Physical Mapping of Stem Rust Resistance Gene Sr52 from Dasypyrum villosum Based on ph1b-Induced Homoeologous Recombination
Abstract
:1. Introduction
2. Results
2.1. Screening of D. villosum 6VL#3-Specific Molecular Markers
2.2. Development of Segregating Populations for 6V#3L Recombinant Selection
2.3. Initial Screening of Wheat–D. villosum 6V#3L Recombinants with Proximal and Distal Markers
2.4. Analyses of Segment Sizes and Breakpoints of Chromosome 6V#3L
2.5. Physical Mapping of the Gene Sr52
2.6. Validation of New Molecular Markers Linked to Sr52 on the Shortened D. villosum 6V#3L Chromosome Segments
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Molecular Marker Analyses
4.3. Cytogenetic Analyses
4.4. Stem Rust Evaluation
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PCR | Polymerase chain reaction |
FlcDNA | Full-length cDNA |
EST | Expressed sequence tag |
IT | Infection type |
GISH | Genomic in situ hybridization |
ND-FISH | Nondenaturing fluorescence in situ hybridization |
DAPI | 4,6-diamino-2-phenyl indole |
STS | Sequence tagged site |
PBS | Phosphate-buffered saline |
References
- Periyannan, S.; Moore, J.; Ayliffe, M.; Bansal, U.; Wang, X.J.; Huang, L.; Deal, K.; Luo, M.C.; Kong, X.Y.; Bariana, H.; et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 2013, 341, 786–788. [Google Scholar]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Njau, P.; Wanyera, R.; Herrera-Foessel, S.A.; Ward, R.W. Will stem rust destroy the world’s wheat crop? Adv Agron. 2008, 98, 271–309. [Google Scholar]
- Park, R.F. Stem rust of wheat in Australia. Aust. J. Agric. Res. 2007, 58, 558–566. [Google Scholar]
- Flath, K.; Miedaner, T.; Olivera, P.D.; Rouse, M.N.; Jin, Y. Genes for wheat stem rust resistance postulated in German cultivars and their efficacy in seedling and adult-plant field tests. Plant Breed. 2018, 137, 301–312. [Google Scholar]
- Leonard, K.J.; Szabo, L.J. Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol. 2005, 6, 99–111. [Google Scholar]
- Pretorius, Z.A.; Singh, R.P.; Wagoire, W.W.; Payne, T.S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis. 2000, 84, 203. [Google Scholar]
- A Global Wheat Rust Monitoring System: Pathotype Tracker—Where Is Ug99. 2019. Available online: https://rusttracker.cimmyt.org/?page_id=22 (accessed on 10 January 2019).
- Jin, Y.; Szabo, L.J.; Pretorius, Z.A.; Singh, R.P.; Ward, R.; Fetch, T., Jr. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2008, 92, 923–926. [Google Scholar]
- Jin, Y.; Szabo, L.J.; Rouse, M.N.; Fetch, T., Jr.; Pretorius, Z.A.; Wanyera, R.; Njau, P. Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis. 2009, 93, 367–370. [Google Scholar]
- Chen, S.; Guo, Y.; Briggs, J.; Dubach, F.; Chao, S.M.; Zhang, W.J.; Rouse, M.N.; Dubcovsky, J. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theor. Appl. Genet. 2018, 131, 625–635. [Google Scholar]
- Singh, R.P.; Hodson, D.P.; Jin, Y.; Lagudah, E.S.; Ayliffe, M.A.; Bhavani, S.; Rouse, M.N.; Pretorius, Z.A.; Szabo, L.J.; Huerta-Espino, J. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology 2015, 105, 872–884. [Google Scholar]
- Chen, S.S.; Rouse, M.N.; Zhang, W.J.; Zhang, X.Q.; Guo, Y.; Briggs, J.; Dubcovsky, J. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol. 2019. [Google Scholar] [CrossRef]
