Next Article in Journal
Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with this Strain Conidia
Next Article in Special Issue
Clinical and Genetic Analysis of a European Cohort with Pericentral Retinitis Pigmentosa
Previous Article in Journal
Cichorium intybus L. Extract Suppresses Experimental Gout by Inhibiting the NF-κB and NLRP3 Signaling Pathways
Previous Article in Special Issue
Comparative Transcriptomic and Lipidomic Analyses of Human Male and Female Meibomian Glands Reveal Common Signature Genes of Meibogenesis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Functional Genomics of the Retina to Elucidate its Construction and Deconstruction

by
Frédéric Blond
and
Thierry Léveillard
*
Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2019, 20(19), 4922; https://doi.org/10.3390/ijms20194922
Submission received: 16 September 2019 / Accepted: 1 October 2019 / Published: 4 October 2019

Abstract

:
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.

1. Introduction

The vertebrate retina is composed of three layers of neurons, two layers of synapses and Müller glial cells which stretch radially across the thickness of the retina [1]. The outer nuclear layer contains the cell bodies of photoreceptor cells (rods and cones), the inner nuclear layer contains the cell bodies of the bipolar, horizontal and amacrine cells and the ganglion cell layer contains the cell bodies of the retinal ganglion cells and displaced amacrine cells. In contrast, the invertebrate retina is composed of regular hexagonal arrays, the ommatidia, each containing eight types of photoreceptors R1 to R8 [2,3]. Invertebrate eyes have microvilli-based rhabdomeric photoreceptors while vertebrate have cilia-based outer segment photoreceptors. These two fundamental types of photoreceptors have evolved unique structures to expand their apical membrane, an adaptation that help them to better accommodate their phototransduction machinery [4].
The eye and its photosensitive component, the retina, have fascinated evolutionary biologists for more than a century. The eye was perceived as a challenge to the theory of evolution due to its extreme perfection and complexity. Charles Darwin wrote that it is inconceivable to our imagination that the formation of a structure as perfect and complex as the eye could result from natural selection even if this may have been really achieved through numerous inherited gradations useful to animals [5]. Some authors proposed that the eyes of vertebrates and invertebrates arose independently, but the discovery that the transcription factor PAX6 serves as a master control gene for eye morphogenesis in insects and mammals finally demonstrated that the various eye-types are built with the same genetic tools, indicating their common phylogenetic origin [6,7].
The evolution of vision can be traced back to its putative origins in cyanobacteria a prokaryotic eubacteria found in the oldest known fossils on Earth, three and a half billions years ago. Cyanobacteria can sense the light–dark cycle and maintain oscillatory behaviors even under constant environmental conditions. This timing mechanism, called the circadian clock, involves in eukaryotes biochemical oscillators and multiple intertwined transcription/translation feedback loops. Cyanobacteria respond to light by phototactic motility behavior, a movement of a whole organism toward the light, or inversely avoidance of light [8]. Interestingly, in cyanobacteria, light perception does not rely on opsins but on redox-sensitive proteins of the thioredoxin-like superfamily, indicating that the circadian clock senses the cellular redox state rather than light intensity [9]. Peroxiredoxins, a class of highly conserved redox proteins that undergo 24-h redox cycles in both the unicellular green alga and in the enucleated human red blood cells, suggest that light perception was originally dependent upon that type of posttranslational oxidoreduction mechanisms [10,11]. In the animal kingdom, the discharge by cnidocytes, specialized photosensitive cells that the cnidarian Hydra vulgaris use for capturing prey, is regulated by light and opsin-mediated phototransduction [12]. Other cnidarians have sophisticated eyes with photoreceptor cells that transmit the light for perception to secondary neurons, representing thus the first stages of brain evolution. Therefore, we can assume that the eye as a sensory organ has evolved with the brain, providing sensory information subsequently processed by the brain. Consciousness has been suggested to have arisen from the evolution of light perception into vision [13]. It is not surprising that the evolution and the development of photoreceptors are a matter of interest for many biologists [14]. The present review illustrates the power of functional genomics toward our understanding of the retina illustrated by examples from studies on photoreceptor cells.

2. Retinal Development is Controlled by a Complex Gene Network

The power of drosophila genetics combined with microscopic examination of the phenotype of the drosophila eye has formed the basis of very powerful genetic screens. A block in photoreceptor cell differentiation triggers the roughening of the external eye surface [15]. Son of sevenless (SOS) was identified based of the ability of SOS alleles to suppress the eye phenotype of the sevenless mutant that carries an inactive receptor tyrosine kinase gene. Sevenless is essential for R7 photoreceptor differentiation [16]. SOS was further shown to be the missing link between two major classes of proto-oncogenes, the receptor tyrosine kinases and the ras family of GDP/GTP-binding proteins [17].
An integrated model of retinal cell-fate in the vertebrate retina was obtained using in vivo lineage tracing using retroviral vectors and autoradiographic tracers [18,19,20]. Numerous transcription factors of the basic helix-loop-helix (bHLH) family contribute to retinal cells fate and differentiation. Cone rod homeobox (CRX), an OTX-like homeobox gene was identified independently by two groups by degenerate RT-PCR or yeast one-hybrid screening as a gene important for photoreceptor differentiation [21,22]. The paired-type homeodomain transcription factor OTX2, a key regulator of the photoreceptor lineage, provides a necessary, but not sufficient signal to induce the photoreceptor cell fate. Early expression of CRX in postmitotic photoreceptor precursors is regulated by OTX2 [23]. Subtractive cDNA cloning led to the identification of neural retina leucine zipper protein (NRL), another class of transcription factors involved in photoreceptor differentiation [24]. NRL is required for rod photoreceptor development and regulates the expression of the orphan nuclear receptor NR2E3 [25,26]. The differentiation of cone photoreceptors relies on the action of the thyroid hormone receptor, a nuclear receptor regulated by binding to its ligand the thyroid hormone [27]. Thyroid hormone from extra ocular tissues is required for producing medium-wave cones and represses short-wave cone fate. Human infants with low thyroid hormone have an increased incidence of color vision defects. The developmental program of the retina depends on cell-autonomous and non-cell autonomous cues, but recent works on induced pluripotent cells demonstrates that the genetic program is robust enough to generate retinal organoids in vitro [28]. Interestingly, retinoblastoma, a juvenile eye tumor, originates from cone precursors [29,30,31]. The retinoblastoma susceptibility gene (RB1) was the first tumor suppressor gene identified [32,33,34]. The RB1 protein limits the transcription of cell cycle genes, primarily via regulation of the E2F transcription factor [35].
During the construction of the retina (Figure 1A,B), transcription factors are apparently not the only architects since programmed cell death is required to fine-tune the numerical balance between photoreceptors and other retinal cell types as shown by the role of ciliary neurotrophic factor (CNTF) [36]. The access of transcription factors to their recognition elements onto DNA is in addition regulated by epigenetic mechanisms [37,38]. The epigenetic control of gene regulation during retinal development is mediated by DNA methylation and posttranslational modifications of histones [39,40]. Methylation of the fifth carbon position of the cytosine residue in a 5’-CpG-3’ dinucleotide (CpG) confers a repressed state to the chromatin associated with the inhibition of gene expression [41]. Histones compact the DNA into nucleosomes and interfere with the accessibility of transcriptions factors to their recognition elements [42,43]. Assembly/disassembly of nucleosomes relies on the activity of two antagonistic class of enzymes, the histone acetylases and deacetylases [44]. Acetylation removes the positive charge on the histones, thereby decreasing the interaction of the N-termini of histones with the negatively charged phosphate groups of DNA. Histone acetylation denudes the DNA and consequently makes DNA-responsive elements more accessible to transcription factors. Histone deacetylase 4 and 1 are essential for rod differentiation [45,46]. Histone deacetylases of class III use NAD+ as a co-factor to deacetylate acetyl lysine residues of protein substrates, among which histones. Consequently, epigenetic control is tributary to the metabolism of the cell since NAD+ is produced among other sources by the reduction of pyruvate to lactate by lactate dehydrogenase A [47]. This is not a unique example of the intervention of cell metabolism in retinal development since endogenous lipid peroxidation produces secondary messengers that regulates retinal cell differentiation by redox signaling in zebrafish [48].

3. Inherited Retinal Diseases Caused by Photoreceptor Degeneration

A certificate of authenticity of the genes regulating retinal developmental is indirectly provided by their implication in inherited retinal dystrophies [49,50,51]. Inherited retinal degenerations are a group of genetic diseases in which a variety of mutations lead to vision loss and often blindness. The disease causing mutations often occur in genes that are critical for retinal function, leading to photoreceptor cell death (Figure 1B,C) and associated vision loss [52,53]. The number of new loci found to cause inherited retinal degenerations is increasing at a rate that matches the identification of causing genes, so that the actual total number of loci is 307, with 271 identified causative genes (https://sph.uth.edu/retnet/). Among the most common forms of such diseases, retinitis pigmentosa affects nearly 2 million people worldwide [54,55]. In retinitis pigmentosa, there a progression from night blindness which originates from the death of rod photoreceptors by apoptosis to the dysfunction of cone photoreceptors concentrated at the center of the retina, the fovea. This is a secondary event that can lead to complete blindness [56]. On the other hand, congenital stationary night blindness does not lead to the loss of central vision since rod bipolar cells are non-functional, but viable [57]. Cone rod dystrophies are characterized by primary cone involvement or by concomitant loss of both types of photoreceptors [58]. Stargardt disease causes progressive degeneration of the macula at the center of the retina [59]. Leber congenital amaurosis which affects simultaneously cones and rods is the most severe form of inherited retinal dystrophies [60,61]. Patients suffering of achromatopsia have little or no cone function and total absence of color perception [62,63,64]. These diseases constitute the major non-syndromic inherited retinal diseases [65]. Within the syndromic forms, Usher syndrome, a prevalent cause of inherited deafness also causes retinitis pigmentosa [66,67]. Bardet-Biedl syndrome is a ciliopathy characterized by retinal dystrophy along with obesity, polydactyly, renal failure, hypogonadism and cognitive impairment [68,69]. The genes that cause the disease participate in the formation of a stable protein complex named the BBSome involved in vesicular trafficking to the photoreceptor cilium [70].
The genetics of inherited retinal degeneration is very complex as illustrated here by the case of retinitis pigmentosa (RP) (Table 1). We examined the expression data of the genes known to cause RP and used literature searches for refinement. Expression data include the kinetics of the transcriptome of retina of the retinal degeneration-1 (rd1) mouse [71] as well as the transcriptome of human retinal detachment [72], the mouse tissue expression profiling publicly available and sequences from normalized libraries [73]. Among the retinitis pigmentosa genes whose profile could be examined, the rod-like expression pattern accounts for 45%. It should be noticed that because of the high proportion of rods (97%) over cones (3%) in the mouse retina, the expression profiles do not distinguish genes expressed specifically by rods (e.g., RHO) from those expressed by rods and cones (e.g., RPGR). Forty-eight percent of the genes examined from surgical specimens of human retinal detachment with both rod and cone death (PR-death), displays a similar rod-like expression pattern, confirming what observed in the rd1 retina. We next considered that some of the rare genes are actually not carrying disease-causing mutations. We excluded genes with rare alleles, leaving us with 45 genes (50%) with a report of frequency of mutations in retinitis pigmentosa. Those 45 genes account for 53% of autosomal dominant, 45% autosomal recessive and 66% X-linked RP. Twenty-nine out of 40 genes whose profile could be examined, rod-like expression patterns account for 73%. Altogether and as expected, the listed genes carrying mutations causing retinitis pigmentosa is biased toward genes expressed by photoreceptors (rods and cones). Virtually all genes involved in the phototransduction cascade and in the vitamin A cycle carry mutations in individual patients suffering of inherited retinal degenerations [74,75]. Considering Leber congenital amaurosis, the only form of inherited retinal degeneration treated by corrective gene therapy [76,77,78,79,80,81], the RPE65 gene was identified as a gene encoding for a protein of 65 kDa expressed specifically by the retinal pigmented epithelium [82]. Thereby, both biologists interested in retinal development and geneticists working on inherited retinal degenerations are focusing their attention on genes specifically expressed by retinal cells, with a special emphasis on photoreceptors.

4. Genomics and the Data Explosion

Many of the retinal genes of interest described above were identified in the pre-genomic times, but all the scientific community of biologists were eager to get the DNA script of the human and mouse genomes to facilitate their understanding of any biological scenarios under their scrutiny. Sequencing the entire human genome was a tedious task and its achievement has been compared to man’s first steps on the moon fifty years ago. Once the technological barrier had been overcome, the sequencing of other genomes became greatly facilitated [218,219]. Comparative genomics, the first field of research emerging from the sequencing of genomes has validated the unity of life and has provided robust arguments in favor of Darwin’s theory of evolution by natural selection [220]. Massive DNA sequencing has also spilled over to other disciplines, such as ecology and microbiology, known as ecogenomics and metagenomics. These sciences rely on the identification of individual species through their genome sequence in complex specimens of zooplankton or gut microbiome [221,222]. Genome sequencing is making an essential contribution to anthropology deciphering the complex admixture of ancestral Homo species and their migrations in prehistoric times [223,224,225,226,227]. Even ancient history related into the Bible has been studied by genomics showing the Philistines genome carries the signature of a population from southern Europe [228]. Comparative genomics addresses also the evolutionary origin of vision and of the central nervous system in the first animals, a debate that is far from closed [229,230,231,232,233]. Ctenophora (comb-jelly) and Porifera (sponge) are today the two candidates to the position of closest phylum to the first animal [234,235].
The exponential increase in the amount of data generated by genome sequencing has given birth to bioinformatics, later on to systems biology and nowadays to the concept of big data. The size of the genome of the entire human population is 2.42 × 1019 base pairs (bp), to which is added 4.15 × 1024 bp of the human microbiome. Biological sciences have an asymptotically reaching problem similar to that of the most powerful particle accelerator, the large hadron collider (LHC) of the European Council for Nuclear Research (CERN). LHC manages to store the data using the grid built on the technology of the World Wide Web (invented at CERN in 1989). Collisions in the LHC produce too much data to record, so they are filtered to retain only the interesting ones for analysis. Will this filtering be ethic for genomic data? This is an eminently complex question that will not be resolved here.
The retina is not in rest in this revolution. Age related macular degeneration (AMD) affects a region of the retina, the macula that is not present in non-primate species, and consequently a rodent model of AMD is still missing. This led researchers to concentrate their efforts on the genetic predisposition of AMD. AMD is a polygenic and polyfactorial disease as opposed to Mendelian inherited retinal degenerations, such as retinitis pigmentosa. Family and twin studies have demonstrated that the susceptibility for AMD is under the influence of the genome. Age and a positive family history of AMD are the two strongest risk factors for AMD. It has been shown that an individual with a sibling or a parent with AMD is 12–27 times more susceptible than someone from the general population to develop AMD. Geneticists have successfully employed the genetic variations in the sequence of the human genome among individuals to map loci that may contain genes carrying risk alleles for polygenic diseases [236]. Single nucleotide polymorphisms (SNPs), spread all over the genome, are used as genetic markers of causative alleles since alleles at a given locus are in linkage disequilibrium [237]. Genetics association studies search for difference in the frequency of each allele of SNP between a population of patients and another population of presumably healthy subjects. A difference signs the presence of a causative allele in a gene located in that locus. Genome wide association studies (GWAS) have led to the identification of several AMD susceptibility genes [238]. Variants in the complement factor H (CFH) gene on chromosome 1q32 have been associated with an increased risk for AMD [239,240,241]. These findings imply that the innate immune system may play a significant role in AMD pathogenesis. Several additional complement genes have also been associated with AMD reinforcing the role of the innate immune system in AMD pathology. One should notice that the analysis is performed without the possibility to follow the segregation of the risk alleles in a pedigree as done for Mendelian diseases. This is reflected in the difficulties that geneticists encounter in searches for the causal variants. Initial reports on CFH gene focused on the Y402H coding variant that alters a single amino acid in the CFH protein, but additional SNPs shows higher risk [242]. For the second major locus contributing to AMD, ARMS2/HTRA1, it has not yet been possible to determine if the AMD susceptibility results from the variants in the ARMS2 or the nearby HTRA1 gene or both [243,244]. A more complete picture of AMD was obtained with more statistical power by increasing the number of genotyped individuals by the Age-related Macular Degeneration Genomics Consortium (IAMDGC), coordinated by the NEI (http://amdgenetics.org/). IAMDGC performed a meta-analysis of the results of 14 GWAS representing > 17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. The meta-analysis examined 2,859,744 imputed and genotyped SNPs [245]. This massive approach has paid off and resulted in clear evidence for association in 19 regions of the genome each with at least one SNP with p < 5 × 10−8. Among these loci, 12 were previously associated with AMD, whereas seven were newly identified by the consortium [246]. The knowledge that has been gained was substantial. In an effort to identify AMD causative alleles, IAMDG consortium genotyped 16,144 patients and 17,832 controls for rare coding variations (exonic content) and variants relevant to AMD. Fifty-two independently associated common and rare variants, among which the lactate transporter gene SCL16A8, distributed across 34 loci were identified [247,248]. Overall, these variants are estimated to account for 40-60% of the genetic contribution to disease risk. Today, AMD susceptibility genes and environmental predictors (smoking, nutritional,…) are refined to target high risk individuals for heightened awareness, more frequent surveillance and clinical examinations, as well as identification of high-risk individuals for inclusion in clinical trials of novel therapies [249]. The therapeutic perspectives of this avenue of genetic research and the molecular mechanisms by which identified risk alleles cause increase disease risks are areas of intense study by retinal biologists.

