autoantibodies as Biomarkers in Seizure-Associated Disorders" International Journal of Molecular Sciences 20, no. 18: 4529. https://doi.org/10.3390/ijms20184529
APA StyleStanciu, G. D., Bild, V., Ababei, D. C., Rusu, R. N., Beschea Chiriac, S. I., Rezuş, E., & Luca, A. (2019). Relevance of Surface Neuronal Protein Autoantibodies as Biomarkers in Seizure-Associated Disorders. International Journal of Molecular Sciences, 20(18), 4529. https://doi.org/10.3390/ijms20184529