- Xing, L.; Hu, P.; Liu, J.; Witek, K.; Zhou, S.; Xu, J.; Zhou, W.; Gao, L.; Huang, Z.; Zhang, R.; et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant 2018, 11, 874–878. [Google Scholar]
- Zhang, J.; Jiang, J.; Wang, Y.; Guo, Y.L.; Long, H.; Deng, G.B.; Chen, Q.; Xuan, P. Molecular markers and cytogenetics to characterize a wheat-Dasypyrum villosum 3V(3D) substitution line conferring resistance to stripe rust. PLoS ONE 2018, 13, e0202033. [Google Scholar]
- Qi, L.L.; Pumphrey, M.O.; Friebe, B.; Zhang, P.; Qian, C.; Bowden, R.L.; Rouse, M.N.; Jin, Y.; Gill, B.S. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor. Appl. Genet. 2011, 123, 159–167. [Google Scholar]
- Zhao, R.H.; Wang, H.Y.; Xiao, J.; Bie, T.D.; Cheng, S.H.; Jia, Q.; Yuan, C.X.; Zhang, R.Q.; Cao, A.Z.; Chen, P.D.; et al. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa. Theor. Appl. Genet. 2013, 126, 2921–2930. [Google Scholar]
- Zhang, R.Q.; Feng, Y.G.; Li, H.F.; Yuan, H.X.; Dai, J.L.; Cao, A.Z.; Xing, L.P.; Li, H.L. Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome 6VL of Dasypyrum villosum to bread wheat. Mol. Breed. 2016, 36, 122. [Google Scholar]
- Zhong, G.Y.; Dvořák, J. Evidence for common genetic mechanisms controlling the tolerance of sudden salt stress in the tribe Triticeae. Plant Breed. 1995, 114, 297–302. [Google Scholar]
- Grądzielewska, A. The genus Dasypyrum-part 2. Dasypyrum villosum—A wild species used in wheat improvement. Euphytica 2016, 152, 441–454. [Google Scholar]
- Zhang, R.Q.; Zhang, M.Y.; Wang, X.E.; Chen, P.D. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theor. Appl. Genet. 2014, 127, 523–533. [Google Scholar]
- Zhang, R.Q.; Hou, F.; Feng, Y.G.; Zhang, W.; Zhang, M.Y.; Chen, P.D. Characterization of a Triticum aestivum-Dasypyrum villosum T2VS·2DL translocation line expressing a longer spike and more kernels traits. Theor. Appl. Genet. 2015, 128, 2415–2425. [Google Scholar]
- Zhang, W.; Zhu, X.W.; Zhang, M.Y.; Shi, G.J.; Liu, Z.H.; Cai, X.W. Chromosome engineering-mediated introgression and molecular mapping of novel Aegilops speltoides-derived resistance genes for tan spot and Septoria nodorum blotch diseases in wheat. Theor. Appl. Genet. 2019, 132, 2605–2614. [Google Scholar]
- Riley, R.; Chapman, V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 1958, 182, 713–715. [Google Scholar]
- Griffiths, S.; Sharp, R.; Foote, T.N.; Bertin, I.; Wanous, M.; Reader, S.; Colas, I.; Moore, G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 2006, 439, 749–752. [Google Scholar]
- Gyawali, Y.; Zhang, W.; Chao, S.M.; Xu, S.; Cai, X.W. Delimitation of wheat ph1b deletion and development of ph1b-specific DNA markers. Theor. Appl. Genet. 2019, 132, 195–204. [Google Scholar]
- Mullan, D.J.; Mirzaghaderi, G.; Walker, E.; Colmer, T.D.; Francki, M.G. Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion’ during salinity stress. Theor. Appl. Genet. 2009, 119, 1313–1323. [Google Scholar]
- Danilova, T.V.; Poland, J.; Friebe, B. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content. Theor. Appl. Genet. 2019. [Google Scholar] [CrossRef]
- Mago, R.; Velin, D.; Zhang, P.; Bansal, U.; Harban, B.; Jin, Y.; Ellis, J.; Hoxha, S.; Dundas, L. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor. Appl. Genet. 2013, 126, 2943–2955. [Google Scholar]