5. Retinal Specific Expression Patterns Revealed by Transcriptomics

As illustrated above by examples in the field of research on the retina, both developmental biologists and human geneticists have a strong interest in genes with retina- and photoreceptor-restricted expression profiles. The selection is generally achieved by comparing global gene expression between specimens that represent two extreme conditions. This was originally done by subtractive and differential cloning using the degenerated rd1 retina [250]. The concept evolved thereafter to cDNA arrays and to serial analysis of gene expression (SAGE) [251,252]. Rapidly the need for standardization became clear, resulting in part in the increased use of commercial oligo-arrays [72,112,253,254,255]. Each experiment generates data that are beyond what could be reported in a publication, so the research community created databases to score and exchange the increasing body of transcriptomic data. Examples include the Gene Expression Omnibus [256] ArrayExpress [257] and the ENCyclopedia Of DNA Elements (ENCODE) databases. The major shortfall in the application of ENCODE data for ocular research is in the relative paucity of eye tissue used for analysis [258]. The US Food and Drug Administration examined the expression array technology and concluded that the measurements were highly reproducible within and across the platforms, allowing the development, among others, of new prognostic and predictive tests for breast cancer [259,260]. The existence of numerous rodent models of inherited retinal degeneration led researchers to conduct comparisons between the transcriptomes of several models (Table 1). This includes spontaneous models, as the rd1 mouse [261], retinal degeneration induced by light damage [262] or hypoxia [263], models obtained by inactivation of the retinal genes by homologous recombination [112,264] or by random integration of a dominant mutation in the rhodopsin gene [111,265], or even using conditional inactivation in a specific retinal cell type [266]. A model of eye morphogenesis was constructed using gene editing by Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9) [267]. The output of these comparisons is a list of common pathways underlying retinal degenerations and another list of genes pointed out by their specific expression by a subset of retinal cells [268,269]. Retinobase was developed as a web-based interface to provide efficient access to the global expression profiling of retinal genes from different organisms under various conditions [270,271]. The data can be visualized into radars that are very quickly interpreted because of our instinctive ability to recognize objects even when their form slightly change [272].
Soon after, retinal biologists got interested in gene expression in terms of alternative splicing because this phenomenon alters dramatically the function of the encoded proteins [273]. The motivation came also from the existence of mutations at the origin of inherited retinal degeneration in four genes encoding splicing factors [274] (Table 1). Attempts were made to accommodate microarray in the form of exon array, but the scientific community shifted rapidly to the technology of RNA sequencing (RNAseq) [275,276,277]. An advantage of RNAseq over microarray is that it counts the number of reads of each RNA species, while the microarray one scores the intensity of the signal captured after hybridization to a probe [278]. RNAseq also identifies unknown RNA species, like long noncoding RNAs [279]. Noncoding RNAs were known for a long time. Small nuclear ribonucleoproteins (snRNPs) are RNA-protein complexes that form the spliceosome. Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guide chemical modifications of other RNAs, as the ribosomal RNAs. Long non-coding RNAs (lncRNAs) participate in the regulation of gene expression at the transcription level and though epigenetic mechanisms. Both self-splicing RNAs (ribozymes) and microRNAs (miRNA) have the ability to silence gene expression [280,281,282,283]. The latter led retinal biologists to use them in a way to reduce the expression of dominant mutant rhodopsin proteins to establish a treatment for retinitis pigmentosa [284]. The sequence of artificial ribozymes is designed to target specifically the causative mutation among many others existing in the same gene (e.g., RHO). This restriction led other researchers to develop a broader approach using engineered miRNA, or small interfering RNA (siRNA) to suppress the expression of any dominant mutations in the rhodopsin gene by RNA interference and to replace the normal copy of that gene by its reintroduction using the same vector [285].
Biologists working on retinal development are constantly looking for cell specific markers that can be used to specify retinal cell fate during development to reveal its transcriptional code [269]. Various methods have been used to isolate total RNA from single cells of the retina including fluorescence-activated cell sorting [254,286]. The incorporation of tags to individual cells and massive parallel sequencing that is now used to avoid the need of single cell isolation [287,288,289,290,291]. This led to a comprehensive characterization of the gene regulatory networks that participate in initiation of neurogenesis, in developmental competence, and specification and differentiation of each major retinal cell type. This novel technology that captures single cell trajectory during retinal differentiation is very promising.

6. The Function of Retinal Proteins Assessed Using Proteomics

The assembly of genomes and their annotation allow the in silico translation of putative messenger RNA into proteins and deduce their molecular weight. By digesting a complex mixture of proteins by an endoproteinase, as trypsin, the individual mass of each small peptide of this collection can be accurately measured by mass spectrometry. By comparing the masses of these tryptic peptides with the in silico-digested proteins from the genome you can identify proteins in any protein mixture, even of proteins that have not yet been characterized [292,293]. Biologists working on the retina soon got interested in proteomics since the action of the genes involves their transcription into mRNAs that are then translated into proteins. The first successful attempts used the separation of individual proteins using two-dimensional (2D) gel electrophoresis [294]. This novel field of research is quite dependent on the construction of repository database and on bioinformatics tools such as those provided by the PRoteomics IDEntifications (PRIDE) database [295,296]. The proteome of the human eye is recognized as a project on its own [297].
Beside this repertoire of proteins expressed in the eye, differential proteomic analysis was quite successfully applied to the physiopathology of inherited retinal, degenerations by comparing disease specimens to healthy ones [298,299]. The approach was more rarely applied to retinal development most likely because the morphogens as the transcription factors, act at a low concentration and are difficult to detect by mass spectrometry [300,301,302]. One can further argue that transcriptomics is best suited to analyze developmental processes where the organ is constructed, but proteomics is a better option to study degenerative processes, during organ deconstruction. Indeed, while the developmental program starts by the transcription of a genetic program encoded by the genome, degeneration is the result of a genetic deficit that is initially perceived by the proteome. In the first studies, the tryptic peptides were mobilized after getting charged using matrix-assisted laser desorption/ionization and identified by the time-of-flight (MALDI-TOF) of the corresponding ions in a mass spectrometer. The only theoretical limitation comes from the fact that two amino-acids leucine and isoleucine cannot be distinguished because they have an identical mass. Nevertheless, tandem mass spectroscopy (MS/MS) is a real technological improvement since the sequence of each tryptic peptide can be identified after its fragmentation by collision [303,304]. This novel protocol became rapidly robust enough to replace the separation of proteins by 2D gels by a semi-purification by liquid chromatography (LC-MS/MS) [305]. The analysis was applied to clinical specimens of retinoblastoma [306,307] and this approach permitted the identification of many clinical biomarkers [308,309,310,311]. The approach was applied to retinal cell culture [312], but more significantly to subcellular compartments as the photoreceptor cilium and its outer segment [313,314]. Methods were also developed to analyze the distribution of proteins over the entire thickness of the retina [315,316].
Initially, proteomics was mainly semi-quantitative, the results were pointing to proteins that were more abundant in one of two groups of specimens by differential analysis, but the need for quantitative data was pressing. Diverse protocols were developed with the use of non-radioactive isotopes that allows the discrimination of tryptic peptides of identical sequences by the difference in their mass. One such approach relies on the incorporation of these isotopes in cell culture as the stable isotope labeling by amino acids in cell culture (SILAC) [317,318]. Another approach is based on the covalent labeling of the N-terminus and side chain amines of tryptic peptides with tags of varying isotopic masses after treating the specimens to get quantitative values, as for isobaric tags for absolute and relative quantification (iTRAQ) [319]. A real absolute quantification can be obtained by the use of an internal isotope-labeled peptide in a method called multiple reaction monitoring (MRM) [320].
Proteomics, which is a technology that does not use an amplification step as polymerase chain reaction (PCR), captures the most abundant protein of the cells, among which are the enzymes of the cellular metabolism. Metabolomics is an approach that measures the concentration of metabolites in a given specimen and was also applied to retinal specimens to decipher their metabolic status [321,322,323,324,325]. Interestingly, certain metabolites can be visualized in situ by mass spectrometric imaging [326,327]. Metabolomics belongs to functional genomics in a sense that it provides deep investigation of the content of metabolites in a specimen but it does not emerge from genomics since most of the metabolites were identified in the pre-genomic time by the use of biochemistry and radioactive tracers [328]. One exception comes from the chemical diversity of plants with their ~200,000 secondary metabolites, by far more numerous than for animal species. This goes beyond the scope of this review but it is interesting to notice than in that specific case, the sequence of the genome can be used as a valid information [329].
It is certainly thanks to the fact that mass spectrometry is capable of identifying unambiguously most of the protein content of a protein fraction of interest that proteomics became widely used by retinal biologists to identify protein-protein interactions. The diverse methods used to purify these fractions rely mostly on the question addressed. The use of an antibodies against the bait protein is an appropriate choice for co-immunoprecipitation [71,330,331,332,333] and immunoaffinity purification [334,335,336]. Alternatively, the bait protein is immobilized and the proteins interacting with it are co-purified by affinity chromatography [337]. In other circumstances, the interacting proteins are identified from a list of candidates that share the same mobility after gel electrophoresis. This is the case of protein overlay assay and far-western blotting [71,338]. Proteomics has advantageously replaced yeast two-hybrid screening as a method of choice when looking for protein interactors [339,340]. The approach is becoming so robust than proteomics is now used to identify proteins that are located in the vicinity of a protein bait using proximity-dependent labeling methods for proteomic profiling [341]. These interactions define protein regulatory modules that participate in cell signaling.
Since it is clear to all biologists that cell signaling is regulated at the post-translational level, researchers got interested by post-translational modifications [342]. The complete list of physiologically relevant modifications of amino acids of proteins is quite large so we will concentrate here only a limited number of examples. We have mentioned above histone acetylation/deacetylation that is amenable to proteomic studies [343]. Phosphorylation is taking a central place in cell signaling with hundreds of kinases and phosphatases that act in cascade to control cellular activity by the post-translational modifications of three amino acids: serine, threonine and tyrosine of retinal proteins [344,345,346] and retinoblastoma [347]. Methods have been developed to enrich phosphopeptides and to facilitate their characterization such as immobilized metal affinity chromatography (IMAC) [348]. Negatively charged phosphate groups of peptides from phosphoproteins interact with positively charged metal ions (Fe3+, Ga3+, and Al3+) and this interaction makes it possible to enrich phosphorylated peptides from rather complex peptide samples. Phosphoproteomics is still a method that is more time consuming than the use of antibodies raised against phosphopeptides, but it is much more precise.
Another type of post-translational modifications is generated by reactive oxygen species (ROS). Due to the probable involvement of ROS in neurodegenerations, which include the inherited retinal degenerations and aging related diseases, such as AMD, a plethora of studies relating damages of oxidation on macromolecules in the pathology of the retina have been published. Retinal proteins can be modified irreversibly by 4-hydroxynonenal, a product of lipid peroxidation [349]. Carboxyethyl pyrrole, a unique oxidation fragment of docosahexaenoic acid forms adducts with retinal proteins in AMD more than in the healthy retina [350]. Another type of oxidations became the focus of retinal biologists since they are reversible [351,352,353]. Cysteines and methionines can be reversibly oxidized, and their redox status is involved in cell signaling. In recent years, the role of cysteine residues as redox sensors in cell signaling pathways has gained increasing attention. Proteomic studies aimed at large-scale identification of proteins with modified cysteines have provided tools for unraveling new redox-regulated processes, a domain named disulfide proteomics or redox proteomics [354]. The reactive nature of cysteine thiols is often an experimental challenge when determining the in vivo cysteine oxidation state of proteins. In biological samples, postlysis thiol-disulfide exchange may lead to misinterpretations of data. For example, if molecular oxygen is present in the buffers, oxidation of C-SH may occur during isolation. Hence, one of the critical steps in redox biology is to trap the thiol-disulfide status. This is achieved by a direct alkylation producing a first fraction of stable thiol derivatives from the reduced thiols within the protein extract. The oxidized thiols are not reactive to this alkylation. Post-alkylation the oxidized thiols are reduced, and then alkylated producing a second fraction of stable thiol derivatives. The challenge is to distinguish the two fractions. Initially, this was achieved by using different fluorescence probes visualized after separation by 2-D difference gel electrophoresis (Redox DIGE) [355]. But, as stated above, gel electrophoresis has many potential problems and methods relying on differential mass tags have imposed themselves, as isotope coded affinity tag (ICAT) [356,357,358]. To “freeze” the thiol state of the proteins before alkylation, proteins are precipitated using trichloroacetic acid. The widely used alkylating reagents for blocking free C-SH are 2-iodoacetamide (IAM) or N-ethylmaleimide (NEM) and the resulting tryptic peptides identified and quantified in a relative manner by mass spectrometry. Two distinct isotope of the alkylating agent can also be used [359]. The method has not yet been successfully applied to the retina but efforts to develop robust protocols are ongoing.

7. Conclusions

Retinal biologists are now immerged in the post-genomics area. Questions concerning the development of the retina and its physiopathology are becoming more and more complex and the results of each investigation generally contain data that is far more complete than what was the focus of each study. It is of great interest to the community of biologists to keep track of these data that could be analyzed posteriorly by experts in their respective field. This objective is not trivial due to the exponential growth of the volume of data generated by a single functional genomics experiment. Biology is being confronted by the same trend than is also challenging the society: the increase in the amount of information is not proportional to our understanding of it. Nevertheless, functional genomics is a great leap forward to the future.

Author Contributions

F.B. and T.L.; writing-review and editing.

Funding

This research was funded by Inserm, Sorbonne University, the Agence Nationale pour la Recherche (Labex Lifesenses) and the Fondation pour la Recherche Médicale (FRM).

Acknowledgments

We thank Naomi Berdugo, Raymond Ripp and Olivier Poch for their contributions to the development of the functional genomics platform Knowledge Base for Sensory Systems (KBaSS http://kbass.institut-vision.org/KBaSS/) that was used to analyze the expression of genes of interest. We greatly appreciated the contribution of Donald J. Zack to the edition of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

AMDAge-related macular degeneration
ARMS2Age-Related Maculopathy Susceptibility 2
bHLHBasic helix-loop-helix
CERNConseil européen pour la recherche nucléaire - European Organization for Nuclear Research
CFHComplement factor H
CNTFCiliary neurotrophic factor
CpGCytosine-phosphate-guanine
CRXCone rod homeobox
GDP/GTPGuanosine di/tri phosphate
GWASGenome-wide association study
HTRA1HtrA Serine Peptidase 1
LHCLarge hadron collider
NAD+Nicotinamide adenine dinucleotide
NRE2E3Nuclear receptor subfamily 2, group E, member 3
NRLNeural retina leucine zipper
OTXOrthodenticle homeobox
PAX6Paired Box 6
RB1Retinoblastoma 1
rd1Retinal degeneration-1
RHORhodopsin
ROSReactive oxygen species
RPRetinitis pigmentosa
RPERetinal pigmented epithelium
RPE65Retinal Pigment Epithelium-Specific 65 KDa Protein
RPGRRetinitis pigmentosa GTPase regulator
SLC16A8Solute Carrier Family 16 Member 8
SOSSon of sevenless

References

  1. Kolb, H. Simple Anatomy of the Retina. In Webvision: The Organization of the Retina and Visual System; Kolb, H., Fernandez, E., Nelson, R., Eds.; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 1995. [Google Scholar]
  2. Wolff, T. Pattern formation in the Drosophila retina. Dev. Drosoph. Melanogaster 1993, 2, 1277–1325. [Google Scholar]
  3. Courgeon, M.; Desplan, C. Coordination of neural patterning in the Drosophila visual system. Curr. Opin. Neurobiol. 2019, 56, 153–159. [Google Scholar] [CrossRef]
  4. Nie, J.; Mahato, S.; Mustill, W.; Tipping, C.; Bhattacharya, S.S.; Zelhof, A.C. Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev. Biol. 2012, 371, 312–320. [Google Scholar] [CrossRef] [PubMed]
  5. Darwin, C. On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1859. [Google Scholar]
  6. Halder, G.; Callaerts, P.; Gehring, W.J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 1995, 267, 1788–1792. [Google Scholar] [CrossRef] [PubMed]
  7. Gehring, J.W. The evolution of vision. Wiley Interdiscip. Rev. Dev. Biol. 2014, 3, 1–40. [Google Scholar] [CrossRef] [PubMed]
  8. Bhaya, D. Light matters: Phototaxis and signal transduction in unicellular cyanobacteria. Mol. Microbiol. 2004, 53, 745–754. [Google Scholar] [CrossRef] [PubMed]
  9. Dong, G.; Golden, S.S. How a cyanobacterium tells time. Curr. Opin. Microbiol. 2008, 11, 541–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  10. O’Neill, J.S.; van Ooijen, G.; Dixon, L.E.; Troein, C.; Corellou, F.; Bouget, F.Y.; Reddy, A.B.; Millar, A.J. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469, 554–558. [Google Scholar] [CrossRef]
  11. O’Neill, J.S.; Reddy, A.B. Circadian clocks in human red blood cells. Nature 2011, 469, 498–503. [Google Scholar] [CrossRef] [Green Version]
  12. Plachetzki, D.C.; Fong, C.R.; Oakley, T.H. Cnidocyte discharge is regulated by light and opsin-mediated phototransduction. BMC Biol. 2012, 10, 17. [Google Scholar] [CrossRef]
  13. Feinberg, T.E.; Mallatt, J.M. Consciousness Gets a Head Start Vertebrate Brains, Vision, and the Cambrian Birth of the Mental Image. In The Ancient Origins of Consciousness; MIT Press: Cambridge, MA, USA, 2016; pp. 69–100. [Google Scholar]
  14. Fain, G.L.; Hardie, R.; Laughlin, S.B. Phototransduction and the evolution of photoreceptors. Curr. Biol. 2010, 20, R114–R124. [Google Scholar] [CrossRef] [PubMed]
  15. Therrien, M.; Morrison, D.K.; Wong, A.M.; Rubin, G.M. A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila. Genetics 2000, 156, 1231–1242. [Google Scholar] [PubMed]
  16. Rogge, R.D.; Karlovich, C.A.; Banerjee, U. Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 1991, 64, 39–48. [Google Scholar] [CrossRef]
  17. Bonfini, L.; Karlovich, C.A.; Dasgupta, C.; Banerjee, U. The Son of sevenless gene product: A putative activator of Ras. Science 1992, 255, 603–606. [Google Scholar] [CrossRef] [PubMed]
  18. Price, J.; Turner, D.; Cepko, C. Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 1987, 84, 156–160. [Google Scholar] [CrossRef]
  19. Livesey, F.J.; Cepko, C.L. Vertebrate neural cell-fate determination: Lessons from the retina. Nat. Rev. Neurosci. 2001, 2, 109–118. [Google Scholar] [CrossRef]
  20. Adler, R.; Hatlee, M. Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science 1989, 243, 391–393. [Google Scholar] [CrossRef]
  21. Furukawa, T.; Morrow, E.M.; Cepko, C.L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 1997, 91, 531–541. [Google Scholar] [CrossRef]
  22. Chen, S.; Wang, Q.L.; Nie, Z.; Sun, H.; Lennon, G.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Zack, D.J. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 1997, 19, 1017–1030. [Google Scholar] [CrossRef]
  23. Swaroop, A.; Kim, D.; Forrest, D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 2010, 11, 563–576. [Google Scholar] [CrossRef] [Green Version]
  24. Swaroop, A.; Xu, J.Z.; Pawar, H.; Jackson, A.; Skolnick, C.; Agarwal, N. A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc. Natl. Acad. Sci. USA 1992, 89, 266–270. [Google Scholar] [CrossRef] [PubMed]
  25. Mears, A.J.; Kondo, M.; Swain, P.K.; Takada, Y.; Bush, R.A.; Saunders, T.L.; Sieving, P.A.; Swaroop, A. Nrl is required for rod photoreceptor, development. Nat. Genet. 2001, 29, 447–452. [Google Scholar] [CrossRef] [PubMed]
  26. Cheng, H.; Khan, N.W.; Roger, J.E.; Swaroop, A. Excess cones in the retinal degeneration rd7 mouse, caused by the loss of function of orphan nuclear receptor Nr2e3, originate from early-born photoreceptor precursors. Hum. Mol. Genet. 2011, 20, 4102–4115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Eldred, K.C.; Hadyniak, S.E.; Hussey, K.A.; Brenerman, B.; Zhang, P.W.; Chamling, X.; Sluch, V.M.; Welsbie, D.S.; Hattar, S.; Taylor, J.; et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 2018, 362, eaau6348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Reichman, S.; Slembrouck, A.; Gagliardi, G.; Chaffiol, A.; Terray, A.; Nanteau, C.; Potey, A.; Belle, M.; Rabesandratana, O.; Duebel, J.; et al. Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells 2017, 35, 1176–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  29. Xu, X.L.; Singh, H.P.; Wang, L.; Qi, D.L.; Poulos, B.K.; Abramson, D.H.; Jhanwar, S.C.; Cobrinik, D. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature 2014, 514, 385–388. [Google Scholar] [CrossRef] [Green Version]
  30. Singh, H.P.; Wang, S.; Stachelek, K.; Lee, S.; Reid, M.W.; Thornton, M.E.; Craft, C.M.; Grubbs, B.H.; Cobrinik, D. Developmental stage-specific proliferation and retinoblastoma genesis in RB-deficient human but not mouse cone precursors. Proc. Natl. Acad. Sci. USA 2018, 115, E9391–E9400. [Google Scholar] [CrossRef] [Green Version]
  31. Leveillard, T. Cancer metabolism of cone photoreceptors. Oncotarget 2015, 6, 32285. [Google Scholar] [CrossRef]
  32. Friend, S.H.; Bernards, R.; Rogelj, S.; Weinberg, R.A.; Rapaport, J.M.; Albert, D.M.; Dryja, T.P. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986, 323, 643–646. [Google Scholar] [CrossRef]
  33. Fung, Y.K.; Murphree, A.L.; T’Ang, A.; Qian, J.; Hinrichs, S.H.; Benedict, W.F. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987, 236, 1657–1661. [Google Scholar] [CrossRef]
  34. Lee, W.H.; Bookstein, R.; Hong, F.; Young, L.J.; Shew, J.Y.; Lee, E.Y. Human retinoblastoma susceptibility gene: Cloning, identification, and sequence. Science 1987, 235, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
  35. Dyson, N.J. RB1: A prototype tumor suppressor and an enigma. Genes Dev. 2016, 30, 1492–1502. [Google Scholar] [CrossRef] [PubMed]
  36. Elliott, J.; Cayouette, M.; Gravel, C. The CNTF/LIF signaling pathway regulates developmental programmed cell death and differentiation of rod precursor cells in the mouse retina in vivo. Dev. Biol. 2006, 300, 583–598. [Google Scholar] [CrossRef] [Green Version]
  37. Skowronska-Krawczyk, D.; Ballivet, M.; Dynlacht, B.D.; Matter, J.M. Highly specific interactions between bHLH transcription factors and chromatin during retina development. Development 2004, 131, 4447–4454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Elgin, S.C.; Reuter, G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 2013, 5, a017780. [Google Scholar] [CrossRef]
  39. Merbs, S.L.; Khan, M.A.; Hackler, L.; Oliver, V.F.; Wan, J.; Qian, J.; Zack, D.J. Cell-specific DNA methylation patterns of retina-specific genes. PLoS ONE 2012, 7, e32602. [Google Scholar] [CrossRef]
  40. Mo, A.; Luo, C.; Davis, F.P.; Mukamel, E.A.; Henry, G.L.; Nery, J.R.; Urich, M.A.; Picard, S.; Lister, R.; Eddy, S.R.; et al. Epigenomic landscapes of retinal rods and cones. Elife 2016, 5, e11613. [Google Scholar] [CrossRef]
  41. Farinelli, P.; Perera, A.; Arango-Gonzalez, B.; Trifunovic, D.; Wagner, M.; Carell, T.; Biel, M.; Zrenner, E.; Michalakis, S.; Paquet-Durand, F.; et al. DNA methylation and differential gene regulation in photoreceptor cell death. Cell Death Dis. 2014, 5, e1558. [Google Scholar] [CrossRef]
  42. Corso-Diaz, X.; Jaeger, C.; Chaitankar, V.; Swaroop, A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog. Retin. Eye Res. 2018, 65, 1–27. [Google Scholar] [CrossRef]
  43. Seritrakul, P.; Gross, J.M. Genetic and epigenetic control of retinal development in zebrafish. Curr. Opin. Neurobiol. 2019, 59, 120–127. [Google Scholar] [CrossRef]
  44. Naruse, Y.; Oh-hashi, K.; Iijima, N.; Naruse, M.; Yoshioka, H.; Tanaka, M. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 2004, 24, 6278–6287. [Google Scholar] [CrossRef] [PubMed]
  45. Chen, B.; Cepko, C.L. HDAC4 regulates neuronal survival in normal and diseased retinas. Science 2009, 323, 256–259. [Google Scholar] [CrossRef] [PubMed]
  46. Ferreira, R.C.; Popova, E.Y.; James, J.; Briones, M.R.; Zhang, S.S.; Barnstable, C.J. Histone Deacetylase 1 Is Essential for Rod Photoreceptor Differentiation by Regulating Acetylation at Histone H3 Lysine 9 and Histone H4 Lysine 12 in the Mouse Retina. J. Biol. Chem. 2017, 292, 2422–2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Zhang, L.; Du, J.; Justus, S.; Hsu, C.W.; Bonet-Ponce, L.; Wu, W.H.; Tsai, Y.T.; Wu, W.P.; Jia, Y.; Duong, J.K.; et al. Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration. J. Clin. Investig. 2016, 126, 4659–4673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  48. Albadri, S.; Naso, F.; Thauvin, M.; Gauron, C.; Parolin, C.; Duroure, K.; Vougny, J.; Fiori, J.; Boga, C.; Vriz, S.; et al. Redox Signaling via Lipid Peroxidation Regulates Retinal Progenitor Cell Differentiation. Dev. Cell 2019, 50, 73–89. [Google Scholar] [CrossRef] [PubMed]
  49. Freund, C.L.; Gregory-Evans, C.Y.; Furukawa, T.; Papaioannou, M.; Looser, J.; Ploder, L.; Bellingham, J.; Ng, D.; Herbrick, J.A.; Duncan, A.; et al. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 1997, 91, 543–553. [Google Scholar] [CrossRef]
  50. Bessant, D.A.; Payne, A.M.; Mitton, K.P.; Wang, Q.L.; Swain, P.K.; Plant, C.; Bird, A.C.; Zack, D.J.; Swaroop, A.; Bhattacharya, S.S. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat. Genet. 1999, 21, 355. [Google Scholar] [CrossRef] [PubMed]
  51. Haider, N.B.; Jacobson, S.G.; Cideciyan, A.V.; Swiderski, R.; Streb, L.M.; Searby, C.; Beck, G.; Hockey, R.; Hanna, D.B.; Gorman, S.; et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat. Genet. 2000, 24, 127–131. [Google Scholar] [CrossRef]
  52. Gregory-Evans, K.; Pennesi, M.E.; Weleber, R.G. Chapter 40—Retinitis Pigmentosa and Allied Disorders. In Retina (Fifth Edition); Ryan, S.J., Sadda, S.R., Hinton, D.R., Schachat, A.P., Sadda, S.R., Wilkinson, C.P., Wiedemann, P., Schachat, A.P., Eds.; W.B. Saunders: London, UK, 2013; pp. 761–835. [Google Scholar]
  53. Duncan, J.L.; Pierce, E.A.; Laster, A.M.; Daiger, S.P.; Birch, D.G.; Ash, J.D.; Iannaccone, A.; Flannery, J.G.; Sahel, J.A.; Zack, D.J.; et al. Inherited retinal degenerations: Current landscape and knowledge gaps. Transl. Vis. Sci. Technol. 2018, 7, 6. [Google Scholar] [CrossRef]
  54. Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef]
  55. Hamel, C. Retinitis pigmentosa. Orphanet J. Rare Dis. 2006, 1, 40. [Google Scholar] [CrossRef]
  56. Portera-Cailliau, C.; Sung, C.H.; Nathans, J.; Adler, R. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 1994, 91, 974–978. [Google Scholar] [CrossRef]
  57. Zeitz, C.; Robson, A.G.; Audo, I. Congenital stationary night blindness: An analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog. Retin. Eye Res. 2015, 45, 58–110. [Google Scholar] [CrossRef] [PubMed]
  58. Hamel, C.P. Cone rod dystrophies. Orphanet J. Rare Dis. 2007, 2, 7. [Google Scholar] [CrossRef] [PubMed]
  59. Allikmets, R.; Singh, N.; Sun, H.; Shroyer, N.F.; Hutchinson, A.; Chidambaram, A.; Gerrard, B.; Baird, L.; Stauffer, D.; Peiffer, A.; et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 1997, 15, 236–246. [Google Scholar] [CrossRef] [PubMed]
  60. Perrault, I.; Rozet, J.M.; Calvas, P.; Gerber, S.; Camuzat, A.; Dollfus, H.; Chatelin, S.; Souied, E.; Ghazi, I.; Leowski, C.; et al. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat. Genet. 1996, 14, 461–464. [Google Scholar] [CrossRef] [PubMed]
  61. Gu, S.M.; Thompson, D.A.; Srikumari, C.R.; Lorenz, B.; Finckh, U.; Nicoletti, A.; Murthy, K.R.; Rathmann, M.; Kumaramanickavel, G.; Denton, M.J.; et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 1997, 17, 194–197. [Google Scholar] [CrossRef] [PubMed]
  62. Kohl, S.; Marx, T.; Giddings, I.; Jagle, H.; Jacobson, S.G.; Apfelstedt-Sylla, E.; Zrenner, E.; Sharpe, L.T.; Wissinger, B. Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat. Genet. 1998, 19, 257–925. [Google Scholar] [CrossRef] [PubMed]
  63. Kohl, S.; Baumann, B.; Broghammer, M.; Jagle, H.; Sieving, P.; Kellner, U.; Spegal, R.; Anastasi, M.; Zrenner, E.; Sharpe, L.T.; et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum. Mol. Genet. 2000, 9, 2107–2116. [Google Scholar] [CrossRef]
  64. Hirji, N.; Aboshiha, J.; Georgiou, M.; Bainbridge, J.; Michaelides, M. Achromatopsia: Clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet. 2018, 39, 149–157. [Google Scholar] [CrossRef] [PubMed]
  65. Cremers, F.P.M.; Boon, C.J.F.; Bujakowska, K.; Zeitz, C. Special Issue Introduction: Inherited Retinal Disease: Novel Candidate Genes, Genotype-Phenotype Correlations, and Inheritance Models. Genes 2018, 9, 215. [Google Scholar] [CrossRef]
  66. Weil, D.; Blanchard, S.; Kaplan, J.; Guilford, P.; Gibson, F.; Walsh, J.; Mburu, P.; Varela, A.; Levilliers, J.; Weston, M.D.; et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995, 374, 60–61. [Google Scholar] [CrossRef] [PubMed]
  67. Eudy, J.D.; Weston, M.D.; Yao, S.; Hoover, D.M.; Rehm, H.L.; Ma-Edmonds, M.; Yan, D.; Ahmad, I.; Cheng, J.J.; Ayuso, C.; et al. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science 1998, 280, 1753–1757. [Google Scholar] [CrossRef] [PubMed]
  68. Katsanis, N.; Beales, P.L.; Woods, M.O.; Lewis, R.A.; Green, J.S.; Parfrey, P.S.; Ansley, S.J.; Davidson, W.S.; Lupski, J.R. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat. Genet. 2000, 26, 67–70. [Google Scholar] [CrossRef]
  69. Mockel, A.; Perdomo, Y.; Stutzmann, F.; Letsch, J.; Marion, V.; Dollfus, H. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog. Retin. Eye Res. 2011, 30, 258–274. [Google Scholar] [CrossRef] [PubMed]
  70. Nachury, M.V.; Loktev, A.V.; Zhang, Q.; Westlake, C.J.; Peranen, J.; Merdes, A.; Slusarski, D.C.; Scheller, R.H.; Bazan, J.F.; Sheffield, V.C.; et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007, 129, 1201–1213. [Google Scholar] [CrossRef]
  71. Ait-Ali, N.; Fridlich, R.; Millet-Puel, G.; Clerin, E.; Delalande, F.; Jaillard, C.; Blond, F.; Perrocheau, L.; Reichman, S.; Byrne, L.C.; et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 2015, 161, 817–832. [Google Scholar] [CrossRef]
  72. Delyfer, M.N.; Raffelsberger, W.; Mercier, D.; Korobelnik, J.F.; Gaudric, A.; Charteris, D.G.; Tadayoni, R.; Metge, F.; Caputo, G.; Barale, P.O.; et al. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death. PLoS ONE 2011, 6, e28791. [Google Scholar] [CrossRef]
  73. Kole, C.; Berdugo, N.; da Silva, C.; Ait-Ali, N.; Millet-Puel, G.; Pagan, D.; Blond, F.; Poidevin, L.; Ripp, R.; Fontaine, V.; et al. Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells. PLoS ONE 2016, 11, e0150758. [Google Scholar] [CrossRef]
  74. Humphries, P.; Kenna, P.; Farrar, G.J. On the molecular genetics of retinitis pigmentosa. Science 1992, 256, 804–808. [Google Scholar] [CrossRef]
  75. Thompson, D.A.; Gal, A. Vitamin A metabolism in the retinal pigment epithelium: Genes, mutations, and diseases. Prog. Retin. Eye Res. 2003, 22, 683–703. [Google Scholar] [CrossRef]
  76. Acland, G.M.; Aguirre, G.D.; Ray, J.; Zhang, Q.; Aleman, T.S.; Cideciyan, A.V.; Pearce-Kelling, S.E.; Anand, V.; Zeng, Y.; Maguire, A.M.; et al. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 2001, 28, 92–95. [Google Scholar] [CrossRef] [PubMed]