- Mago, R.; Zhang, P.; Bariana, H.S.; Verlin, D.C.; Bansal, U.K.; Ellis, J.; Dundas, L. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor. Appl. Genet. 2009, 119, 1441–1450. [Google Scholar]
- Niu, Z.; Klindworth, D.L.; Yu, G.; Friesen, T.L.; Chao, S.; Jin, Y.; Cai, X.; Ohm, J.B.; Rasmussen, J.B.; Xu, S.S. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor. Appl. Genet. 2014, 127, 969–980. [Google Scholar]
- Liu, W.X.; Rouse, M.; Friebe, B.; Jin, Y.; Gill, B.; Pumphrey, M.O. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 2011, 19, 669–682. [Google Scholar]
- Bie, T.D.; Zhao, R.H.; Jiang, Z.N.; Gao, D.R.; Zhao, B.; He, H.G. Efficient marker-assisted screening of structural changes involving Haynaldia villosa chromosome 6V using a double-distal-marker strategy. Mol. Breed. 2015, 35, 34. [Google Scholar]
- Sun, H.J.; Song, J.J.; Xiao, J.; Xu, T.; Wei, X.; Yuan, C.X.; Cao, A.Z.; Xing, L.P.; Wang, H.Y.; Wang, X.E. Development of EST-PCR markers specific to the long arm of chromosome 6V of Dasypyrum villosum. J. Integr. Agric. 2018, 17, 1720–1726. [Google Scholar]
- Zhang, X.D.; Wei, X.; Xiao, J.; Yuan, C.X.; Wu, Y.F.; Cao, A.Z.; Xing, L.P.; Chen, P.D.; Zhang, S.Z.; Wang, X.E.; et al. Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology. Mol. Breed. 2017, 37, 115. [Google Scholar]
- Wang, X.W.; Lai, J.R.; Chen, L.H.; Liu, G.T. Molecular identification for Chinese Spring ph1b mutant. Scientia Agri. Sin. 1998, 31, 31–34. [Google Scholar]
- Patokar, C.; Sepsi, A.; Schwarzacher, T.; Kishii, M.; Heslop-Harrison, J.S. Molecular cytogenetic characterization of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma 2016, 125, 163–172. [Google Scholar]
- Liu, W.X.; Koo, D.; Xia, Q.; Li, C.X.; Bai, F.Q.; Song, Y.L.; Friebe, B.; Gill, B.S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor. Appl. Genet. 2017, 130, 841–848. [Google Scholar]
- Li, H.H.; Jiang, B.; Wang, J.C.; Lu, Y.Q.; Zhang, J.P.; Pan, C.L.; Yang, X.M.; Li, X.Q.; Liu, W.H.; Li, L.H. Mapping of novel powdery mildew resistance gene (s) from Agropyron cristatum chromosome 2P. Theor. Appl. Genet. 2017, 130, 109–121. [Google Scholar]
- Liu, L.Q.; Luo, Q.L.; Li, H.W.; Li, B.; Li, Z.S.; Zheng, Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor. Appl. Genet. 2018, 131, 2359–2370. [Google Scholar]
- Sears, E.R. Genetics society of canada award of excellence lecture an induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 1977, 19, 585–593. [Google Scholar]
- Danilova, T.V.; Friebe, B.; Gill, B.S. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor. Appl. Genet. 2014, 127, 715–730. [Google Scholar] [Green Version]
- Huang, X.; Zhu, M.; Zhuang, L.; Zhang, S.; Wang, J.; Chen, X.; Wang, D.; Chen, J.; Bao, Y.; Guo, J.; et al. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor. Appl. Genet. 2018, 131, 1967–1986. [Google Scholar]
- Du, P.; Zhuang, L.; Wang, Y.; Yuan, L.; Wang, Q.; Wang, D.; Dawadondup; Tan, L.; Shen, J.; Xu, H. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 2016, 60, 93–103. [Google Scholar]
- Li, T.Y.; Liao, K.; Xu, X.F.; Gao, Y.; Wang, Z.Y.; Zhu, X.F.; Jia, B.L.; Xuan, Y.H. Wheat ammonium transporter (AMT) gene family: Diversity and possible role in host-pathogen interaction with stem rust. Front. Plant Sci. 2017, 8, 1637. [Google Scholar]
- Roelfs, A.; Martens, J. An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology 1988, 78, 526–533. [Google Scholar]