  77. Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N.; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 2008, 358, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
  78. Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef]
  79. Bainbridge, J.W.; Smith, A.J.; Barker, S.S.; Robbie, S.; Henderson, R.; Balaggan, K.; Viswanathan, A.; Holder, G.E.; Stockman, A.; Tyler, N.; et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med. 2008, 358, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
  80. Cideciyan, A.V.; Jacobson, S.G.; Beltran, W.A.; Sumaroka, A.; Swider, M.; Iwabe, S.; Roman, A.J.; Olivares, M.B.; Schwartz, S.B.; Komaromy, A.M.; et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci. USA 2013, 110, E517–E525. [Google Scholar] [CrossRef] [Green Version]
  81. Patel, U.; Boucher, M.; de Leseleuc, L.; Visintini, S. Voretigene Neparvovec: An Emerging Gene Therapy for the Treatment of Inherited Blindness. In CAD TH Issue in Emerging Health Technologies; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2018; pp. 1–11. [Google Scholar]
  82. Hamel, C.P.; Tsilou, E.; Pfeffer, B.A.; Hooks, J.J.; Detrick, B.; Redmond, T.M. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J. Biol. Chem. 1993, 268, 15751–15757. [Google Scholar]
  83. Strom, S.P.; Clark, M.J.; Martinez, A.; Garcia, S.; Abelazeem, A.A.; Matynia, A.; Parikh, S.; Sullivan, L.S.; Bowne, S.J.; Daiger, S.P.; et al. De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa. PLoS ONE 2016, 11, e0150944. [Google Scholar] [CrossRef]
  84. Wright, Z.C.; Singh, R.K.; Alpino, R.; Goldberg, A.F.; Sokolov, M.; Ramamurthy, V. ARL3 regulates trafficking of prenylated phototransduction proteins to the rod outer segment. Hum. Mol. Genet. 2016, 25, 2031–2044. [Google Scholar] [CrossRef] [Green Version]
  85. Xu, M.; Eblimit, A.; Wang, J.; Li, J.; Wang, F.; Zhao, L.; Wang, X.; Xiao, N.; Li, Y.; Wong, L.J.; et al. ADIPOR1 Is Mutated in Syndromic Retinitis Pigmentosa. Hum. Mutat. 2016, 37, 246–249. [Google Scholar] [CrossRef]
  86. Sluch, V.M.; Banks, A.; Li, H.; Crowley, M.A.; Davis, V.; Xiang, C.; Yang, J.; Demirs, J.T.; Vrouvlianis, J.; Leehy, B.; et al. ADIPOR1 is essential for vision and its RPE expression is lost in the Mfrp(rd6) mouse. Sci. Rep. 2018, 8, 14339. [Google Scholar] [CrossRef] [PubMed]
  87. Davidson, A.E.; Millar, I.D.; Urquhart, J.E.; Burgess-Mullan, R.; Shweikh, Y.; Parry, N.; O’Sullivan, J.; Maher, G.J.; McKibbin, M.; Downes, S.M.; et al. Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am. J. Hum. Genet. 2009, 85, 581–592. [Google Scholar] [CrossRef] [PubMed]
  88. Zhang, Y.; Stanton, J.B.; Wu, J.; Yu, K.; Hartzell, H.C.; Peachey, N.S.; Marmorstein, L.Y.; Marmorstein, A.D. Suppression of Ca2+ signaling in a mouse model of Best disease. Hum. Mol. Genet. 2010, 19, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Guziewicz, K.E.; Zangerl, B.; Lindauer, S.J.; Mullins, R.F.; Sandmeyer, L.S.; Grahn, B.H.; Stone, E.M.; Acland, G.M.; Aguirre, G.D. Bestrophin gene mutations cause canine multifocal retinopathy: A novel animal model for best disease. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
  90. Zangerl, B.; Wickstrom, K.; Slavik, J.; Lindauer, S.J.; Ahonen, S.; Schelling, C.; Lohi, H.; Guziewicz, K.E.; Aguirre, G.D. Assessment of canine BEST1 variations identifies new mutations and establishes an independent bestrophinopathy model (cmr3). Mol. Vis. 2010, 16, 2791–2804. [Google Scholar]
  91. Datta, R.; Waheed, A.; Bonapace, G.; Shah, G.N.; Sly, W.S. Pathogenesis of retinitis pigmentosa associated with apoptosis-inducing mutations in carbonic anhydrase IV. Proc. Natl. Acad. Sci. USA 2009, 106, 3437–3442. [Google Scholar] [CrossRef] [Green Version]
  92. Tran, N.M.; Zhang, A.; Zhang, X.; Huecker, J.B.; Hennig, A.K.; Chen, S. Mechanistically distinct mouse models for CRX-associated retinopathy. PLoS Genet. 2014, 10, e1004111. [Google Scholar] [CrossRef]
  93. Occelli, L.M.; Tran, N.M.; Narfstrom, K.; Chen, S.; Petersen-Jones, S.M. CrxRdy Cat: A large animal model for CRX-associated leber congenital amaurosis. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3780–3792. [Google Scholar] [CrossRef]
  94. Sullivan, L.S.; Bowne, S.J.; Birch, D.G.; Hughbanks-Wheaton, D.; Heckenlively, J.R.; Lewis, R.A.; Garcia, C.A.; Ruiz, R.S.; Blanton, S.H.; Northrup, H.; et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: A screen of known genes in 200 families. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3052–3064. [Google Scholar] [CrossRef]
  95. Yokokura, S.; Wada, Y.; Nakai, S.; Sato, H.; Yao, R.; Yamanaka, H.; Ito, S.; Sagara, Y.; Takahashi, M.; Nakamura, Y.; et al. Targeted disruption of FSCN2 gene induces retinopathy in mice. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2905–2915. [Google Scholar] [CrossRef]
  96. Pennesi, M.E.; Howes, K.A.; Baehr, W.; Wu, S.M. Guanylate cyclase-activating protein (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice. Proc. Natl. Acad. Sci. USA 2003, 100, 6783–6788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Sullivan, L.S.; Koboldt, D.C.; Bowne, S.J.; Lang, S.; Blanton, S.H.; Cadena, E.; Avery, C.E.; Lewis, R.A.; Webb-Jones, K.; Wheaton, D.H.; et al. A Dominant Mutation in Hexokinase 1 (HK1) Causes Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7147–7158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  98. Tam, L.C.; Kiang, A.S.; Kennan, A.; Kenna, P.F.; Chadderton, N.; Ader, M.; Palfi, A.; Aherne, A.; Ayuso, C.; Campbell, M.; et al. Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Hum. Mol. Genet. 2008, 17, 2084–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  99. Manes, G.; Meunier, I.; Avila-Fernandez, A.; Banfi, S.; le Meur, G.; Zanlonghi, X.; Corton, M.; Simonelli, F.; Brabet, P.; Labesse, G.; et al. Mutations in IMPG1 cause vitelliform macular dystrophies. Am. J. Hum. Genet. 2013, 93, 571–578. [Google Scholar] [CrossRef] [PubMed]
  100. Friedman, J.S.; Ray, J.W.; Waseem, N.; Johnson, K.; Brooks, M.J.; Hugosson, T.; Breuer, D.; Branham, K.E.; Krauth, D.S.; Bowne, S.J.; et al. Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa. Am. J. Hum. Genet. 2009, 84, 792–800. [Google Scholar] [CrossRef]
  101. Blanco-Kelly, F.; Garcia Hoyos, M.; Lopez Martinez, M.A.; Lopez-Molina, M.I.; Riveiro-Alvarez, R.; Fernandez-San Jose, P.; Avila-Fernandez, A.; Corton, M.; Millan, J.M.; Garcia Sandoval, B.; et al. Dominant Retinitis Pigmentosa, p.Gly56Arg Mutation in NR2E3: Phenotype in a Large Cohort of 24 Cases. PLoS ONE 2016, 11, e0149473. [Google Scholar] [CrossRef]
  102. Akhmedov, N.B.; Piriev, N.I.; Chang, B.; Rapoport, A.L.; Hawes, N.L.; Nishina, P.M.; Nusinowitz, S.; Heckenlively, J.R.; Roderick, T.H.; Kozak, C.A.; et al. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc. Natl. Acad. Sci. USA 2000, 97, 5551–5556. [Google Scholar] [CrossRef]
  103. Graziotto, J.J.; Farkas, M.H.; Bujakowska, K.; Deramaudt, B.M.; Zhang, Q.; Nandrot, E.F.; Inglehearn, C.F.; Bhattacharya, S.S.; Pierce, E.A. Three Gene-Targeted Mouse Models of RNA Splicing Factor RP Show Late-Onset RPE and Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 190–198. [Google Scholar] [CrossRef] [Green Version]
  104. Ruzickova, S.; Stanek, D. Mutations in spliceosomal proteins and retina degeneration. RNA Biol. 2017, 14, 544–552. [Google Scholar] [CrossRef]
  105. Chen, X.; Liu, Y.; Sheng, X.; Tam, P.O.; Zhao, K.; Chen, X.; Rong, W.; Liu, Y.; Liu, X.; Pan, X.; et al. PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 2014, 23, 2926–2939. [Google Scholar] [CrossRef] [Green Version]
  106. Farkas, M.H.; Lew, D.S.; Sousa, M.E.; Bujakowska, K.; Chatagnon, J.; Bhattacharya, S.S.; Pierce, E.A.; Nandrot, E.F. Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am. J. Pathol. 2014, 184, 2641–2652. [Google Scholar] [CrossRef] [PubMed]
  107. Kajiwara, K.; Hahn, L.B.; Mukai, S.; Travis, G.H.; Berson, E.L.; Dryja, T.P. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 1991, 354, 480–483. [Google Scholar] [CrossRef] [PubMed]
  108. Hawes, N.L.; Smith, R.S.; Chang, B.; Davisson, M.; Heckenlively, J.R.; John, S.W. Mouse fundus photography and angiography: A catalogue of normal and mutant phenotypes. Mol. Vis. 1999, 5, 22. [Google Scholar] [PubMed]
  109. Fingert, J.H.; Oh, K.; Chung, M.; Scheetz, T.E.; Andorf, J.L.; Johnson, R.M.; Sheffield, V.C.; Stone, E.M. Association of a novel mutation in the retinol dehydrogenase 12 (RDH12) gene with autosomal dominant retinitis pigmentosa. Arch. Ophthalmol. 2008, 126, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
  110. Maeda, A.; Maeda, T.; Sun, W.; Zhang, H.; Baehr, W.; Palczewski, K. Redundant and unique roles of retinol dehydrogenases in the mouse retina. Proc. Natl. Acad. Sci. USA 2007, 104, 19565–19570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  111. Olsson, J.E.; Gordon, J.W.; Pawlyk, B.S.; Roof, D.; Hayes, A.; Molday, R.S.; Mukai, S.; Cowley, G.S.; Berson, E.L.; Dryja, T.P. Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa. Neuron 1992, 9, 815–830. [Google Scholar] [CrossRef]
  112. Kennan, A.; Aherne, A.; Palfi, A.; Humphries, M.; McKee, A.; Stitt, A.; Simpson, D.A.; Demtroder, K.; Orntoft, T.; Ayuso, C.; et al. Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho(-/-) mice. Hum. Mol. Genet. 2002, 11, 547–557. [Google Scholar] [CrossRef] [PubMed]
  113. Orhan, E.; Dalkara, D.; Neuille, M.; Lechauve, C.; Michiels, C.; Picaud, S.; Leveillard, T.; Sahel, J.A.; Naash, M.I.; Lavail, M.M.; et al. Genotypic and phenotypic characterization of P23H line 1 rat model. PLoS ONE 2015, 10, e0127319. [Google Scholar] [CrossRef]
  114. Wang, W.; Lee, S.J.; Scott, P.A.; Lu, X.; Emery, D.; Liu, Y.; Ezashi, T.; Roberts, M.R.; Ross, J.W.; Kaplan, H.J.; et al. Two-Step Reactivation of Dormant Cones in Retinitis Pigmentosa. Cell. Rep. 2016, 15, 372–385. [Google Scholar] [CrossRef] [Green Version]
  115. Kostic, C.; Arsenijevic, Y. Animal modelling for inherited central vision loss. J. Pathol. 2016, 238, 300–310. [Google Scholar] [CrossRef]
  116. Clarke, G.; Goldberg, A.F.X.; Vidgen, D.; Collins, L.; Ploder, L.; Schwarz, L.; Molday, L.L.; Rossant, J.; Szel, A.; Molday, R.S.; et al. Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat. Genet. 2000, 25, 67–73. [Google Scholar] [CrossRef] [PubMed]
  117. Liu, Q.; Zuo, J.; Pierce, E.A. The retinitis pigmentosa 1 protein is a photoreceptor microtubule- associated protein. J. Neurosci. 2004, 24, 6427–6436. [Google Scholar] [CrossRef] [PubMed]
  118. Song, D.; Grieco, S.; Li, Y.; Hunter, A.; Chu, S.; Zhao, L.; Song, Y.; DeAngelis, R.A.; Shi, L.Y.; Liu, Q.; et al. A murine RP1 missense mutation causes protein mislocalization and slowly progressive photoreceptor degeneration. Am. J. Pathol. 2014, 184, 2721–2729. [Google Scholar] [CrossRef] [PubMed]
  119. Abid, A.; Ismail, M.; Mehdi, S.Q.; Khaliq, S. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J. Med. Genet. 2006, 43, 378–381. [Google Scholar] [CrossRef] [PubMed]
  120. Rice, D.S.; Huang, W.; Jones, H.A.; Hansen, G.; Ye, G.L.; Xu, N.; Wilson, E.A.; Troughton, K.; Vaddi, K.; Newton, R.C.; et al. Severe retinal degeneration associated with disruption of semaphorin 4A. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2767–2777. [Google Scholar] [CrossRef] [PubMed]
  121. Coussa, R.G.; Chakarova, C.; Ajlan, R.; Taha, M.; Kavalec, C.; Gomolin, J.; Khan, A.; Lopez, I.; Ren, H.; Waseem, N.; et al. Genotype and Phenotype Studies in Autosomal Dominant Retinitis Pigmentosa (adRP) of the French Canadian Founder Population. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8297–8305. [Google Scholar] [CrossRef]
  122. Liu, Y.; Chen, X.; Xu, Q.; Gao, X.; Tam, P.O.; Zhao, K.; Zhang, X.; Chen, L.J.; Jia, W.; Zhao, Q.; et al. SPP2 Mutations Cause Autosomal Dominant Retinitis Pigmentosa. Sci. Rep. 2015, 5, 14867. [Google Scholar] [CrossRef] [PubMed]
  123. Schob, C.; Orth, U.; Gal, A.; Kindler, S.; Chakarova, C.F.; Bhattacharya, S.S.; Ruther, K. Mutations in TOPORS: A rare cause of autosomal dominant retinitis pigmentosa in continental Europe? Ophthalmic Genet. 2009, 30, 96–98. [Google Scholar] [CrossRef]
  124. Marshall, H.; Bhaumik, M.; Aviv, H.; Moore, D.; Yao, M.; Dutta, J.; Rahim, H.; Gounder, M.; Ganesan, S.; Saleem, A.; et al. Deficiency of the dual ubiquitin/SUMO ligase Topors results in genetic instability and an increased rate of malignancy in mice. BMC Mol. Biol. 2010, 11, 31. [Google Scholar] [CrossRef]
  125. Weng, J.; Mata, N.L.; Azarian, S.M.; Tzekov, R.T.; Birch, D.G.; Travis, G.H. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 1999, 98, 13–23. [Google Scholar] [CrossRef]
  126. Makelainen, S.; Godia, M.; Hellsand, M.; Viluma, A.; Hahn, D.; Makdoumi, K.; Zeiss, C.J.; Mellersh, C.; Ricketts, S.L.; Narfstrom, K.; et al. An ABCA4 loss-of-function mutation causes a canine form of Stargardt disease. PLoS Genet. 2019, 15, e1007873. [Google Scholar] [CrossRef] [PubMed]
  127. Branham, K.; Matsui, H.; Biswas, P.; Guru, A.A.; Hicks, M.; Suk, J.J.; Li, H.; Jakubosky, D.; Long, T.; Telenti, A.; et al. Establishing the involvement of the novel gene AGBL5 in retinitis pigmentosa by whole genome sequencing. Physiol. Genom. 2016, 48, 922–927. [Google Scholar] [CrossRef]
  128. Zhou, Y.; Li, S.; Huang, L.; Yang, Y.; Zhang, L.; Yang, M.; Liu, W.; Ramasamy, K.; Jiang, Z.; Sundaresan, P.; et al. A splicing mutation in aryl hydrocarbon receptor associated with retinitis pigmentosa. Hum. Mol. Genet. 2018, 27, 2563–2572. [Google Scholar] [CrossRef]
  129. Kim, S.Y.; Yang, H.J.; Chang, Y.S.; Kim, J.W.; Brooks, M.; Chew, E.Y.; Wong, W.T.; Fariss, R.N.; Rachel, R.A.; Cogliati, T.; et al. Deletion of aryl hydrocarbon receptor AHR in mice leads to subretinal accumulation of microglia and RPE atrophy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6031–6040. [Google Scholar] [CrossRef] [PubMed]
  130. Arno, G.; Carss, K.J.; Hull, S.; Zihni, C.; Robson, A.G.; Fiorentino, A.; Consortium, U.K.I.R.D.; Hardcastle, A.J.; Holder, G.E.; Cheetham, M.E.; et al. Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration. Am. J. Hum. Genet. 2017, 100, 334–342. [Google Scholar] [CrossRef] [Green Version]
  131. Zhang, Q.; Nishimura, D.; Seo, S.; Vogel, T.; Morgan, D.A.; Searby, C.; Bugge, K.; Stone, E.M.; Rahmouni, K.; Sheffield, V.C. Bardet-Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc. Natl. Acad. Sci. USA 2011, 108, 20678–20683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Davidson, A.E.; Schwarz, N.; Zelinger, L.; Stern-Schneider, G.; Shoemark, A.; Spitzbarth, B.; Gross, M.; Laxer, U.; Sosna, J.; Sergouniotis, P.; et al. Mutations in ARL2BP, encoding ADP-ribosylation-factor-like 2 binding protein, cause autosomal-recessive retinitis pigmentosa. Am. J. Hum. Genet. 2013, 93, 321–329. [Google Scholar] [CrossRef]
  133. Davis, R.E.; Swiderski, R.E.; Rahmouni, K.; Nishimura, D.Y.; Mullins, R.F.; Agassandian, K.; Philp, A.R.; Searby, C.C.; Andrews, M.P.; Thompson, S.; et al. A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc. Natl. Acad. Sci. USA 2007, 104, 19422–19427. [Google Scholar] [CrossRef]
  134. Nishimura, D.Y.; Fath, M.; Mullins, R.F.; Searby, C.; Andrews, M.; Davis, R.; Andorf, J.L.; Mykytyn, K.; Swiderski, R.E.; Yang, B.L.; et al. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc. Natl. Acad. Sci. USA 2004, 101, 16588–16593. [Google Scholar] [CrossRef]
  135. Audo, I.; Lancelot, M.E.; Mohand-Said, S.; Antonio, A.; Germain, A.; Sahel, J.A.; Bhattacharya, S.S.; Zeitz, C. Novel C2orf71 Mutations Account for similar to 1% of Cases in a Large French arRP Cohort. Hum. Mutat. 2011, 32, E2091–E2103. [Google Scholar] [CrossRef]
  136. Kevany, B.M.; Zhang, N.; Jastrzebska, B.; Palczewski, K. Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration. Hum. Mol. Genet. 2015, 24, 2627–2640. [Google Scholar] [CrossRef] [PubMed]
  137. Ravesh, Z.; el Asrag, M.E.; Weisschuh, N.; McKibbin, M.; Reuter, P.; Watson, C.M.; Baumann, B.; Poulter, J.A.; Sajid, S.; Panagiotou, E.S.; et al. Novel C8orf37 mutations cause retinitis pigmentosa in consanguineous families of Pakistani origin. Mol. Vis. 2015, 21, 236–243. [Google Scholar] [PubMed]
  138. Garanto, A.; Mandal, N.A.; Egido-Gabas, M.; Marfany, G.; Fabrias, G.; Anderson, R.E.; Casas, J.; Gonzalez-Duarte, R. Specific sphingolipid content decrease in Cerkl knockdown mouse retinas. Exp. Eye Res. 2013, 110, 96–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  139. Li, L.; Jiao, X.; D’Atri, I.; Ono, F.; Nelson, R.; Chan, C.C.; Nakaya, N.; Ma, Z.; Ma, Y.; Cai, X.; et al. Mutation in the intracellular chloride channel CLCC1 associated with autosomal recessive retinitis pigmentosa. PLoS Genet. 2018, 14, e1007504. [Google Scholar] [CrossRef]
  140. Tian, G.; Lee, R.; Ropelewski, P.; Imanishi, Y. Impairment of Vision in a Mouse Model of Usher Syndrome Type III. Investig. Ophthalmol. Vis. Sci. 2016, 57, 866–875. [Google Scholar] [CrossRef] [PubMed]
  141. Gopal, S.R.; Chen, D.H.C.; Chou, S.W.; Zang, J.J.; Neuhauss, S.C.F.; Stepanyan, R.; McDermott, B.M.; Alagramam, K.N. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein. J. Neurosci. 2015, 35, 10188–10201. [Google Scholar] [CrossRef]
  142. Trudeau, M.C.; Zagotta, W.N. An intersubunit interaction regulates trafficking of rod cyclic nucleotide-gated channels and is disrupted in an inherited form of blindness. Neuron 2002, 34, 197–207. [Google Scholar] [CrossRef]
  143. Huttl, S.; Michalakis, S.; Seeliger, M.; Luo, D.G.; Acar, N.; Geiger, H.; Hudl, K.; Mader, R.; Haverkamp, S.; Moser, M.; et al. Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J. Neurosci. 2005, 25, 130–138. [Google Scholar] [CrossRef]
  144. Winkler, P.A.; Ekenstedt, K.J.; Occelli, L.M.; Frattaroli, A.V.; Bartoe, J.T.; Venta, P.J.; Petersen-Jones, S.M. A large animal model for CNGB1 autosomal recessive retinitis pigmentosa. PLoS ONE 2013, 8, 72229. [Google Scholar] [CrossRef]
  145. Mehalow, A.K.; Kameya, S.; Smith, R.S.; Hawes, N.L.; Denegre, J.M.; Young, J.A.; Bechtold, L.; Haider, N.B.; Tepass, U.; Heckenlively, J.R.; et al. CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum. Mol. Genet. 2003, 12, 2179–2189. [Google Scholar] [CrossRef] [Green Version]
  146. Zhao, M.; Andrieu-Soler, C.; Kowalczuk, L.; Paz Cortes, M.; Berdugo, M.; Dernigoghossian, M.; Halili, F.; Jeanny, J.C.; Goldenberg, B.; Savoldelli, M.; et al. A new CRB1 rat mutation links Muller glial cells to retinal telangiectasia. J. Neurosci. 2015, 35, 6093–6106. [Google Scholar] [CrossRef] [PubMed]
  147. Wang, Y.; Guo, L.; Cai, S.P.; Dai, M.; Yang, Q.; Yu, W.; Yan, N.; Zhou, X.; Fu, J.; Guo, X.; et al. Exome sequencing identifies compound heterozygous mutations in CYP4V2 in a pedigree with retinitis pigmentosa. PLoS ONE 2012, 7, e33673. [Google Scholar] [CrossRef] [PubMed]
  148. Lockhart, C.M.; Nakano, M.; Rettie, A.E.; Kelly, E.J. Generation and characterization of a murine model of Bietti crystalline dystrophy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5572–5581. [Google Scholar] [CrossRef] [PubMed]
  149. Venturini, G.; Koskiniemi-Kuendig, H.; Harper, S.; Berson, E.L.; Rivolta, C. Two specific mutations are prevalent causes of recessive retinitis pigmentosa in North American patients of Jewish ancestry. Genet. Med. 2015, 17, 285–290. [Google Scholar] [CrossRef] [Green Version]
  150. Zuchner, S.; Dallman, J.; Wen, R.; Beecham, G.; Naj, A.; Farooq, A.; Kohli, M.A.; Whitehead, P.L.; Hulme, W.; Konidari, I.; et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am. J. Hum. Genet. 2011, 88, 201–206. [Google Scholar] [CrossRef] [PubMed]
  151. Ajmal, M.; Khan, M.I.; Neveling, K.; Khan, Y.M.; Azam, M.; Waheed, N.K.; Hamel, C.P.; Ben-Yosef, T.; de Baere, E.; Koenekoop, R.K.; et al. A missense mutation in the splicing factor gene DHX38 is associated with early-onset retinitis pigmentosa with macular coloboma. J. Med. Genet. 2014, 51, 444–448. [Google Scholar] [CrossRef] [PubMed]
  152. Abu-Safieh, L.; Alrashed, M.; Anazi, S.; Alkuraya, H.; Khan, A.O.; Al-Owain, M.; Al-Zahrani, J.; Al-Abdi, L.; Hashem, M.; Al-Tarimi, S.; et al. Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res. 2013, 23, 236–247. [Google Scholar] [CrossRef] [PubMed]
  153. Littink, K.W.; van den Born, L.I.; Koenekoop, R.K.; Collin, R.W.J.; Zonneveld, M.N.; Blokland, E.A.W.; Khan, H.; Theelen, T.; Hoyng, C.B.; Cremers, F.P.; et al. Mutations in the EYS gene account for approximately 5% of autosomal recessive retinitis pigmentosa and cause a fairly homogeneous phenotype. Ophthalmology 2010, 117, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
  154. Arai, Y.; Maeda, A.; Hirami, Y.; Ishigami, C.; Kosugi, S.; Mandai, M.; Kurimoto, Y.; Takahashi, M. Retinitis Pigmentosa with EYS Mutations is the Most Prevalent Inherited Retinal Dystrophy in Japanese Populations. J. Ophthalmol. 2015, 2015. [Google Scholar] [CrossRef]
  155. Yu, M.; Liu, Y.; Li, J.; Natale, B.N.; Cao, S.Q.; Wang, D.L.; Amack, J.D.; Hu, H.Y. Eyes shut homolog is required for maintaining the ciliary pocket and survival of photoreceptors in zebrafish. Biol. Open 2016, 5, 1662–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  156. Van Schil, K.; Klevering, B.J.; Leroy, B.P.; Pott, J.W.R.; Bandah-Rozenfeld, D.; Zonneveld-Vrieling, M.N.; Sharon, D.; den Hollander, A.I.; Cremers, F.P.M.; de Baere, E.; et al. A Nonsense Mutation in FAM161A Is a Recurrent Founder Allele in Dutch and Belgian Individuals With Autosomal Recessive Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7418–7426. [Google Scholar] [CrossRef] [PubMed]
  157. Karlstetter, M.; Sorusch, N.; Caramoy, A.; Dannhausen, K.; Aslanidis, A.; Fauser, S.; Boesl, M.R.; Nagel-Wolfrum, K.; Tamm, E.R.; Jagle, H.; et al. Disruption of the retinitis pigmentosa 28 gene Fam161a in mice affects photoreceptor ciliary structure and leads to progressive retinal degeneration. Hum. Mol. Genet. 2014, 23, 5197–5210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  158. Downs, L.M.; Mellersh, C.S. An Intronic SINE Insertion in FAM161A that Causes Exon-Skipping Is Associated with Progressive Retinal Atrophy in Tibetan Spaniels and Tibetan Terriers. PLoS ONE 2014, 9, e93990. [Google Scholar] [CrossRef] [PubMed]
  159. Haer-Wigman, L.; Newman, H.; Leibu, R.; Bax, N.M.; Baris, H.N.; Rizel, L.; Banin, E.; Massarweh, A.; Roosing, S.; Lefeber, D.J.; et al. Non-syndromic retinitis pigmentosa due to mutations in the mucopolysaccharidosis type IIIC gene, heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT). Hum. Mol. R Genet. 2015, 24, 3742–3751. [Google Scholar] [CrossRef] [PubMed]
  160. Hartong, D.T.; Dange, M.; Mcgee, T.L.; Berson, E.L.; Dryja, T.P.; Colman, R.F. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat. Genet. 2008, 40, 1230–1234. [Google Scholar] [CrossRef] [Green Version]
  161. Hull, S.; Owen, N.; Islam, F.; Tracey-White, D.; Plagnol, V.; Holder, G.E.; Michaelides, M.; Carss, K.; Raymond, F.L.; Rozet, J.M.; et al. Nonsyndromic Retinal Dystrophy due to Bi-Allelic Mutations in the Ciliary Transport Gene IFT140. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
  162. Miller, K.A.; Ah-Cann, C.J.; Welfare, M.F.; Tan, T.Y.; Pope, K.; Caruana, G.; Freckmann, M.L.; Savarirayan, R.; Bertram, J.F.; Dobbie, M.S.; et al. Mouse Strain with an Ift140 Mutation That Results in a Skeletal Ciliopathy Modelling Jeune Syndrome. PLoS Genet. 2013, 9, e1003746. [Google Scholar] [CrossRef]
  163. Bujakowska, K.M.; Zhang, Q.; Siemiatkowska, A.M.; Liu, Q.; Place, E.; Falk, M.J.; Consugar, M.; Lancelot, M.E.; Antonio, A.; Lonjou, C.; et al. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum. Mol. Genet. 2015, 24, 230–242. [Google Scholar] [CrossRef]
  164. Huangfu, D.W.; Liu, A.M.; Rakeman, A.S.; Murcia, N.S.; Niswander, L.; Anderson, K.V. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003, 426, 83–87. [Google Scholar] [CrossRef]
  165. Van Huet, R.A.C.; Collin, R.W.J.; Siemiatkowska, A.M.; Klaver, C.C.W.; Hoyng, C.B.; Simonelli, F.; Khan, M.I.; Qamar, R.; Banin, E.; Cremers, F.P.; et al. IMPG2-Associated Retinitis Pigmentosa Displays Relatively Early Macular Involvement. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3939–3953. [Google Scholar] [CrossRef]
  166. El Shamieh, S.; Neuille, M.; Terray, A.; Orhan, E.; Condroyer, C.; Demontant, V.; Michiels, C.; Antonio, A.; Boyard, F.; Lancelot, M.E.; et al. Whole-Exome Sequencing Identifies KIZ as a Ciliary Gene Associated with Autosomal-Recessive Rod-Cone Dystrophy. Am. J. Hum. Genet. 2014, 94, 625–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  167. Thompson, D.A.; Li, Y.; McHenry, C.L.; Carlson, T.J.; Ding, X.; Sieving, P.A.; Apfelstedt-Sylla, E.; Gal, A. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat. Genet. 2001, 28, 123–124. [Google Scholar] [CrossRef] [PubMed]
  168. Batten, M.L.; Imanishi, Y.; Maeda, T.; Tu, D.C.; Moise, A.R.; Bronson, D.; Possin, D.; van Gelder, R.N.; Baehr, W.; Palczewski, K. Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J. Biol. Chem. 2004, 279, 10422–10432. [Google Scholar] [CrossRef] [PubMed]
  169. Van Huet, R.A.; Siemiatkowska, A.M.; Ozgul, R.K.; Yucel, D.; Hoyng, C.B.; Banin, E.; Blumenfeld, A.; Rotenstreich, Y.; Riemslag, F.C.; den Hollander, A.I.; et al. Retinitis pigmentosa caused by mutations in the ciliary MAK gene is relatively mild and is not associated with apparent extra-ocular features. Acta Ophthalmol. 2015, 93, 83–94. [Google Scholar] [CrossRef]
  170. Omori, Y.; Chaya, T.; Katoh, K.; Kajimura, N.; Sato, S.; Muraoka, K.; Ueno, S.; Koyasu, T.; Kondo, M.; Furukawa, T. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc. Natl. Acad. Sci. USA 2010, 107, 22671–22676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  171. Scott, R.S.; McMahon, E.J.; Pop, S.M.; Reap, E.A.; Caricchio, R.; Cohen, P.L.; Earp, H.S.; Matsushima, G.K. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 2001, 411, 207–211. [Google Scholar] [CrossRef]
  172. Everson, R.; Pettitt, L.; Forman, O.P.; Dower-Tylee, O.; McLaughlin, B.; Ahonen, S.; Kaukonen, M.; Komaromy, A.M.; Lohi, H.; Mellersh, C.S.; et al. An intronic LINE-1 insertion in MERTK is strongly associated with retinopathy in Swedish Vallhund dogs. PLoS ONE 2017, 12, e0183021. [Google Scholar] [CrossRef]
  173. Siemiatkowska, A.M.; van den Born, L.I.; van Hagen, P.M.; Stoffels, M.; Neveling, K.; Henkes, A.; Kipping-Geertsema, M.; Hoefsloot, L.H.; Hoyng, C.B.; Simon, A.; et al. Mutations in the Mevalonate Kinase (MVK) Gene Cause Nonsyndromic Retinitis Pigmentosa. Ophthalmology 2013, 120, 2697–2705. [Google Scholar] [CrossRef]
  174. Hager, E.J.; Tse, H.M.; Piganelli, J.D.; Gupta, M.; Baetscher, M.; Tse, T.E.; Pappu, A.S.; Steiner, R.D.; Hoffmann, G.F.; Gibson, K.M. Deletion of a single mevalonate kinase (Mvk) allele yields a murine model of hyper-IgD syndrome. J. Inherit. Metab. Dis. 2007, 30, 888–895. [Google Scholar] [CrossRef]
  175. Nishiguchi, K.M.; Tearle, R.G.; Liu, Y.F.P.; Ohd, E.C.; Miyake, N.; Benaglio, P.; Harper, S.; Koskiniemi-Kuendig, H.; Venturini, G.; Sharon, D.; et al. Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene. Proc. Natl. Acad. Sci. USA 2013, 110, 16139–16144. [Google Scholar] [CrossRef]
  176. Sonn, S.; Khang, I.; Kim, K.; Rhee, K. Suppression of Nek2A in mouse early embryos confirms its requirement for chromosome segregation. J. Cell Sci. 2004, 117, 5557–5566. [Google Scholar] [CrossRef]
  177. Wang, F.; Li, H.J.; Xu, M.C.; Li, H.; Zhao, L.; Yang, L.Z.; Zaneveld, J.E.; Wang, K.Q.; Li, Y.M.; Sui, R.F.; et al. A Homozygous Missense Mutation in NEUROD1 Is Associated With Nonsyndromic Autosomal Recessive Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2015, 56, 150–155. [Google Scholar] [CrossRef]
  178. Liu, M.; Pereira, F.A.; Price, S.D.; Chu, M.J.; Shope, C.; Himes, D.; Eatock, R.A.; Brownell, W.E.; Lysakowski, A.; Tsai, M.J. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 2000, 14, 2839–2854. [Google Scholar] [CrossRef] [PubMed]
  179. Sakamoto, K.; McCluskey, M.; Wensel, T.G.; Naggert, J.K.; Nishina, P.M. New mouse models for recessive retinitis pigmentosa caused by mutations in the Pde6a gene. Hum. Mol. Genet. 2009, 18, 178–192. [Google Scholar] [CrossRef] [PubMed]
  180. Petersen-Jones, S.M.; Entz, D.D.; Sargan, D.R. CGMP phosphodiesterase-alpha mutation causes progressive retinal atrophy in the Cardigan Welsh corgi dog. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1637–1644. [Google Scholar]
  181. Pichard, V.; Provost, N.; Mendes-Madeira, A.; Libeau, L.; Hulin, P.; Tshilenge, K.T.; Biget, M.; Ameline, B.; Deschamps, J.Y.; Weber, M.; et al. AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6beta-deficient Dogs. J. Am. Soc. Gene Ther. 2016, 24, 867–876. [Google Scholar] [CrossRef]
  182. Dvir, L.; Srour, G.; Abu-Ras, R.; Miller, B.; Shalev, S.A.; Ben-Yosef, T. Autosomal-recessive early-onset retinitis pigmentosa caused by a mutation in PDE6G, the gene encoding the gamma subunit of rod cGMP phosphodiesterase. Am. J. Hum. Genet. 2010, 87, 258–264. [Google Scholar] [CrossRef]
  183. Tsang, S.H.; Gouras, P.; Yamashita, C.K.; Kjeldbye, H.; Fisher, J.; Farber, D.B.; Goff, S.P. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 1996, 272, 1026–1029. [Google Scholar] [CrossRef]
  184. Xu, M.; Yamada, T.; Sun, Z.; Eblimit, A.; Lopez, I.; Wang, F.; Manya, H.; Xu, S.; Zhao, L.; Li, Y. Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum. Mol. Genet. 2016, 25, 1479–1488. [Google Scholar] [CrossRef]
  185. Liu, J.; Ball, S.L.; Yang, Y.; Mei, P.; Zhang, L.; Shi, H.; Kaminski, H.J.; Lemmon, V.P.; Hu, H. A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech. Dev. 2006, 123, 228–240. [Google Scholar] [CrossRef]
  186. Nevet, M.J.; Shalev, S.A.; Zlotogora, J.; Mazzawi, N.; Ben-Yosef, T. Identification of a prevalent founder mutation in an Israeli Muslim Arab village confirms the role of PRCD in the aetiology of retinitis pigmentosa in humans. J. Med. Genet. 2010, 47, 533–537. [Google Scholar] [CrossRef] [PubMed]
  187. Zangerl, B.; Goldstein, O.; Philp, A.R.; Lindauer, S.J.P.; Pearce-Kelling, S.E.; Mullins, R.F.; Graphodatsky, A.S.; Ripoll, D.; Felix, J.S.; Stone, E.M.; et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics 2006, 88, 551–563. [Google Scholar] [CrossRef] [PubMed]
  188. Permanyer, J.; Navarro, R.; Friedman, J.; Pomares, E.; Castro-Navarro, J.; Marfany, G.; Swaroop, A.; Gonzalez-Duarte, R. Autosomal Recessive Retinitis Pigmentosa with Early Macular Affectation Caused by Premature Truncation in PROM1. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2656–2663. [Google Scholar] [CrossRef] [PubMed]
  189. Den Hollander, A.I.; McGee, T.L.; Ziviello, C.; Banfi, S.; Dryja, T.P.; Gonzalez-Fernandez, F.; Ghosh, D.; Berson, E.L. A Homozygous Missense Mutation in the IRBP Gene (RBP3) Associated with Autosomal Recessive Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1864–1872. [Google Scholar] [CrossRef]
  190. Liou, G.I.; Fei, Y.J.; Peachey, N.S.; Matragoon, S.; Wei, S.H.; Blaner, W.S.; Wang, Y.X.; Liu, C.Y.; Gottesman, M.E.; Ripps, H. Early onset photoreceptor abnormalities induced by targeted disruption of the interphotoreceptor retinoid-binding protein gene. J. Neurosci. 1998, 18, 4511–4520. [Google Scholar] [CrossRef]
  191. Arno, G.; Agrawal, S.A.; Eblimit, A.; Bellingham, J.; Xu, M.; Wang, F.; Chakarova, C.; Parfitt, D.A.; Lane, A.; Burgoyne, T. Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa. Am. J. Hum. Genet. 2016, 99, 1305–1315. [Google Scholar] [CrossRef]
  192. Agrawal, S.A.; Burgoyne, T.; Eblimit, A.; Bellingham, J.; Parfitt, D.A.; Lane, A.; Nichols, R.; Asomugha, C.; Hayes, M.J.; Munro, P.M.; et al. REEP6 deficiency leads to retinal degeneration through disruption of ER homeostasis and protein trafficking. Hum. Mol. Genet. 2017, 26, 2667–2677. [Google Scholar] [CrossRef]
  193. Maeda, T.; van Hooser, J.P.; Driessen, C.A.G.G.; Filipek, S.; Janssen, J.J.M.; Palczewski, K. Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo. J. Neurochem. 2003, 85, 944–956. [Google Scholar] [CrossRef] [Green Version]
  194. Saari, J.C.; Nawrot, M.; Kennedy, B.N.; Garwin, G.G.; Hurley, J.B.; Huang, J.; Possin, D.E.; Crabb, J.W. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 2001, 29, 739–748. [Google Scholar] [CrossRef]