Marker Name | Forward Primer (5′–3′) | Reverse Primer (5′–3′) | EST No. | Bin Location | Tm (°C) | Reference |
---|---|---|---|---|---|---|
BE422631/HaeIII | CCCGCACAGTTCACAATAGA | GCAGTTGCACCGTTTTATGA | BE422631 | C-6AL4-0.55 | 59 | Qi et al. (2011) [15] |
BE497099/MspI | TTCGCTCCACCAGGAGTCTA | GTGTCTCGCCATGGAAGG | BE497099 | 6AL8-0.90-1.00 | 60 | Qi et al. (2011) [15] |
6L-4 | TGGCTGATGATTCTGCTTCA | CCACAAGGTTCAGCCAAGTT | BE471191 | 6AL8-0.90-1.00 | 55 | Bie et al. (2015) [32] |
6EST-426 | AAGTAGCAGCAGGTCAATCTGG | ATAGTAGGGGATGGCATTCTGAT | BE406407 | 6AL4-0.55-0.90 | 66 | Sun et al. (2018) [33] |
6L11/MboI | CGGTATCGGGAAGTCCACTA | CGCGACCCTACTCTTCTGAC | BE403950 | 6AL8-0.90-1.00 | 63 | In this study |
CINAU871 | TGGTGGCCAGCAAGTTAAG | TGCTGTTCTTCATTGGGTTG | Ta#S13146969 | 6VL-0.78-0.92 2 | 55 | Zhang et al. (2016) [17] |
CINAU1517 | GAAGCTCTGGAATCATGGCG | CATGCCAGTTGAACTCCAGG | - 1 | 6VL-0.70-0.78 2 | 62 | Zhang et al. (2017) [34] |
CINAU1532 | CTGATGACTGCCAATGAATTTCT | CAATGCCTCTCGACCAACTT | - | 6VL-0.92-1.00 2 | 63 | Zhang et al. (2017) [34] |
Line Name | Type of Translocation | Translocated Chromosome | Breakpoint | Segment Size |
---|---|---|---|---|
1386 | interstitial | Ti6AS·6V#3L-6AL | Long arm FL 0.70 | 70% 6V#3L |
1382 | interstitial | Ti6AS·6V#3L-6AL | Long arm FL 0.78 | 78% 6V#3L |
1385 | interstitial | Ti6AS·6V#3L-6AL | Long arm FL 0.92 | 92% 6V#3L |
1381 | terminal | T6AS·6AL-6V#3L | Long arm FL 0.92 | 8% 6V#3L |
1380 | terminal | T6DS·6DL-6V#3L | Long arm FL 0.78 | 22% 6V#3L |
1392 | terminal | T6AS·6AL-6V#3L | Long arm FL 0.70 | 30% 6V#3L |
WGRC Accession Number | Description | Reference |
---|---|---|
TA3808 | common wheat CS | - 1 |
TA3809 | CS ph1b mutant stock | Sears (1977) [40] |
TA7682 | CS–D. villosum 6V#3 disomic addition line | Lukaszewski,1991 (unpublished) |
TA5618 | CS–D. villosum T6AL·6V#3S translocation line | Qi et al. (2011) [15] |
TA5617 | CS–D. villosum T6AS·6V#3L translocation line | Qi et al. (2011) [15] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Dong, Z.; Ma, C.; Tian, X.; Qi, Z.; Wu, N.; Friebe, B.; Xiang, Z.; Xia, Q.; Liu, W.; et al. Physical Mapping of Stem Rust Resistance Gene Sr52 from Dasypyrum villosum Based on ph1b-Induced Homoeologous Recombination. Int. J. Mol. Sci. 2019, 20, 4887. https://doi.org/10.3390/ijms20194887
Li H, Dong Z, Ma C, Tian X, Qi Z, Wu N, Friebe B, Xiang Z, Xia Q, Liu W, et al. Physical Mapping of Stem Rust Resistance Gene Sr52 from Dasypyrum villosum Based on ph1b-Induced Homoeologous Recombination. International Journal of Molecular Sciences. 2019; 20(19):4887. https://doi.org/10.3390/ijms20194887
Chicago/Turabian StyleLi, Huanhuan, Zhenjie Dong, Chao Ma, Xiubin Tian, Zengjun Qi, Nan Wu, Bernd Friebe, Zhiguo Xiang, Qing Xia, Wenxuan Liu, and et al. 2019. "Physical Mapping of Stem Rust Resistance Gene Sr52 from Dasypyrum villosum Based on ph1b-Induced Homoeologous Recombination" International Journal of Molecular Sciences 20, no. 19: 4887. https://doi.org/10.3390/ijms20194887
APA StyleLi, H., Dong, Z., Ma, C., Tian, X., Qi, Z., Wu, N., Friebe, B., Xiang, Z., Xia, Q., Liu, W., & Li, T. (2019). Physical Mapping of Stem Rust Resistance Gene Sr52 from Dasypyrum villosum Based on ph1b-Induced Homoeologous Recombination. International Journal of Molecular Sciences, 20(19), 4887. https://doi.org/10.3390/ijms20194887