  195. Davidson, A.E.; Sergouniotis, P.I.; Mackay, D.S.; Wright, G.A.; Waseem, N.H.; Michaelides, M.; Holder, G.E.; Robson, A.G.; Moore, A.T.; Plagnol, V.; et al. RP1L1 Variants are Associated with a Spectrum of Inherited Retinal Diseases Including Retinitis Pigmentosa and Occult Macular Dystrophy. Hum. Mutat. 2013, 34, 506–514. [Google Scholar] [CrossRef]
  196. Yamashita, T.; Liu, J.W.; Gao, J.G.; LeNoue, S.; Wang, C.G.; Kaminoh, J.; Bowne, S.J.; Sullivan, L.S.; Daiger, S.P.; Zhang, K.; et al. Essential and Synergistic Roles of RP1 and RP1L1 in Rod Photoreceptor Axoneme and Retinitis Pigmentosa. J. Neurosci. 2009, 29, 9748–9760. [Google Scholar] [CrossRef] [PubMed]
  197. Chen, J.; Simon, M.I.; Matthes, M.T.; Yasumura, D.; LaVail, M.M. Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness). Investig. Ophthalmol. Vis. Sci. 1999, 40, 2978–2982. [Google Scholar]
  198. Goldstein, O.; Jordan, J.A.; Aguirre, G.D.; Acland, G.M. A non-stop S-antigen gene mutation is associated with late onset hereditary retinal degeneration in dogs. Mol. Vis. 2013, 19, 1871–1884. [Google Scholar] [PubMed]
  199. Corton, M.; Avila-Fernandez, A.; Campello, L.; Sanchez, M.; Benavides, B.; Lopez-Molina, M.I.; Fernandez-Sanchez, L.; Sanchez-Alcudia, R.; da Silva, L.R.J.; Reyes, N.; et al. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa. Sci. Rep. 2016, 6, 35370. [Google Scholar] [CrossRef] [PubMed]
  200. Jin, Z.B.; Huang, X.F.; Lv, J.N.; Xiang, L.; Li, D.Q.; Chen, J.F.; Huang, C.J.; Wu, J.Y.; Lu, F.; Qu, J. SLC7A14 linked to autosomal recessive retinitis pigmentosa. Nat. Commun. 2014, 5, 3517. [Google Scholar] [CrossRef] [PubMed]
  201. Kannabiran, C.; Palavalli, L.; Jalali, S. Mutation of SPATA7 in a family with autosomal recessive early-onset retinitis pigmentosa. J. Mol. Genet. Med. 2012, 6, 301–303. [Google Scholar] [CrossRef]
  202. Zhong, H.; Eblimit, A.; Moayedi, Y.; Boye, S.L.; Chiodo, V.A.; Chen, Y.; Li, Y.; Nichols, R.M.; Hauswirth, W.W.; Chen, R. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa. Gene. Ther. 2015, 22, 619–627. [Google Scholar] [CrossRef] [Green Version]
  203. Wedatilake, Y.; Niazi, R.; Fassone, E.; Powell, C.A.; Pearce, S.; Plagnol, V.; Saldanha, J.W.; Kleta, R.; Chong, W.K.; Footitt, E.; et al. TRNT1 deficiency: Clinical, biochemical and molecular genetic features. Orphanet J. Rare Dis. 2016, 11, 90. [Google Scholar] [CrossRef] [PubMed]
  204. DeLuca, A.P.; Whitmore, S.S.; Barnes, J.; Sharma, T.P.; Westfall, T.A.; Scott, C.A.; Weed, M.C.; Wiley, J.S.; Wiley, L.A.; Johnston, R.M.; et al. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis. Hum. Mol. Genet. 2016, 25, 44–56. [Google Scholar] [CrossRef]
  205. Tadenev, A.L.; Kulaga, H.M.; May-Simera, H.L.; Kelley, M.W.; Katsanis, N.; Reed, R.R. Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proc. Natl. Acad. Sci. USA 2011, 108, 10320–10325. [Google Scholar] [CrossRef]
  206. Downs, L.M.; Wallin-Hakansson, B.; Bergstrom, T.; Mellersh, C.S. A novel mutation in TTC8 is associated with progressive retinal atrophy in the golden retriever. Canine Genet. Epidemiol. 2014, 1, 4. [Google Scholar] [CrossRef] [PubMed]
  207. Ikeda, S.; Shiva, N.; Ikeda, A.; Smith, R.S.; Nusinowitz, S.; Yan, G.; Lin, T.R.; Chu, S.; Heckenlively, J.R.; North, M.A.; et al. Retinal degeneration but not obesity is observed in null mutants of the tubby-like protein 1 gene. Hum. Mol. Genet. 2000, 9, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  208. Liu, X.Q.; Bulgakov, O.V.; Darrow, K.N.; Pawlyk, B.; Adamian, M.; Liberman, M.C.; Li, T.S. Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc. Natl. Acad. Sci. USA 2007, 104, 4413–4418. [Google Scholar] [CrossRef] [Green Version]
  209. Avila-Fernandez, A.; Perez-Carro, R.; Corton, M.; Lopez-Molina, M.I.; Campello, L.; Garanto, A.; Fernandez-Sanchez, L.; Duijkers, L.; Lopez-Martinez, M.A.; Riveiro-Alvarez, R.; et al. Whole-exome sequencing reveals ZNF408 as a new gene associated with autosomal recessive retinitis pigmentosa with vitreal alterations. Hum. Mol. Genet. 2015, 24, 4037–4048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  210. Collin, R.W.J.; Nikopoulos, K.; Dona, M.; Gilissen, C.; Hoischen, A.; Boonstra, F.N.; Poulter, J.A.; Kondo, H.; Berger, W.; Toomes, C.; et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc. Natl. Acad. Sci. USA 2013, 110, 9856–9861. [Google Scholar] [CrossRef] [PubMed]
  211. Li, L.; Nakaya, N.; Chavali, V.R.M.; Ma, Z.W.; Jiao, X.D.; Sieving, P.A.; Riazuddin, S.; Tomarev, S.I.; Ayyagari, R.; Riazuddin, S.A.; et al. A Mutation in ZNF513, a Putative Regulator of Photoreceptor Development, Causes Autosomal-Recessive Retinitis Pigmentosa. Am. J. Hum. Genet. 2010, 87, 400–409. [Google Scholar] [CrossRef] [Green Version]
  212. Webb, T.R.; Parfitt, D.A.; Gardner, J.C.; Martinez, A.; Bevilacqua, D.; Davidson, A.E.; Zito, I.; Thiselton, D.L.; Ressa, J.H.C.; Apergi, M.; et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum. Mol. Genet. 2012, 21, 3647–3654. [Google Scholar] [CrossRef] [Green Version]
  213. Ferrante, M.I.; Zullo, A.; Barra, A.; Bimonte, S.; Messaddeq, N.; Studer, M.; Dolle, P.; Franco, B. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat. Genet. 2006, 38, 112–117. [Google Scholar] [CrossRef]
  214. Zullo, A.; Iaconis, D.; Barra, A.; Cantone, A.; Messaddeq, N.; Capasso, G.; Dolle, P.; Igarashi, P.; Franco, B. Kidney-specific inactivation of Ofd1 leads to renal cystic disease associated with upregulation of the mTOR pathway. Hum. Mol. Genet. 2010, 19, 2792–2803. [Google Scholar] [CrossRef] [Green Version]
  215. Mookherjee, S.; Hiriyanna, S.; Kaneshiro, K.; Li, L.; Li, Y.; Li, W.; Qian, H.; Li, T.; Khanna, H.; Colosi, P.; et al. Long-term rescue of cone photoreceptor degeneration in retinitis pigmentosa 2 (RP2)-knockout mice by gene replacement therapy. Hum. Mol. Genet. 2015, 24, 6446–6458. [Google Scholar] [CrossRef]
  216. Thompson, D.A.; Khan, N.W.; Othman, M.I.; Chang, B.; Jia, L.; Grahek, G.; Wu, Z.J.; Hiriyanna, S.; Nellissery, J.; Li, T.S.; et al. Rd9 Is a Naturally Occurring Mouse Model of a Common Form of Retinitis Pigmentosa Caused by Mutations in RPGR-ORF15. PLoS ONE 2012, 7, e35865. [Google Scholar] [CrossRef] [PubMed]
  217. Appelbaum, T.; Becker, D.; Santana, E.; Aguirre, G.D. Molecular studies of phenotype variation in canine RPGR-XLPRA1. Mol. Vis. 2016, 22, 319–331. [Google Scholar] [PubMed]
  218. Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [PubMed]
  219. Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar]
  220. Ellegren, H. Comparative genomics and the study of evolution by natural selection. Mol. Ecol. 2008, 17, 4586–4596. [Google Scholar] [CrossRef] [PubMed]
  221. Roux, S.; Brum, J.R.; Dutilh, B.E.; Sunagawa, S.; Duhaime, M.B.; Loy, A.; Poulos, B.T.; Solonenko, N.; Lara, E.; Poulain, J.; et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016, 537, 689–693. [Google Scholar] [CrossRef] [Green Version]
  222. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [Green Version]
  223. Prufer, K.; Racimo, F.; Patterson, N.; Jay, F.; Sankararaman, S.; Sawyer, S.; Heinze, A.; Renaud, G.; Sudmant, P.H.; de Filippo, C.; et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 2014, 505, 43–49. [Google Scholar] [CrossRef]
  224. Slon, V.; Mafessoni, F.; Vernot, B.; de Filippo, C.; Grote, S.; Viola, B.; Hajdinjak, M.; Peyregne, S.; Nagel, S.; Brown, S.; et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 2018, 561, 113–116. [Google Scholar] [CrossRef]
  225. Achilli, A.; Olivieri, A.; Semino, O.; Torroni, A. Ancient human genomes-keys to understanding our past. Science 2018, 360, 964–965. [Google Scholar] [CrossRef]
  226. Haak, W.; Lazaridis, I.; Patterson, N.; Rohland, N.; Mallick, S.; Llamas, B.; Brandt, G.; Nordenfelt, S.; Harney, E.; Stewardson, K.; et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 2015, 522, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  227. Skoglund, P.; Malmstrom, H.; Omrak, A.; Raghavan, M.; Valdiosera, C.; Gunther, T.; Hall, P.; Tambets, K.; Parik, J.; Sjogren, K.G.; et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 2014, 344, 747–750. [Google Scholar] [CrossRef] [PubMed]
  228. Gibbons, A. DNA reveals European roots of the ancient Philistines. Science 2019, 365, 17. [Google Scholar] [CrossRef] [PubMed]
  229. Feuda, R.; Rota-Stabelli, O.; Oakley, T.H.; Pisani, D. The comb jelly opsins and the origins of animal phototransduction. Genome Biol. Evol. 2014, 6, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
  230. Ryan, J.F.; Pang, K.; Schnitzler, C.E.; Nguyen, A.D.; Moreland, R.T.; Simmons, D.K.; Koch, B.J.; Francis, W.R.; Havlak, P.; Program, N.C.; et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 2013, 342, 1242592. [Google Scholar] [CrossRef] [PubMed]
  231. Picciani, N.; Kerlin, J.R.; Sierra, N.; Swafford, A.J.M.; Ramirez, M.D.; Roberts, N.G.; Cannon, J.T.; Daly, M.; Oakley, T.H. Prolific Origination of Eyes in Cnidaria with Co-option of Non-visual Opsins. Curr. Biol. 2018, 28, 2413–2419. [Google Scholar] [CrossRef]
  232. Srivastava, M.; Simakov, O.; Chapman, J.; Fahey, B.; Gauthier, M.E.; Mitros, T.; Richards, G.S.; Conaco, C.; Dacre, M.; Hellsten, U.; et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 2010, 466, 720–726. [Google Scholar] [CrossRef]
  233. Wang, S.; Zhang, J.; Jiao, W.; Li, J.; Xun, X.; Sun, Y.; Guo, X.; Huan, P.; Dong, B.; Zhang, L.; et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat. Ecol. Evol. 2017, 1, 120. [Google Scholar] [CrossRef]
  234. Richter, D.J.; King, N. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 2013, 47, 509–537. [Google Scholar] [CrossRef]
  235. Dunn, C.W.; Leys, S.P.; Haddock, S.H. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 2015, 30, 282–291. [Google Scholar] [CrossRef] [Green Version]
  236. Weiner, M.P.; Gabriel, S.B.; Stephens, J.C. Genetic Variation: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2007. [Google Scholar]
  237. Reich, D.E.; Cargill, M.; Bolk, S.; Ireland, J.; Sabeti, P.C.; Richter, D.J.; Lavery, T.; Kouyoumjian, R.; Farhadian, S.F.; Ward, R.; et al. Linkage disequilibrium in the human genome. Nature 2001, 411, 199–204. [Google Scholar] [CrossRef]
  238. Swaroop, A.; Chew, E.Y.; Rickman, C.B.; Abecasis, G.R. Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu. Rev. Genom. Hum. Genet. 2009, 10, 19–43. [Google Scholar] [CrossRef] [PubMed]
  239. Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef] [PubMed]
  240. Haines, J.L.; Hauser, M.A.; Schmidt, S.; Scott, W.K.; Olson, L.M.; Gallins, P.; Spencer, K.L.; Kwan, S.Y.; Noureddine, M.; Gilbert, J.R.; et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 2005, 308, 419–421. [Google Scholar] [CrossRef] [PubMed]
  241. Sofat, R.; Casas, J.P.; Webster, A.R.; Bird, A.C.; Mann, S.S.; Yates, J.R.; Moore, A.T.; Sepp, T.; Cipriani, V.; Bunce, C. Complement factor H genetic variant and age-related macular degeneration: Effect size, modifiers and relationship to disease subtype. Int. J. Epidemiol. 2012, 41, 250–262. [Google Scholar] [CrossRef] [PubMed]
  242. Li, M.; Atmaca-Sonmez, P.; Othman, M.; Branham, K.E.; Khanna, R.; Wade, M.S.; Li, Y.; Liang, L.; Zareparsi, S.; Swaroop, A.; et al. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat. Genet. 2006, 38, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
  243. Rivera, A.; Fisher, S.A.; Fritsche, L.G.; Keilhauer, C.N.; Lichtner, P.; Meitinger, T.; Weber, B.H. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet. 2005, 14, 3227–3236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  244. Dewan, A.; Liu, M.; Hartman, S.; Zhang, S.S.; Liu, D.T.; Zhao, C.; Tam, P.O.; Chan, W.M.; Lam, D.S.; Snyder, M.; et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006, 314, 989–992. [Google Scholar] [CrossRef]
  245. Devlin, B.; Roeder, K. Genomic control for association studies. Biometrics 1999, 55, 997–1004. [Google Scholar] [CrossRef]
  246. Fritsche, L.G.; Chen, W.; Schu, M.; Yaspan, B.L.; Yu, Y.; Thorleifsson, G.; Zack, D.J.; Arakawa, S.; Cipriani, V.; Ripke, S.; et al. Seven new loci associated with age-related macular degeneration. Nat. Genet. 2013, 45, 433. [Google Scholar]
  247. Fritsche, L.G.; Igl, W.; Bailey, J.N.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; Gorski, M.; et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 2016, 48, 134–143. [Google Scholar] [CrossRef] [PubMed]
  248. Leveillard, T.; Philp, N.J.; Sennlaub, F. Is Retinal Metabolic Dysfunction at the Center of the Pathogenesis of Age-related Macular Degeneration? Int. J. Mol. Sci. 2019, 20, 762. [Google Scholar] [CrossRef] [PubMed]
  249. Seddon, J.M.; Reynolds, R.; Maller, J.; Fagerness, J.A.; Daly, M.J.; Rosner, B. Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2044–2053. [Google Scholar] [CrossRef] [PubMed]
  250. Bowes, C.; Danciger, M.; Kozak, C.A.; Farber, D.B. Isolation of a candidate cDNA for the gene causing retinal degeneration in the rd mouse. Proc. Natl. Acad. Sci. USA 1989, 86, 9722–9726. [Google Scholar] [CrossRef] [PubMed]
  251. Livesey, F.J.; Furukawa, T.; Steffen, M.A.; Church, G.M.; Cepko, C.L. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Curr. Biol. 2000, 10, 301–310. [Google Scholar] [CrossRef] [Green Version]
  252. Sharon, D.; Blackshaw, S.; Cepko, C.L.; Dryja, T.P. Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE). Proc. Natl. Acad. Sci. USA 2002, 99, 315–320. [Google Scholar] [CrossRef] [PubMed]
  253. Michaut, L.; Flister, S.; Neeb, M.; White, K.P.; Certa, U.; Gehring, W.J. Analysis of the eye developmental pathway in Drosophila using DNA microarrays. Proc. Natl. Acad. Sci. USA 2003, 100, 4024–4029. [Google Scholar] [CrossRef]
  254. Roesch, K.; Jadhav, A.P.; Trimarchi, J.M.; Stadler, M.B.; Roska, B.; Sun, B.B.; Cepko, C.L. The transcriptome of retinal Muller glial cells. J. Comp. Neurol. 2008, 509, 225–238. [Google Scholar] [CrossRef]
  255. Dorrell, M.I.; Aguilar, E.; Weber, C.; Friedlander, M. Global gene expression analysis of the developing postnatal mouse retina. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1009–1019. [Google Scholar] [CrossRef]
  256. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
  257. Brazma, A.; Parkinson, H.; Sarkans, U.; Shojatalab, M.; Vilo, J.; Abeygunawardena, N.; Holloway, E.; Kapushesky, M.; Kemmeren, P.; Lara, G.G.; et al. ArrayExpress—A public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003, 31, 68–71. [Google Scholar] [CrossRef] [PubMed]
  258. Sanfilippo, P.G.; Hewitt, A.W. Translating the ENCyclopedia Of DNA Elements Project findings to the clinic: ENCODE’s implications for eye disease. Clin. Exp. Ophthalmol. 2014, 42, 78–83. [Google Scholar] [CrossRef] [PubMed]
  259. Consortium, M.; Shi, L.; Reid, L.H.; Jones, W.D.; Shippy, R.; Warrington, J.A.; Baker, S.C.; Collins, P.J.; de Longueville, F.; Kawasaki, E.S.; et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 2006, 24, 1151–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  260. Gong, Y.; Yan, K.; Lin, F.; Anderson, K.; Sotiriou, C.; Andre, F.; Holmes, F.A.; Valero, V.; Booser, D.; Pippen, J.E., Jr.; et al. Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: A gene-expression profiling study. Lancet Oncol. 2007, 8, 203–211. [Google Scholar] [CrossRef]
  261. Hackam, A.S.; Strom, R.; Liu, D.; Qian, J.; Wang, C.; Otteson, D.; Gunatilaka, T.; Farkas, R.H.; Chowers, I.; Kageyama, M.; et al. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2929–2942. [Google Scholar] [CrossRef] [PubMed]
  262. Rattner, A.; Nathans, J. The genomic response to retinal disease and injury: Evidence for endothelin signaling from photoreceptors to glia. J. Neurosci. 2005, 25, 4540–4549. [Google Scholar] [CrossRef] [PubMed]
  263. Thiersch, M.; Raffelsberger, W.; Frigg, R.; Samardzija, M.; Wenzel, A.; Poch, O.; Grimm, C. Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection. BMC Genom. 2008, 9, 73. [Google Scholar] [CrossRef] [PubMed]
  264. Cronin, T.; Raffelsberger, W.; Lee-Rivera, I.; Jaillard, C.; Niepon, M.L.; Kinzel, B.; Clerin, E.; Petrosian, A.; Picaud, S.; Poch, O.; et al. The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death Differ. 2010, 17, 1199–1210. [Google Scholar] [CrossRef]
  265. Chen, Y.; Brooks, M.J.; Gieser, L.; Swaroop, A.; Palczewski, K. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharm. Res. 2017, 115, 1–13. [Google Scholar] [CrossRef] [PubMed]
  266. Nasonkin, I.O.; Merbs, S.L.; Lazo, K.; Oliver, V.F.; Brooks, M.; Patel, K.; Enke, R.A.; Nellissery, J.; Jamrich, M.; Le, Y.Z.; et al. Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis. Development 2013, 140, 1330–1341. [Google Scholar] [CrossRef] [Green Version]
  267. Zhang, X.; Wang, D.; Dongye, M.; Zhu, Y.; Chen, C.; Wang, R.; Long, E.; Liu, Z.; Wu, X.; Lin, D.; et al. Loss-of-function mutations in FREM2 disrupt eye morphogenesis. Exp. Eye Res. 2019, 181, 302–312. [Google Scholar] [CrossRef] [PubMed]
  268. Punzo, C.; Kornacker, K.; Cepko, C.L. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat. Neurosci. 2009, 12, 44–52. [Google Scholar] [CrossRef] [PubMed]
  269. Siegert, S.; Cabuy, E.; Scherf, B.G.; Kohler, H.; Panda, S.; Le, Y.Z.; Fehling, H.J.; Gaidatzis, D.; Stadler, M.B.; Roska, B. Transcriptional code and disease map for adult retinal cell types. Nat. Neurosci. 2012, 15, 487–495. [Google Scholar] [CrossRef] [PubMed]
  270. Kalathur, R.K.; Gagniere, N.; Berthommier, G.; Poidevin, L.; Raffelsberger, W.; Ripp, R.; Leveillard, T.; Poch, O. RETINOBASE: A web database, data mining and analysis platform for gene expression data on retina. BMC Genom. 2008, 9, 208. [Google Scholar] [CrossRef] [PubMed]
  271. Leveillard, T.D. Knowledge Base for sensory systems for biologists and clinicians. Investig. Ophthalmol. Vis. Sci. 2016, 57, 12. [Google Scholar]
  272. Craig, P.; Cannon, A.; Kennedy, J.; Kukla, R. Pattern browsing and query adjustment for the exploratory analysis and cooperative visualisation of microarray time-course data. In Cooperative Design, Visualization, and Engineering; Springer International Publishing AG Adresse: Gewerbestrasse, Cham, Suisse, 2010; pp. 199–206. [Google Scholar]
  273. Becirovic, E.; Bohm, S.; Nguyen, O.N.; Riedmayr, L.M.; Koch, M.A.; Schulze, E.; Kohl, S.; Borsch, O.; Santos-Ferreira, T.; Ader, M.; et al. In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors. PLoS Genet. 2016, 12, e1005811. [Google Scholar] [CrossRef] [PubMed]
  274. Buskin, A.; Zhu, L.; Chichagova, V.; Basu, B.; Mozaffari-Jovin, S.; Dolan, D.; Droop, A.; Collin, J.; Bronstein, R.; Mehrotra, S.; et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Commun. 2018, 9, 4234. [Google Scholar] [CrossRef]
  275. Gamsiz, E.D.; Ouyang, Q.; Schmidt, M.; Nagpal, S.; Morrow, E.M. Genome-wide transcriptome analysis in murine neural retina using high-throughput RNA sequencing. Genomics 2012, 99, 44–51. [Google Scholar] [CrossRef] [Green Version]
  276. Brooks, M.J.; Rajasimha, H.K.; Roger, J.E.; Swaroop, A. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes. Mol. Vis. 2011, 17, 3034–3054. [Google Scholar]
  277. Farkas, M.H.; Grant, G.R.; White, J.A.; Sousa, M.E.; Consugar, M.B.; Pierce, E.A. Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes. BMC Genom. 2013, 14, 486. [Google Scholar] [CrossRef]
  278. Xu, X.; Zhang, Y.; Williams, J.; Antoniou, E.; McCombie, W.R.; Wu, S.; Zhu, W.; Davidson, N.O.; Denoya, P.; Li, E. Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. BMC Bioinform. 2013, 14, 1. [Google Scholar] [CrossRef] [PubMed]
  279. Mustafi, D.; Kevany, B.M.; Genoud, C.; Bai, X.; Palczewski, K. Photoreceptor phagocytosis is mediated by phosphoinositide signaling. FASEB J. 2013, 27, 4585–4595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  280. Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef] [PubMed]
  281. Busskamp, V.; Krol, J.; Nelidova, D.; Daum, J.; Szikra, T.; Tsuda, B.; Juttner, J.; Farrow, K.; Scherf, B.G.; Alvarez, C.P.; et al. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron 2014, 83, 586–600. [Google Scholar] [CrossRef] [PubMed]
  282. Krol, J.; Krol, I.; Alvarez, C.P.; Fiscella, M.; Hierlemann, A.; Roska, B.; Filipowicz, W. A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nat. Commun. 2015, 6, 7305. [Google Scholar] [CrossRef]
  283. Karali, M.; Peluso, I.; Gennarino, V.A.; Bilio, M.; Verde, R.; Lago, G.; Dolle, P.; Banfi, S. miRNeye: A microRNA expression atlas of the mouse eye. BMC Genom. 2010, 11, 715. [Google Scholar] [CrossRef]
  284. Lewin, A.S.; Drenser, K.A.; Hauswirth, W.W.; Nishikawa, S.; Yasumura, D.; Flannery, J.G.; LaVail, M.M. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat. Med. 1998, 4, 967–971. [Google Scholar] [CrossRef] [PubMed]
  285. O’Reilly, M.; Palfi, A.; Chadderton, N.; Millington-Ward, S.; Ader, M.; Cronin, T.; Tuohy, T.; Auricchio, A.; Hildinger, M.; Tivnan, A.; et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am. J. Hum. Genet. 2007, 81, 127–135. [Google Scholar] [CrossRef]
  286. Enright, J.M.; Lawrence, K.A.; Hadzic, T.; Corbo, J.C. Transcriptome profiling of developing photoreceptor subtypes reveals candidate genes involved in avian photoreceptor diversification. J. Comp. Neurol. 2015, 523, 649–668. [Google Scholar] [CrossRef]
  287. Shekhar, K.; Lapan, S.W.; Whitney, I.E.; Tran, N.M.; Macosko, E.Z.; Kowalczyk, M.; Adiconis, X.; Levin, J.Z.; Nemesh, J.; Goldman, M.; et al. Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. Cell 2016, 166, 1308–1323. [Google Scholar] [CrossRef]
  288. Quadrato, G.; Nguyen, T.; Macosko, E.Z.; Sherwood, J.L.; Min Yang, S.; Berger, D.R.; Maria, N.; Scholvin, J.; Goldman, M.; Kinney, J.P.; et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 2017, 545, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  289. Heng, J.S.; Rattner, A.; Stein-O’Brien, G.L.; Winer, B.L.; Jones, B.W.; Vernon, H.J.; Goff, L.A.; Nathans, J. Hypoxia tolerance in the Norrin-deficient retina and the chronically hypoxic brain studied at single-cell resolution. Proc. Natl. Acad. Sci. USA 2019, 116, 9103–9114. [Google Scholar] [CrossRef] [Green Version]
  290. Clark, B.S.; Stein-O’Brien, G.L.; Shiau, F.; Cannon, G.H.; Davis-Marcisak, E.; Sherman, T.; Santiago, C.P.; Hoang, T.V.; Rajaii, F.; James-Esposito, R.E.; et al. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron 2019, 102, 1111–1126. [Google Scholar] [CrossRef]
  291. Voigt, A.P.; Whitmore, S.S.; Flamme-Wiese, M.J.; Riker, M.J.; Wiley, L.A.; Tucker, B.A.; Stone, E.M.; Mullins, R.F.; Scheetz, T.E. Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing. Exp. Eye Res. 2019, 184, 234–242. [Google Scholar] [CrossRef]
  292. Lubec, G.; Afjehi-Sadat, L.; Yang, J.W.; John, J.P. Searching for hypothetical proteins: Theory and practice based upon original data and literature. Prog. Neurobiol. 2005, 77, 90–127. [Google Scholar] [CrossRef]
  293. Nookala, S.; Gandrakota, R.; Wohabrebbi, A.; Wang, X.; Howell, D.; Giorgianni, F.; Beranova-Giorgianni, S.; Desiderio, D.M.; Jablonski, M.M. In search of the identity of the XAP-1 antigen: A protein localized to cone outer segments. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2736–2743. [Google Scholar] [CrossRef] [PubMed]
  294. Matsumoto, H.; Komori, N. Ocular proteomics: Cataloging photoreceptor proteins by two-dimensional gel electrophoresis and mass spectrometry. Methods Enzym. 2000, 316, 492–511. [Google Scholar]
  295. Vizcaino, J.A.; Csordas, A.; del-Toro, N.; Dianes, J.A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016, 44, D447–D456. [Google Scholar] [CrossRef]
  296. Garin-Muga, A.; Odriozola, L.; Martinez-Val, A.; del Toro, N.; Martinez, R.; Molina, M.; Cantero, L.; Rivera, R.; Garrido, N.; Dominguez, F.; et al. Detection of Missing Proteins Using the PRIDE Database as a Source of Mass Spectrometry Evidence. J. Proteome Res. 2016, 15, 4101–4115. [Google Scholar] [CrossRef] [PubMed]
  297. Semba, R.D.; Enghild, J.J.; Venkatraman, V.; Dyrlund, T.F.; van Eyk, J.E. The Human Eye Proteome Project: Perspectives on an emerging proteome. Proteomics 2013, 13, 2500–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  298. Cavusoglu, N.; Thierse, D.; Mohand-Said, S.; Chalmel, F.; Poch, O.; Van-Dorsselaer, A.; Sahel, J.A.; Leveillard, T. Differential proteomic analysis of the mouse retina: the induction of crystallin proteins by retinal degeneration in the rd1 mouse. Mol. Cell Proteom. 2003, 2, 494–505. [Google Scholar] [CrossRef] [PubMed]
  299. Ly, A.; Merl-Pham, J.; Priller, M.; Gruhn, F.; Senninger, N.; Ueffing, M.; Hauck, S.M. Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the rd10 Mouse Model. J. Proteome Res. 2016, 15, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
  300. Stettler, O.; Joshi, R.L.; Wizenmann, A.; Reingruber, J.; Holcman, D.; Bouillot, C.; Castagner, F.; Prochiantz, A.; Moya, K.L. Engrailed homeoprotein recruits the adenosine A1 receptor to potentiate ephrin A5 function in retinal growth cones. Development 2012, 139, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  301. Dona, M.; Bachmann-Gagescu, R.; Texier, Y.; Toedt, G.; Hetterschijt, L.; Tonnaer, E.L.; Peters, T.A.; van Beersum, S.E.; Bergboer, J.G.; Horn, N.; et al. NINL and DZANK1 Co-function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish. PLoS Genet. 2015, 11, e1005574. [Google Scholar] [CrossRef]
  302. Ramirez, J.; Martinez, A.; Lectez, B.; Lee, S.Y.; Franco, M.; Barrio, R.; Dittmar, G.; Mayor, U. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells. PLoS ONE 2015, 10, e0139083. [Google Scholar] [CrossRef]
  303. Crabb, J.W.; Miyagi, M.; Gu, X.; Shadrach, K.; West, K.A.; Sakaguchi, H.; Kamei, M.; Hasan, A.; Yan, L.; Rayborn, M.E.; et al. Drusen proteome analysis: An approach to the etiology of age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2002, 99, 14682–14687. [Google Scholar] [CrossRef] [Green Version]
  304. Umeda, S.; Suzuki, M.T.; Okamoto, H.; Ono, F.; Mizota, A.; Terao, K.; Yoshikawa, Y.; Tanaka, Y.; Iwata, T. Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J. 2005, 19, 1683–1685. [Google Scholar] [CrossRef]
  305. Rogers, R.S.; Dharsee, M.; Ackloo, S.; Sivak, J.M.; Flanagan, J.G. Proteomics analyses of human optic nerve head astrocytes following biomechanical strain. Mol. Cell Proteom. 2012, 11, M111.012302. [Google Scholar] [CrossRef]
  306. Mallikarjuna, K.; Sundaram, C.S.; Sharma, Y.; Deepa, P.R.; Khetan, V.; Gopal, L.; Biswas, J.; Sharma, T.; Krishnakumar, S. Comparative proteomic analysis of differentially expressed proteins in primary retinoblastoma tumors. Proteom. Clin. Appl. 2010, 4, 449–463. [Google Scholar] [CrossRef]
  307. Danda, R.; Ganapathy, K.; Sathe, G.; Madugundu, A.K.; Ramachandran, S.; Krishnan, U.M.; Khetan, V.; Rishi, P.; Keshava Prasad, T.S.; Pandey, A.; et al. Proteomic profiling of retinoblastoma by high resolution mass spectrometry. Clin. Proteom. 2016, 13, 29. [Google Scholar] [CrossRef]
  308. Torok, Z.; Peto, T.; Csosz, E.; Tukacs, E.; Molnar, A.M.; Berta, A.; Tozser, J.; Hajdu, A.; Nagy, V.; Domokos, B.; et al. Combined Methods for Diabetic Retinopathy Screening, Using Retina Photographs and Tear Fluid Proteomics Biomarkers. J. Diabetes Res. 2015, 2015, 623619. [Google Scholar] [CrossRef] [PubMed]
  309. Nobl, M.; Reich, M.; Dacheva, I.; Siwy, J.; Mullen, W.; Schanstra, J.P.; Choi, C.Y.; Kopitz, J.; Kretz, F.T.; Auffarth, G.U.; et al. Proteomics of vitreous in neovascular age-related macular degeneration. Exp. Eye Res. 2016, 146, 107–117. [Google Scholar] [CrossRef] [PubMed]
  310. Velez, G.; Tang, P.H.; Cabral, T.; Cho, G.Y.; Machlab, D.A.; Tsang, S.H.; Bassuk, A.G.; Mahajan, V.B. Personalized Proteomics for Precision Health: Identifying Biomarkers of Vitreoretinal Disease. Transl. Vis. Sci. Technol. 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed]
  311. Velez, G.; Machlab, D.A.; Tang, P.H.; Sun, Y.; Tsang, S.H.; Bassuk, A.G.; Mahajan, V.B. Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic- and oxidative stress-related diseases. PLoS ONE 2018, 13, e0193250. [Google Scholar] [CrossRef] [PubMed]
  312. Hauck, S.M.; Suppmann, S.; Ueffing, M. Proteomic profiling of primary retinal Muller glia cells reveals a shift in expression patterns upon adaptation to in vitro conditions. Glia 2003, 44, 251–263. [Google Scholar] [CrossRef] [PubMed]
  313. Liu, Q.; Tan, G.; Levenkova, N.; Li, T.; Pugh, E.N., Jr.; Rux, J.J.; Speicher, D.W.; Pierce, E.A. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell Proteom. 2007, 6, 1299–1317. [Google Scholar] [CrossRef] [PubMed]
  314. Kwok, M.C.; Holopainen, J.M.; Molday, L.L.; Foster, L.J.; Molday, R.S. Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion. Mol. Cell Proteom. 2008, 7, 1053–1066. [Google Scholar] [CrossRef]
  315. Song, H.; Sokolov, M. Analysis of protein expression and compartmentalization in retinal neurons using serial tangential sectioning of the retina. J. Proteome Res. 2009, 8, 346–351. [Google Scholar] [CrossRef]
  316. Reidel, B.; Thompson, J.W.; Farsiu, S.; Moseley, M.A.; Skiba, N.P.; Arshavsky, V.Y. Proteomic profiling of a layered tissue reveals unique glycolytic specializations of photoreceptor cells. Mol. Cell Proteom. 2011, 10, M110.002469. [Google Scholar] [CrossRef]
  317. Merl, J.; Ueffing, M.; Hauck, S.M.; von Toerne, C. Direct comparison of MS-based label-free and SILAC quantitative proteome profiling strategies in primary retinal Muller cells. Proteomics 2012, 12, 1902–1911. [Google Scholar] [CrossRef]
  318. Von Toerne, C.; Menzler, J.; Ly, A.; Senninger, N.; Ueffing, M.; Hauck, S.M. Identification of a novel neurotrophic factor from primary retinal Muller cells using stable isotope labeling by amino acids in cell culture (SILAC). Mol. Cell Proteom. 2014, 13, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
  319. Crabb, J.W.; Yuan, X.; Dvoriantchikova, G.; Ivanov, D.; Crabb, J.S.; Shestopalov, V.I. Preliminary quantitative proteomic characterization of glaucomatous rat retinal ganglion cells. Exp. Eye Res. 2010, 91, 107–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  320. Tong, L.; Zhou, X.Y.; Jylha, A.; Aapola, U.; Liu, D.N.; Koh, S.K.; Tian, D.; Quah, J.; Uusitalo, H.; Beuerman, R.W.; et al. Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry. J. Proteom. 2015, 115, 36–48. [Google Scholar] [CrossRef] [PubMed]
  321. Du, J.; Linton, J.D.; Hurley, J.B. Probing Metabolism in the Intact Retina Using Stable Isotope Tracers. Methods Enzym. 2015, 561, 149–170. [Google Scholar]
  322. Du, J.; Cleghorn, W.M.; Contreras, L.; Lindsay, K.; Rountree, A.M.; Chertov, A.O.; Turner, S.J.; Sahaboglu, A.; Linton, J.; Sadilek, M.; et al. Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina. J. Biol. Chem. 2013, 288, 36129–36140. [Google Scholar] [CrossRef] [PubMed]
  323. Kanow, M.A.; Giarmarco, M.M.; Jankowski, C.S.; Tsantilas, K.; Engel, A.L.; Du, J.; Linton, J.D.; Farnsworth, C.C.; Sloat, S.R.; Rountree, A.; et al. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. Elife 2017, 6, e28899. [Google Scholar] [CrossRef]
  324. Weiss, E.R.; Osawa, S.; Xiong, Y.; Dhungana, S.; Carlson, J.; McRitchie, S.; Fennell, T.R. Broad spectrum metabolomics for detection of abnormal metabolic pathways in a mouse model for retinitis pigmentosa. Exp. Eye Res. 2019, 184, 135–145. [Google Scholar] [CrossRef] [PubMed]
  325. Chertov, A.O.; Holzhausen, L.; Kuok, I.T.; Couron, D.; Parker, E.; Linton, J.D.; Sadilek, M.; Sweet, I.R.; Hurley, J.B. Roles of glucose in photoreceptor survival. J. Biol. Chem. 2011, 286, 34700–34711. [Google Scholar] [CrossRef]
  326. Ly, A.; Schone, C.; Becker, M.; Rattke, J.; Meding, S.; Aichler, M.; Suckau, D.; Walch, A.; Hauck, S.M.; Ueffing, M. High-resolution MALDI mass spectrometric imaging of lipids in the mammalian retina. Histochem. Cell Biol. 2015, 143, 453–462. [Google Scholar] [CrossRef]
  327. Bowrey, H.E.; Anderson, D.M.; Pallitto, P.; Gutierrez, D.B.; Fan, J.; Crouch, R.K.; Schey, K.L.; Ablonczy, Z. Imaging mass spectrometry of the visual system: Advancing the molecular understanding of retina degenerations. Proteom. Clin. Appl. 2016, 10, 391–402. [Google Scholar] [CrossRef]
  328. Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th edition. N.Y. WH Freeman 2006, 38, 76. [Google Scholar]
  329. Tohge, T.; de Souza, L.P.; Fernie, A.R. Genome-enabled plant metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 966, 7–20. [Google Scholar] [CrossRef] [PubMed]
  330. Molday, L.L.; Wu, W.W.; Molday, R.S. Retinoschisin (RS1), the protein encoded by the X-linked retinoschisis gene, is anchored to the surface of retinal photoreceptor and bipolar cells through its interactions with a Na/K ATPase-SARM1 complex. J. Biol. Chem. 2007, 282, 32792–32801. [Google Scholar] [CrossRef] [PubMed]
  331. Fathinajafabadi, A.; Perez-Jimenez, E.; Riera, M.; Knecht, E.; Gonzalez-Duarte, R. CERKL, a retinal disease gene, encodes an mRNA-binding protein that localizes in compact and untranslated mRNPs associated with microtubules. PLoS ONE 2014, 9, e87898. [Google Scholar] [CrossRef] [PubMed]
  332. Fan, J.Y.; Agyekum, B.; Venkatesan, A.; Hall, D.R.; Keightley, A.; Bjes, E.S.; Bouyain, S.; Price, J.L. Noncanonical FK506-binding protein BDBT binds DBT to enhance its circadian function and forms foci at night. Neuron 2013, 80, 984–996. [Google Scholar] [CrossRef] [PubMed]
  333. Orlandi, C.; Posokhova, E.; Masuho, I.; Ray, T.A.; Hasan, N.; Gregg, R.G.; Martemyanov, K.A. GPR158/179 regulate G protein signaling by controlling localization and activity of the RGS7 complexes. J. Cell Biol. 2012, 197, 711–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  334. Marmorstein, L.Y.; McLaughlin, P.J.; Stanton, J.B.; Yan, L.; Crabb, J.W.; Marmorstein, A.D. Bestrophin interacts physically and functionally with protein phosphatase 2A. J. Biol. Chem. 2002, 277, 30591–30597. [Google Scholar] [CrossRef]
  335. Boldt, K.; Mans, D.A.; Won, J.; van Reeuwijk, J.; Vogt, A.; Kinkl, N.; Letteboer, S.J.; Hicks, W.L.; Hurd, R.E.; Naggert, J.K.; et al. Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. J. Clin. Investig. 2011, 121, 2169–2180. [Google Scholar] [CrossRef] [PubMed]
  336. Zulliger, R.; Conley, S.M.; Mwoyosvi, M.L.; Stuck, M.W.; Azadi, S.; Naash, M.I. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS ONE 2015, 10, e0138508. [Google Scholar] [CrossRef]
  337. Fridlich, R.; Delalande, F.; Jaillard, C.; Lu, J.; Poidevin, L.; Cronin, T.; Perrocheau, L.; Millet-Puel, G.; Niepon, M.L.; Poch, O.; et al. The thioredoxin-like protein rod-derived cone viability factor (RdCVFL) interacts with TAU and inhibits its phosphorylation in the retina. Mol. Cell Proteom. 2009, 8, 1206–1218. [Google Scholar] [CrossRef]
  338. Nawrot, M.; West, K.; Huang, J.; Possin, D.E.; Bretscher, A.; Crabb, J.W.; Saari, J.C. Cellular retinaldehyde-binding protein interacts with ERM-binding phosphoprotein 50 in retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 2004, 45, 393–401. [Google Scholar] [CrossRef] [PubMed]
  339. Boylan, J.P.; Wright, A.F. Identification of a novel protein interacting with RPGR. Hum. Mol. Genet. 2000, 9, 2085–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  340. Roepman, R.; Letteboer, S.J.; Arts, H.H.; van Beersum, S.E.; Lu, X.; Krieger, E.; Ferreira, P.A.; Cremers, F.P. Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations. Proc. Natl. Acad. Sci. USA 2005, 102, 18520–18525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  341. Mick, D.U.; Rodrigues, R.B.; Leib, R.D.; Adams, C.M.; Chien, A.S.; Gygi, S.P.; Nachury, M.V. Proteomics of Primary Cilia by Proximity Labeling. Dev. Cell 2015, 35, 497–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  342. Tsybovsky, Y.; Wang, B.; Quazi, F.; Molday, R.S.; Palczewski, K. Posttranslational modifications of the photoreceptor-specific ABC transporter ABCA4. Biochemistry 2011, 50, 6855–6866. [Google Scholar] [CrossRef]
  343. Soldi, M.; Bremang, M.; Bonaldi, T. Biochemical systems approaches for the analysis of histone modification readout. Biochim. Biophys. Acta 2014, 1839, 657–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  344. Spencer, W.J.; Pearring, J.N.; Salinas, R.Y.; Loiselle, D.R.; Skiba, N.P.; Arshavsky, V.Y. Progressive Rod-Cone Degeneration (PRCD) Protein Requires N-Terminal S-Acylation and Rhodopsin Binding for Photoreceptor Outer Segment Localization and Maintaining Intracellular Stability. Biochemistry 2016, 55, 5028–5037. [Google Scholar] [CrossRef]
  345. Chiang, C.K.; Tworak, A.; Kevany, B.M.; Xu, B.; Mayne, J.; Ning, Z.; Figeys, D.; Palczewski, K. Quantitative phosphoproteomics reveals involvement of multiple signaling pathways in early phagocytosis by the retinal pigmented epithelium. J. Biol. Chem. 2017, 292, 19826–19839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  346. Wakeham, C.M.; Wilmarth, P.A.; Cunliffe, J.M.; Klimek, J.E.; Ren, G.; David, L.L.; Morgans, C.W. Identification of PKCalpha-dependent phosphoproteins in mouse retina. J. Proteom. 2019, 206, 103423. [Google Scholar] [CrossRef]
  347. Sanidas, I.; Morris, R.; Fella, K.A.; Rumde, P.H.; Boukhali, M.; Tai, E.C.; Ting, D.T.; Lawrence, M.S.; Haas, W.; Dyson, N.J. A Code of Mono-phosphorylation Modulates the Function of RB. Mol. Cell 2019, 73, 985–1000. [Google Scholar] [CrossRef]
  348. Thingholm, T.E.; Jensen, O.N. Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry. Methods Mol. Biol. 2009, 527, 47–56. [Google Scholar] [PubMed]
  349. Kapphahn, R.J.; Giwa, B.M.; Berg, K.M.; Roehrich, H.; Feng, X.; Olsen, T.W.; Ferrington, D.A. Retinal proteins modified by 4-hydroxynonenal: Identification of molecular targets. Exp. Eye Res. 2006, 83, 165–175. [Google Scholar] [CrossRef] [PubMed]
  350. Gu, X.; Meer, S.G.; Miyagi, M.; Rayborn, M.E.; Hollyfield, J.G.; Crabb, J.W.; Salomon, R.G. Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J. Biol. Chem. 2003, 278, 42027–42035. [Google Scholar] [CrossRef] [PubMed]
  351. Ren, X.; Zou, L.; Zhang, X.; Branco, V.; Wang, J.; Carvalho, C.; Holmgren, A.; Lu, J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid. Redox Signal. 2017, 27, 989–1010. [Google Scholar] [CrossRef] [PubMed]
  352. Lindahl, M.; Mata-Cabana, A.; Kieselbach, T. The disulfide proteome and other reactive cysteine proteomes: Analysis and functional significance. Antioxid Redox Signal. 2011, 14, 2581–2642. [Google Scholar] [CrossRef] [PubMed]
  353. Leveillard, T.; Sahel, J.A. Metabolic and redox signaling in the retina. Cell Mol. Life Sci. 2017, 74, 3649–3665. [Google Scholar] [CrossRef]
  354. Yano, H.; Wong, J.H.; Lee, Y.M.; Cho, M.J.; Buchanan, B.B. A strategy for the identification of proteins targeted by thioredoxin. Proc. Natl. Acad. Sci. USA 2001, 98, 4794–4799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  355. Hurd, T.R.; Prime, T.A.; Harbour, M.E.; Lilley, K.S.; Murphy, M.P. Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: Implications for mitochondrial redox signaling. J. Biol. Chem. 2007, 282, 22040–22051. [Google Scholar] [CrossRef]
  356. Leichert, L.I.; Gehrke, F.; Gudiseva, H.V.; Blackwell, T.; Ilbert, M.; Walker, A.K.; Strahler, J.R.; Andrews, P.C.; Jakob, U. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 8197–8202. [Google Scholar] [CrossRef] [PubMed]
  357. Fu, C.; Hu, J.; Liu, T.; Ago, T.; Sadoshima, J.; Li, H. Quantitative analysis of redox-sensitive proteome with DIGE and ICAT. J. Proteome Res. 2008, 7, 3789–3802. [Google Scholar] [CrossRef]
  358. Wang, B.; Hom, G.; Zhou, S.; Guo, M.; Li, B.; Yang, J.; Monnier, V.M.; Fan, X. The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. Aging Cell 2017, 16, 244–261. [Google Scholar] [CrossRef] [PubMed]
  359. Lopez-Grueso, M.J.; Gonzalez-Ojeda, R.; Requejo-Aguilar, R.; McDonagh, B.; Fuentes-Almagro, C.A.; Muntane, J.; Barcena, J.A.; Padilla, C.A. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biol. 2019, 21, 101049. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Construction and deconstruction of the retina. (A) The differentiation of retinal cell precursors into mature retinal cells relies on a complex gene network. (B) The function of the retina requires the transmission of information from photons captured by the outer segment of photoreceptors (rods and cones) to ganglion cells through, a process mediated by synaptic transmission via bipolar cells. The outer segment is renewed after its elimination by phagocytosis by the retinal pigmented epithelium (RPE). (C) Inherited retinal degenerations triggers the loss of rods and cones.
Figure 1. Construction and deconstruction of the retina. (A) The differentiation of retinal cell precursors into mature retinal cells relies on a complex gene network. (B) The function of the retina requires the transmission of information from photons captured by the outer segment of photoreceptors (rods and cones) to ganglion cells through, a process mediated by synaptic transmission via bipolar cells. The outer segment is renewed after its elimination by phagocytosis by the retinal pigmented epithelium (RPE). (C) Inherited retinal degenerations triggers the loss of rods and cones.
Ijms 20 04922 g001
Table 1. The expression of genes mutated in retinitis pigmentosa.
Table 1. The expression of genes mutated in retinitis pigmentosa.
NInheritanceGeneRd1 [71]RD [72]Mouse TissueRPE/PR [73]Freq.Other Ret. Dis.Other OMIMMouse ModelsOther Models.
1Autosomal dominantARL3Rod-likePR-deathNeuronsNFRare [83]NoNo[84]No
2ADIPOR1Rod-likePR-deathBone mar.Ret./RPERare [85]OneNo[86]No
3BEST1HomInfl.TestisNFRare [87]FourNo[88]Dog [89,90]
4CA4NENOpIntestineNFRare [91]NoNoNoNo
5CRXRod-likePR-deathRet./RPERet./RPE1% [54]FourNo[92]Cat [93]
6FSCN2Rod-likeNOpRet./RPERetina3% [94]OneNo[95]No
7GUCA1BRod-likePR-deathRet./RPERet./RPE0-5% [94]OneNo[96]No
8HK1Rod-likeHomTestisRetinaRare [97]No142600NoNo
9IMPDH1Rod-likePR-deathRet./RPERetina2–3% [94]OneNo[98]No
10IMPG1Rod-likePR-deathRet./RPERetinaRare [99]TwoNoNoNo
11KLHL7HomHomUbRet./RPE1–2% [100]No611119NoNo
12NR2E3Rod-likePR-deathRet./RPERetina3.5% [101]FourNo[102]No
13NRLRod-likePR-deathRet./RPERetina2% [94]OneNo[25]No
14PRPF3HomPR-deathUbRet./RPE1% [94]NoNo[103]No
15PRPF4HomHomUbRPERare [104]NoNoNoZebF [105]
16PRPF6HomHomUbRet./RPERare [104]NoNoNoNo
17PRPF8HomPR-deathUbRet./RPE2% [94]NoNo[103]No
18PRPF31Rod-likeHomUbNF2–4% [94]NoNo[106]No
19PRPH2Rod-likePR-deathRet./RPERet./RPE1–8% [94] SixNo[107,108]No
20RDH12Rod-likePR-deathRet./RPERet./RPERare [109]OneNo[110]No
21RHORod-likePR-deathRet./RPERet./RPE2–26% [94]TwoNo[111,112,113][114,115]
22ROM1Rod-likePR-deathRet./RPERet./RPE1% [94]OneNo[116]No
23RP1Rod-likePR-deathRet./RPERPE4–8% [94]NoNo[117,118]No
24RP9Cone-L.PR-deathUbRetinaRare [94]NoNoNoNo
25RPE65HomNERPENFRareTwoNo[104]Dog [76]
26SEMA4ACone-L.NOpUbRet./RPERare [119]OneNo[120]No
27SNRNP200HomHomUbNF<2% [121]NoNoNoNo
28SPP2NENOpKidn. Liv.NFRare [122]NoNoNoNo
29TOPORSHomHomUbRPERare [123]NoNo[124]No
30Autosomal recessiveABCA4Rod-likePR-deathRet./RPERet./RPE5–6% [54]FourNo[125]Dog [126]
31ADIPOR1Rod-likePR-deathBone Mar.Ret./RPERareOneNo[86]No
32AGBL5HomHomTestisRetinaRare [127]NoNoNoNo
33AHRRod-likeHomMast cells / Ret.NFRare [128]NoNo[129]No
34ARHGEF18HomHomWhite cells / RPERet./RPERare [130]NoNoNoNo
35ARL6Rod-likePR-deathUbRetina1% [54]OneNo[131]No
36ARL2BPHomHomTestisRet./RPERare [132]NoNoNoNo
37BBS1Rod-likeHomRet./RPERPE2-3% [54]OneNo[133]No
38BBS2Rod-likeHomUbRet./RPE0.8% [54]OneNo[134]No
39BEST1HomInfl.TestisNFRare [87]FourNo[88]Dog [89,90]
40C2orf71NFPR-deathNFNF1% [135]NoNo[136]No
41C8orf37No orth.NOpNo orthoNo orthoRare [137]ThreeNoNoNo
42CERKLRod-likeNFUbNF1% [54]OneNo[138]No
43CLCC1HomHomUbRetinaRare [139]NoNo[139]No
44CLRN1NOpInfl.NOpNF1% [54]OneNo[140]ZebF [141]
45CNGA1Rod-likePR-deathRet./RPERetina1% [54]NoNoNoXen [142]
46CNGB1NFPR-deathNFRet./RPE4% [54]NoNo[143]Dog [144]
47CRB1Rod-likeHomRet./RPENF1% [54]ThreeNo[145]Rat [146]
48CYP4V2Cone-L.HomLiverNFRare [147]OneNo[148]No
49DHDDSHomPR-deathUbRet./RPE1–8% [149]NoNoNoZebF [150]
50DHX38HomHomUbRetinaRare [151]OneNoNoNo
51EMC1NFHomNFNFRare [152]No616846NoNo
52EYSNo orth.NOpNo orthoNo ortho[153,154]NoNoNo orthoZebF [155]
53FAM161ARod-likePR-deathRet./RPENF2% [156]NoNo[157]Dog [158]
54GPR125HomHomEpidermisNFRare [152]NoNoNoNo
55HGSNATCone-L.HomMicrogliaRetinaRare [159]No610453NoNo
56IDH3BHomHomAdipo.Ret./RPERare [160]NoNoNoNo
57IFT140HomHomBone mar.NFRare [161]Two614620[162]No
58IFT172HomPR-deathTestisNFRare [163]One607386[164]No
59IMPG2NFHomNFRPERare [165]OneNoNoNo
60KIAA1549No orth.PR-deathNo orthoNFRare [152]NoNoNoNo
61KIZRod-likeNFTestisNFRare [166]NoNoNoNo
62LRATInfl.NOpRPERPE1% [54,167]OneNo[168]No
63MAKRod-likePR-deathRet./RPERPE[149,169]NoNo[170]No
64MERTKCone-L.HomUbRPE1% [54]NoNo[171][172]
65MVKHomHomUbRetinaRare [173]No251170[174]No
66NEK2Cone-L.NOpUbNFRare [175]NoNo[176]ZebF [175]
67NEUROD1Rod-likeHomCerebel.NFRare [177]No601724[178]No
68NRLRod-likePR-deathRet./RPERetina2% [94]OneNo[25]No
69PDE6ARod-likePR-deathRet./RPERetina3–4% [54]NoNo[179]Dog [180]
70PDE6BRod-likePR-deathRet./RPERPE4–5% [54]OneNord1, rd10Dog [181]
71PDE6GRod-likePR-deathRet./RPENFRare [182]NoNo[183]No
72POMGNT1HomHomSaliv. gl.RPERare [184]No606822[185]No
73PRCDNo orth.PR-deathNo orthoNo orthoRare [186]NoNoNo orthoDog [187]
74PROM1Rod-likePR-deathUbRet./RPERare [188]FourNo[186]No
75RBP3Rod-likePR-deathRet./RPERet./RPERare [189]NoNo[190]No
76REEP6Rod-likePR-deathLiver/Ret./RPE/TestisRPERare [191]NoNo[192]No
77RGRInfl.PR-deathRPERPE0.5% [54]OneNo[193]No
78RHORod-likePR-deathRet./RPERet./RPE1% [54]TwoNoRho-/-No
79RLBP1Cone-L.PR-deathRet./RPERet./RPE1% [54]ThreeNo[194]No
80RP1L1Rod-likePR-deathRet./RPENF0.5% [195]OneNo[196]No
81RPE65HomNERPENF2% [54]TwoNo[104]Dog [76]
82SAGRod-likePR-deathRet./RPERet./RPE>1% [54]OneNo[197]Dog [198]
83SAMD11Rod-likeHomBone mar. Ret./RPERPERare [199]NoNoNoNo
84SLC7A14Cone-L.PR-deathBrainNFRare [200]NoNo[200]No
85SPATA7HomHomTestisRPERare [201]OneNo[202]No
86TRNT1HomNOpUbNFRare [203]No612907NoZebF [204]
87TTC8Rod-likePR-deathUbNF>1% [54]OneNo[205]Dog [206]
88TULP1Rod-likePR-deathRet./RPERetina1% [54]OneNo[207]No
89USH2ARod-likePR-deathUbNF17% [54]OneNo[208]No
90ZNF408No orth.Infl.No orthoNo orthoRare [209]OneNoNoZebF [210]
91ZNF513No orth.HomNo orthoNo orthoRare [211]NoNoNoZebF [211]
92X-linkedOFD1HomPR-deathUbRPERare [212]Two300170[213]ZebF [214]
93RP2HomNOpUbNF7–10% [12]NoNo[215]No
94RPGRNFPR-deathNFNF80% [12]ThreeNo[216]Dog [217]
Adipo.: Adipocytes, Bone mar.: Bone Marrow, Cerebel.: Cerebellum, Cone-L.: Cone-like: increase in the rd1 retina (after rod degeneration) and decrease in human retinal detachment (after death of both rods an cones), Freq: Frequency from Retnet (https://sph.uth.edu/Retnet/) and Pubmed, Hom: Homogenous, Infl.: Inflammatory cells, Kidn.: Kidney, Liv.: Liver, NE: Not expressed, NF: Not found, NOp: Probeset non-operational, No ortho: No orthologue, PR-death: Decrease in human retinal detachment, Ret.: retina, Rod-like: decrease in the rd1 retina. Rod-like expression pattern corresponds to an expression profile that march that of the rhodopsin gene (Rho) that decrease tin the rd1 retina during the course of rod degeneration., RPE: retinal pigmented epithelium, Saliv. gl.: Salivary gland, Ub: Ubiquitous, Xen: Xenopus and ZebF: Zebrafish.

Share and Cite

MDPI and ACS Style

Blond, F.; Léveillard, T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int. J. Mol. Sci. 2019, 20, 4922. https://doi.org/10.3390/ijms20194922

AMA Style

Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. International Journal of Molecular Sciences. 2019; 20(19):4922. https://doi.org/10.3390/ijms20194922

Chicago/Turabian Style

Blond, Frédéric, and Thierry Léveillard. 2019. "Functional Genomics of the Retina to Elucidate its Construction and Deconstruction" International Journal of Molecular Sciences 20, no. 19: 4922. https://doi.org/10.3390/ijms20194922

APA Style

Blond, F., & Léveillard, T. (2019). Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. International Journal of Molecular Sciences, 20(19), 4922. https://doi.org/10.3390/ijms20194922

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop