The microRNAs Regulating Vascular Smooth Muscle Cell Proliferation: A Minireview
Abstract
:1. Introduction
2. miRNAs Which Inhibit VSMC Proliferation
2.1. miRNAs Influencing Growth Factors/Cytokines, Growth Factor Receptors, and Other Membrane Receptors in VSMCs
2.2. miRNAs Influencing Regulators of Cell Cycle Progression in VSMCs
2.3. miRNAs Regulating Signaling Cascades in VSMCs
2.4. miRNAs Regulating Transcription Factors in VSMCs
2.5. miRNAs Regulating Nuclear Receptors in VSMCs
2.6. Others
3. miRNAs Which Promote VSMC Proliferation
3.1. miRNAs Influencing Growth Factors/Cytokines, Growth Factor Receptors, and Other Membrane Receptors in VSMCs
3.2. miRNAs Influencing Regulators of Cell Cycle Progression in VSMCs
3.3. miRNAs Regulating Signaling Cascades in VSMCs
3.4. miRNAs Regulating Transcription Factors in VSMCs
3.5. Others
4. miRNA-21 Which Promotes and Inhibits VSMC Proliferation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
VSMC | Vascular smooth muscle cell |
miRNAs | microRNAs |
CVDs | Cardiovascular diseases |
oxLDL | Oxidized low-density lipoprotein |
IGF-1 | Insulin-like growth factor-1 |
PDGF | Platelet-derived growth factor |
CKI | Cyclin-dependent kinase inhibitor |
Ang II | Angiotensin II |
ADAMTS1 | A disintegrin and metalloproteinase with thrombospondin motifs 1 |
ERK | Extracellular signal-regulated kinase |
STAT | Signal transducer and activator of transcription |
SRF | Serum-response factor |
KLF | Krüppel-like factor |
ERα | Estrogen receptor α |
NOR1 | Neuron-derived orphan receptor 1 |
mTOR | Mammalian target of rapamycin |
PDGFR | PDGF receptor |
SCF | Stem cell factor |
Cx43 | Connexin 43 |
HMGB1 | High mobility group box-1 |
References
- Lu, H.; Daugherty, A. Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.; Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 2011, 17, 1410–1422. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in Atherosclerosis: From Pathophysiology to Practice. J. Am. Coll. Cardiol. 2009, 54, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Mozos, I.; Malainer, C.; Horbanczuk, J.; Gug, C.; Stoian, D.; Luca, C.T.; Atanasov, A.G. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases. Front. Immunol. 2017, 8, 1058. [Google Scholar] [CrossRef]
- Ross, R. Cell biology of atherosclerosis. Annu. Rev. Physiol. 1995, 57, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, Z. MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (review). Int. J. Mol. Med. 2014, 34, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K.; Robertson, A.K.; Soderberg-Naucler, C. Inflammation and atherosclerosis. Annu. Rev. Pathol. 2006, 1, 297–329. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garas, S.M.; Huber, P.; Scott, N.A. Overview of therapies for prevention of restenosis after coronary interventions. Pharmacol. Ther. 2001, 92, 165–178. [Google Scholar] [CrossRef]
- Grech, E.D. ABC of interventional cardiology: Percutaneous coronary intervention. I: History and development. BMJ 2003, 326, 1080–1082. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Uhrin, P.; Mocan, A.; Waltenberger, B.; Breuss, J.M.; Tewari, D.; Mihaly-Bison, J.; Huminiecki, Ł.; Starzyński, R.R.; Tzvetkov, N.T.; et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: Molecular targets and pathways. Biotechnol. Adv. 2018, 36, 1586–1607. [Google Scholar] [CrossRef]
- Uhrin, P.; Wang, D.; Mocan, A.; Waltenberger, B.; Breuss, J.M.; Tewari, D.; Mihaly-Bison, J.; Huminiecki, Ł.; Starzyński, R.R.; Tzvetkov, N.T.; et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 2: Natural products inhibiting proliferation. Biotechnol. Adv. 2018, 36, 1608–1621. [Google Scholar] [CrossRef] [PubMed]
- Parmacek, M.S. MicroRNA-modulated targeting of vascular smooth muscle cells. J. Clin. Investig. 2009, 119, 2526–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, S.O.; Totary-Jain, H.; Marks, A.R. Vascular Smooth Muscle Cell Proliferation in Restenosis. Circ. Cardiovasc. Interv. 2011, 4, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.N.; Hata, A. Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Commun. Signal. 2009, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Kim, V.N.; Han, J.; Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 2009, 10, 126–139. [Google Scholar] [CrossRef]
- Davis-Dusenbery, B.N.; Wu, C.; Hata, A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2370–2377. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Eulalio, A.; Huntzinger, E.; Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 2008, 132, 9–14. [Google Scholar] [CrossRef]
- Yekta, S.; Shih, I.H.; Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004, 304, 594–596. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yin, H.; Jiang, Y.; Radhakrishnan, S.K.; Huang, Z.P.; Li, J.; Shi, Z.; Kilsdonk, E.P.; Gui, Y.; Wang, D.Z.; et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 368–375. [Google Scholar] [CrossRef]
- Ham, O.; Lee, S.Y.; Song, B.W.; Lee, C.Y.; Lee, J.; Seo, H.H.; Kim, S.W.; Lim, S.; Kim, I.K.; Lee, S.; et al. Small molecule-mediated induction of miR-9 suppressed vascular smooth muscle cell proliferation and neointima formation after balloon injury. Oncotarget 2017, 8, 93360–93372. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, A.; Zhao, L.; Zhou, T.; Shen, Q.; Cui, Q.; Qin, X. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2013, 437, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Ahmed, A.S.; Kang, X.; Hu, G.; Liu, F.; Zhang, W.; Zhou, J. MicroRNA-15b/16 Attenuates Vascular Neointima Formation by Promoting the Contractile Phenotype of Vascular Smooth Muscle through Targeting YAP. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Zhao, G.; Wang, Y.; Xu, B.; Yue, J. Silencing miR-16 Expression Promotes Angiotensin II Stimulated Vascular Smooth Muscle Cell Growth. Cell Dev. Biol. 2017, 6. [Google Scholar] [CrossRef]
- Yang, F.; Xiao, Q. 197 miRNA-22 Regulates Vascular Smooth Muscle Cell Functions and Prevents Neointima Formation by Targeting EVI-1. Heart 2016, 102 (Suppl. 6), A132–A133. [Google Scholar] [CrossRef]
- Huang, S.C.; Wang, M.; Wu, W.B.; Wang, R.; Cui, J.; Li, W.; Li, Z.L.; Li, W.; Wang, S.M. Mir-22-3p Inhibits Arterial Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia by Targeting HMGB1 in Arteriosclerosis Obliterans. Cell. Physiol. Biochem. 2017, 42, 2492–2506. [Google Scholar] [CrossRef] [Green Version]
- Iaconetti, C.; De Rosa, S.; Polimeni, A.; Sorrentino, S.; Gareri, C.; Carino, A.; Sabatino, J.; Colangelo, M.; Curcio, A.; Indolfi, C. Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc. Res. 2015, 107, 522–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Fan, Z.; Yang, J.; Ding, J.; Yang, C.; Chen, L. MicroRNA-24 Attenuates Neointimal Hyperplasia in the Diabetic Rat Carotid Artery Injury Model by Inhibiting Wnt4 Signaling Pathway. Int. J. Mol. Sci. 2016, 17, 765. [Google Scholar] [CrossRef] [PubMed]
- Torella, D.; Iaconetti, C.; Tarallo, R.; Marino, F.; Giurato, G.; Veneziano, C.; Aquila, I.; Scalise, M.; Mancuso, T.; Cianflone, E.; et al. MicroRNA Regulation of the Hyper-Proliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes Mellitus. Diabetes 2018. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yang, F.; Guo, M.; Wen, G.; Zhang, C.; Luong, L.A.; Zhu, J.; Xiao, Q.; Zhang, L. miRNA-34a reduces neointima formation through inhibiting smooth muscle cell proliferation and migration. J. Mol. Cell. Cardiol. 2015, 89, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Choe, N.; Kwon, J.S.; Kim, Y.S.; Eom, G.H.; Ahn, Y.K.; Baik, Y.H.; Park, H.Y.; Kook, H. The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor. Cell. Signal. 2015, 27, 1056–1065. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, S.; Liu, Y.; Zhang, J.; Han, L.; Xu, Z. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H641–H649. [Google Scholar] [CrossRef] [PubMed]
- Choe, N.; Kwon, D.H.; Shin, S.; Kim, Y.S.; Kim, Y.K.; Kim, J.; Ahn, Y.; Eom, G.H.; Kook, H. The microRNA miR-124 inhibits vascular smooth muscle cell proliferation by targeting S100 calcium-binding protein A4 (S100A4). FEBS Lett. 2017, 591, 1041–1052. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, M.; Huang, K.; He, Q.; Li, H.; Chang, G. MicroRNA-125b Affects Vascular Smooth Muscle Cell Function by Targeting Serum Response Factor. Cell. Physiol. Biochem. 2018, 46, 1566–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, F.; Stumpf, T.; Proebsting, S.; Franklin, B.S.; Wenzel, D.; Pfeifer, P.; Flender, A.; Schmitz, T.; Yang, X.; Fleischmann, B.K.; et al. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J. Mol. Cell. Cardiol. 2017, 104, 43–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Ming, L.; Qin, H.; Zheng, L.; Yue, Z.; Cheng, Z.; Wang, Y.; Zhang, D.; Liu, C.; et al. MicroRNA-141 inhibits vascular smooth muscle cell proliferation through targeting PAPP-A. Int. J. Clin. Exp. Pathol. 2015, 8, 14401–14408. [Google Scholar] [PubMed]
- Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.H.; Miano, J.M.; Ivey, K.N.; Srivastava, D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009, 460, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, X.; Yang, J.; Lin, Y.; Xu, D.Z.; Lu, Q.; Deitch, E.A.; Huo, Y.; Delphin, E.S.; Zhang, C. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ. Res. 2009, 105, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, D.; Chen, M.; Chen, L.; Zhang, B.; Wu, T.; Guo, R. miRNA-145 inhibits VSMC proliferation by targeting CD40. Sci. Rep. 2016, 6, 35302. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mao, D.; Li, C.; Li, M. miR-145-5p Inhibits Vascular Smooth Muscle Cells (VSMCs) Proliferation and Migration by Dysregulating the Transforming Growth Factor-b Signaling Cascade. Med. Sci. Monit. 2018, 24, 4894–4904. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Chou, W.W.; Chen, K.C.; Cheng, H.Y.; Lin, R.T.; Juo, S.H. MicroRNA-152 mediates DNMT1-regulated DNA methylation in the estrogen receptor alpha gene. PLoS ONE 2012, 7, e30635. [Google Scholar]
- Yang, Z.; Zheng, B.; Zhang, Y.; He, M.; Zhang, X.H.; Ma, D.; Zhang, R.N.; Wu, X.L.; Wen, J.K. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim. Biophys. Acta 2015, 1852, 1477–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhao, F.; Yu, X.; Lu, X.; Zheng, G. MicroRNA-155 modulates the proliferation of vascular smooth muscle cells by targeting endothelial nitric oxide synthase. Int. J. Mol. Med. 2015, 35, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Wang, H.Y.; Liao, Y.C.; Tsai, P.C.; Chen, K.C.; Cheng, H.Y.; Lin, R.T.; Juo, S.H. MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation. Cardiovasc. Res. 2012, 95, 517–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Xiang, Y.; Fan, L.J.; Zhang, X.Y.; Li, J.P.; Yu, C.X.; Bao, L.Y.; Cao, D.S.; Xing, W.B.; Liao, X.H.; et al. Myocardin inhibited the gap protein connexin 43 via promoted miR-206 to regulate vascular smooth muscle cell phenotypic switch. Gene 2017, 616, 22–30. [Google Scholar] [CrossRef]
- Afzal, T.A.; Luong, L.A.; Chen, D.; Zhang, C.; Yang, F.; Chen, Q.; An, W.; Wilkes, E.; Yashiro, K.; Cutillas, P.R.; et al. NCK Associated Protein 1 Modulated by miRNA-214 Determines Vascular Smooth Muscle Cell Migration, Proliferation, and Neointima Hyperplasia. J. Am. Heart Assoc. 2016, 5, e004629. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, Q.; Lei, J.; Wang, X.; Chen, X.; Ding, Y. MiR-362-3p inhibits the proliferation and migration of vascular smooth muscle cells in atherosclerosis by targeting ADAMTS1. Biochem. Biophys. Res. Commun. 2017, 493, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Ham, O.; Lee, S.Y.; Choi, E.; Lee, C.Y.; Park, J.H.; Lee, J.; Seo, H.H.; Seung, M.; Choi, E.; et al. MicroRNA-365 inhibits the proliferation of vascular smooth muscle cells by targeting cyclin D1. J. Cell. Biochem. 2014, 115, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, Y.; Zhang, A.; Liu, B.; Jia, L. miR-379 Inhibits Cell Proliferation, Invasion, and Migration of Vascular Smooth Muscle Cells by Targeting Insulin-Like Factor-1. Yonsei Med. J. 2017, 58, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Merlet, E.; Atassi, F.; Motiani, R.K.; Mougenot, N.; Jacquet, A.; Nadaud, S.; Capiod, T.; Trebak, M.; Lompre, A.M.; Marchand, A. miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc. Res. 2013, 98, 458–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Chen, D.; Cao, L.; Zhang, R.; Zhou, J.; Chen, H.; Li, Y.; Li, M.; Cao, J.; Wang, Z. MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A. Cardiovasc. Res. 2013, 100, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Bi, R.; Ding, F.; He, Y.; Jiang, L.; Jiang, Z.; Mei, J.; Liu, H. miR-503 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting the insulin receptor. Biomed. Pharm. 2016, 84, 1711–1716. [Google Scholar] [CrossRef]
- Qian, D.H.; Gao, P.; Feng, H.; Qin, Z.X.; Li, J.B.; Huang, L. Down-regulation of mir-542-3p promotes neointimal formation in the aging rat. Vasc. Pharm. 2015, 72, 118–129. [Google Scholar] [CrossRef]
- Chen, C.; Yan, Y.; Liu, X. microRNA-612 is downregulated by platelet-derived growth factor-BB treatment and has inhibitory effects on vascular smooth muscle cell proliferation and migration via directly targeting AKT2. Exp. Ther. Med. 2018, 15, 159–165. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Yi, B.; Wang, G.; You, X.; Zhao, X.; Summer, R.; Qin, Y.; Sun, J. MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovasc. Res. 2013, 99, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhu, N.; Yi, B.; Wang, N.; Chen, M.; You, X.; Zhao, X.; Solomides, C.C.; Qin, Y.; Sun, J. MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ. Res. 2013, 113, 1117–1127. [Google Scholar] [CrossRef]
- Cho, J.R.; Lee, C.Y.; Lee, J.; Seo, H.H.; Choi, E.; Chung, N.; Kim, S.M.; Hwang, K.C.; Lee, S. MicroRNA-761 inhibits Angiotensin II-induced vascular smooth muscle cell proliferation and migration by targeting mammalian target of rapamycin. Clin. Hemorheol. Microcirc. 2015, 63, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.L.; Wang, J.F.; Wang, G.K.; You, X.H.; Zhao, X.X.; Jing, Q.; Qin, Y.W. Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ. J. 2011, 75, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.C.; Hsieh, I.C.; Hsi, E.; Wang, Y.S.; Dai, C.Y.; Chou, W.W.; Juo, S.H. Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J. Cell Sci. 2011, 124 Pt 23, 4115–4124. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Sun, C.; Zhang, J.; Lin, S.; Zhao, L.; Wang, L.; Lin, R.; Lv, J.; Xin, S. Proliferation of vascular smooth muscle cells under inflammation is regulated by NF-κB p65/microRNA-17/RB pathway activation. Int. J. Mol. Med. 2018, 41, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhi, J.; Zhang, T.; Cao, X.; Sun, L.; Xu, Y.; Li, X. Inhibition of microRNA-25 by tumor necrosis factor alpha is critical in the modulation of vascular smooth muscle cell proliferation. Mol. Med. Rep. 2015, 11, 4353–4358. [Google Scholar] [CrossRef] [PubMed]
- Leeper, N.J.; Raiesdana, A.; Kojima, Y.; Chun, H.J.; Azuma, J.; Maegdefessel, L.; Kundu, R.K.; Quertermous, T.; Tsao, P.S.; Spin, J.M. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J. Cell. Physiol. 2011, 226, 1035–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.; Zheng, C.Y.; Zhang, Y.; Yin, W.N.; Li, Y.H.; Liu, C.; Zhang, X.H.; Nie, C.J.; Zhang, H.; Jiang, W.; et al. Regulatory crosstalk between KLF5, miR-29a and Fbw7/CDC4 cooperatively promotes atherosclerotic development. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 374–386. [Google Scholar] [CrossRef]
- Sun, Q.R.; Zhang, X.; Fang, K. Phenotype of Vascular Smooth Muscle Cells (VSMCs) Is Regulated by miR-29b by Targeting Sirtuin 1. Med. Sci. Monit. 2018, 24, 6599–6607. [Google Scholar] [CrossRef]
- Wang, J.; Yan, C.H.; Li, Y.; Xu, K.; Tian, X.X.; Peng, C.F.; Tao, J.; Sun, M.Y.; Han, Y.L. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes. Exp. Cell Res. 2013, 319, 1165–1175. [Google Scholar] [CrossRef]
- Brock, M.; Haider, T.J.; Vogel, J.; Gassmann, M.; Speich, R.; Trenkmann, M.; Ulrich, S.; Kohler, M.; Huber, L.C. The hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell proliferation by directly targeting CDKN1A. Int. J. Biochem. Cell. Biol. 2015, 61, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, L.; Yun, H.F.; Han, Y.S. MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1. Biochem. Biophys. Res. Commun. 2015, 463, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.R.; Comer, B.S.; McLendon, J.M.; Gerthoffer, W.T. MicroRNA Regulation of Smooth Muscle Phenotype. Mol. Cell. Pharm. 2012, 4, 1–16. [Google Scholar]
- Wang, H.; Jiang, M.; Xu, Z.; Huang, H.; Gong, P.; Zhu, H.; Ruan, C. miR-146b-5p promotes VSMC proliferation and migration. Int. J. Clin. Exp. Pathol. 2015, 8, 12901–12907. [Google Scholar]
- Choi, S.; Park, M.; Kim, J.; Park, W.; Kim, S.; Lee, D.K.; Hwang, J.Y.; Choe, J.; Won, M.H.; Ryoo, S.; et al. TNF-alpha elicits phenotypic and functional alterations of vascular smooth muscle cells by miR-155-5p-dependent down-regulation of cGMP-dependent kinase 1. J. Biol. Chem. 2018, 293, 14812–14822. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Bernier, M.; Zhang, X.-h.; Suzuki, T.; Nie, C.-q.; Li, Y.; Zhang, Y.; Song, L.-l.; Shi, H.-j.; Liu, Y.; et al. miR-200c-SUMOylated KLF4 feedback loop acts as a switch in transcriptional programs that control VSMC proliferation. J. Mol. Cell. Cardiol. 2015, 82, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Wang, X.; Zhang, Y.; Eisner, G.M.; Asico, L.D.; Jose, P.A.; Zeng, C. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. J. Hypertens. 2011, 29, 1560–1568. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, Y.; Zhang, S.; Lin, Y.; Yang, J.; Zhang, C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ. Res. 2009, 104, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bei, Y.; Shen, S.; Zhang, J.; Lu, Y.; Xiao, J.; Li, X. MicroRNA-222 Promotes the Proliferation of Pulmonary Arterial Smooth Muscle Cells by Targeting P27 and TIMP3. Cell. Physiol. Biochem. 2017, 43, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Lin, P.; Weng, X.; Su, J.; Chen, Y.; He, Y.; Wu, G.; Wang, J.; Yu, Y.; Zhang, L. MicroRNA-574-5p promotes cell growth of vascular smooth muscle cells in the progression of coronary artery disease. Biomed. Pharm. 2018, 97, 162–167. [Google Scholar] [CrossRef]
- Lv, J.; Wang, L.; Zhang, J.; Lin, R.; Wang, L.; Sun, W.; Wu, H.; Xin, S. Long noncoding RNA H19-derived miR-675 aggravates restenosis by targeting PTEN. Biochem. Biophys. Res. Commun. 2018, 497, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Cheng, Y.; Yue, J.; Yang, J.; Liu, X.; Chen, H.; Dean, D.B.; Zhang, C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res. 2007, 100, 1579–1588. [Google Scholar] [CrossRef]
- Davis, B.N.; Hilyard, A.C.; Lagna, G.; Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008, 454, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, A.G.; Loktev, A.V.; Hansen, D.V.; Verschuren, E.W.; Reimann, J.D.; Jackson, P.K. The evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor emi1. Cell 2006, 124, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, L.; Ding, J.; Fan, Z.; Li, S.; Wu, H.; Zhang, J.; Yang, C.; Wang, H.; Zeng, P.; et al. MicroRNA-24 inhibits high glucose-induced vascular smooth muscle cell proliferation and migration by targeting HMGB1. Gene 2016, 586, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Elledge, S.J. Cell Cycle Checkpoints: Preventing an Identity Crisis. Science 1996, 274, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Dzau, V.J.; Braun-Dullaeus, R.C.; Sedding, D.G. Vascular proliferation and atherosclerosis: New perspectives and therapeutic strategies. Nat. Med. 2002, 8, 1249–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.M.; Chen, K.C.; Hsu, P.Y.; Lin, H.F.; Wang, Y.S.; Chen, C.Y.; Liao, Y.C.; Juo, S.H. microRNA let-7g suppresses PDGF-induced conversion of vascular smooth muscle cell into the synthetic phenotype. J. Cell. Mol. Med. 2017, 21, 3592–3601. [Google Scholar] [CrossRef]
- Songyang, Z.; Shoelson, S.E.; Chaudhuri, M.; Gish, G.; Pawson, T.; Haser, W.G.; King, F.; Roberts, T.; Ratnofsky, S.; Lechleider, R.J.; et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993, 72, 767–778. [Google Scholar]
- Chen, Q.; Guan, X.; Zuo, X.; Wang, J.; Yin, W. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm. Sin. B 2016, 6, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Kruger, M.; Hein, L.; Braun, T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Investig. 2009, 119, 2634–2647. [Google Scholar] [CrossRef] [Green Version]
- Elia, L.; Quintavalle, M.; Zhang, J.; Contu, R.; Cossu, L.; Latronico, M.V.; Peterson, K.L.; Indolfi, C.; Catalucci, D.; Chen, J.; et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: Correlates with human disease. Cell Death Differ. 2009, 16, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- McQueen, C.A. Transcription Factors. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Bonta, P.I.; Pols, T.W.; de Vries, C.J. NR4A nuclear receptors in atherosclerosis and vein-graft disease. Trends Cardiovasc. Med. 2007, 17, 105–111. [Google Scholar] [CrossRef]
- Wu, W.H.; Hu, C.P.; Chen, X.P.; Zhang, W.F.; Li, X.W.; Xiong, X.M.; Li, Y.J. MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension. Am. J. Hypertens. 2011, 24, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; He, X.J.; Lee, K.C.; Huang, C.; Hu, J.B.; Zhou, R.; Xiang, X.Y.; Feng, B.; Lu, Z.Q. MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and improves blood flows in vein grafts. Int. J. Cardiol. 2016, 208, 79–86. [Google Scholar] [CrossRef]
- Torella, D.; Iaconetti, C.; Catalucci, D.; Ellison, G.M.; Leone, A.; Waring, C.D.; Bochicchio, A.; Vicinanza, C.; Aquila, I.; Curcio, A.; et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ. Res. 2011, 109, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.G.; Zheng, B.; Han, M.; Fang, X.M.; Li, H.X.; Miao, S.B.; Su, M.; Han, Y.; Shi, H.J.; Wen, J.K. miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep. 2011, 12, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Vikram, A.; Kim, Y.R.; Kumar, S.; Li, Q.; Kassan, M.; Jacobs, J.S.; Irani, K. Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nat. Commun. 2016, 7, 12565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassan, M.; Vikram, A.; Li, Q.; Kim, Y.R.; Kumar, S.; Gabani, M.; Liu, J.; Jacobs, J.S.; Irani, K. MicroRNA-204 promotes vascular endoplasmic reticulum stress and endothelial dysfunction by targeting Sirtuin1. Sci. Rep. 2017, 7, 9308. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.W.; Zhang, C.; Lee, K.C.; He, X.J.; Lu, Z.Q.; Huang, C.; Wu, Q.C. Adenovirus-Mediated Gene Transfer of microRNA-21 Sponge Inhibits Neointimal Hyperplasia in Rat Vein Grafts. Int. J. Biol. Sci. 2017, 13, 1309–1319. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, V.; Backes, C.; Ludwig, N.; Fehlmann, T.; Kern, F.; Meese, E.; Keller, A. IMOTA: An interactive multi-omics tissue atlas for the analysis of human miRNA-target interactions. Nucleic Acids Res. 2018, 46, D770–D775. [Google Scholar] [CrossRef]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stahler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
miRNA | Implied Targets | References |
---|---|---|
miRNAs which inhibit VSMC proliferation | ||
miRNA-1 | Proviral integration site (Pim-1) | [20,24] |
miRNA-9 | Platelet-derived growth factor receptor (PDGFR) and further downstream signaling cascades | [25] |
miRNA-15a | Krüppel-like factor-4 (KLF4) | [26] |
miRNA-15b/16 | The potent oncoprotein yes-associated protein (YAP) and the pathways extracellular signal-regulated kinase (ERK)1/2 and p38MAPK (mitogen-activated protein kinases) | [27,28] |
miRNA-22 | Ecotropic virus integration site 1 protein homolog (EVI-1) | [29] |
miRNA-22-3p | High mobility group box-1 (HMGB1) | [30] |
miRNA-23b | The transcription factor forkhead box O4 (FoxO4) | [31] |
miRNA-24 | The wingless-type Mouse Mammary Tumor Virus (MMTV) integration site family member 4 (Wnt4)/disheveled-1 (Dvl-1)/β-catenin signaling pathway | [32] |
miRNA-29c | N.A. | [33] |
miRNA-34a | Neurogenic locus notch homolog protein-1 (Notch1) | [34] |
miRNA-34c | Stem cell factor (SCF) | [35] |
miRNA-124 | The 3′-UTR of the specificity protein-1 (Sp-1) gene or S100 calcium-binding protein A4 (S100A4) | [36,37] |
miR-125b | Serum-response factor (SRF) | [38] |
miRNA-126 | Low-density lipoprotein receptor-related protein 6 (LRP6) | [39] |
miR-141 | Pregnancy-associated plasma protein A (PAPP-A) | [40] |
miRNA-143/145 | KLF4, myocardin, ELK-1, and cluster of differentiation 40 (CD40) | [41,42,43] |
miRNA-145-5p | Smad4 and the TGF-β signaling cascades, including Smad2, Smad3 and TGF-β | [44] |
miRNA-152 | DNA methyltransferase 1 (DNMT1) and the methylation of ERα gene promoter region | [45] |
miR-155 | 20-like kinase 2 (MST2), the ERK pathway, or endothelial nitric oxide synthase (eNOS) | [46,47] |
miRNA-195 | The Cdc42, cyclin D1, and fibroblast growth factor 1 (FGF1) genes | [48] |
miRNA-206 | 3′-UTR of the gap junction protein connexin 43 (Cx43) | [49] |
miRNA-214 | NCK associated protein 1 (NCKAP1) | [50] |
miRNA-362-3p | A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) | [51] |
miRNA-365 | Cyclin D1 | [52] |
miR-379 | 3′-UTR of insulin-like growth factor-1 (IGF-1) | [53] |
miRNA-442/322 | Cyclin D1 and calumenin | [54] |
miRNA-490-3p | PAPP-A | [55] |
miRNA-503 | Insulin receptor (INSR). | [56] |
miRNA-542-3p | Spleen tyrosine kinase (Syk)/signal transducer and activator of transcription (STAT)3-5 axis | [57] |
miRNA-612 | AKT2 protein | [58] |
miRNA-638 | Neuron-derived orphan receptor 1 (NOR1) | [59] |
miRNA-663 | JunB/myosin light chain 9 | [60] |
miRNA-761 | Mammalian target of rapamycin (mTOR) | [61] |
let-7d | KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) | [62] |
let-7g | Lectin-like oxidized-low-density lipoprotein receptor-1 (LOX-1), and PDGF/mitogen-activated protein kinase kinase kinase 1 (MEKK1)/ ERK/KLF4 signaling | [63] |
miRNAs which promote VSMC proliferation | ||
miRNA-17 | Retinoblastoma (RB) protein mRNA-3′-UTR | [64] |
miRNA-25 | Cyclin-dependent kinase 6 (CDK6) | [65] |
miRNA-26a | Smad1 and Smad4 | [66] |
miRNA-29a | 3’-UTR of Fbw7/CDC4, KLF | [67] |
miRNA-29b | SIRT1 | [68] |
miRNA-31 | Cellular repressor of E1A-stimulated genes (CREG) expression. | [69] |
miRNA-130 | The tumor suppressor p21 (CDKN1A) | [70] |
miRNA-130a | CDKN1A, and growth arrest-specific homeobox (GAX). | [70] |
miRNA-133 | CDKN1A | [70] |
miRNA-138 | SIRT1 | [71] |
miRNA-146a | KLF4 | [72] |
miRNA-146b-5p | The response to PDGF | [73] |
miRNA-155-5p | N.A. | [74] |
miRNA-200c | Ubc9 and KLF4 | [75] |
miRNA-204 | N.A. | [33] |
miRNA-208 | p21 | [76] |
miRNA-221 | PDGFR | [77] |
miRNA-222 | p27Kip1 and tissue inhibitor of metalloproteinase 3 (TIMP3) | [78] |
miRNA-574-5p | ZDHHC14 (Zinc Finger DHHC-Type Containing 14) gene | [79] |
miRNA-675 | PTEN | [80] |
miRNA which promotes and inhibits VSMC proliferation | ||
miRNA-21 | Promotion of VSMC proliferation: phosphatase and tensin homolog (PTEN), B-cell lymphoma 2 (Bcl-2). | [72,81] |
Inhibition of VSMC proliferation: Programmed cell death 4, a tumor suppressor protein. | [82] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Atanasov, A.G. The microRNAs Regulating Vascular Smooth Muscle Cell Proliferation: A Minireview. Int. J. Mol. Sci. 2019, 20, 324. https://doi.org/10.3390/ijms20020324
Wang D, Atanasov AG. The microRNAs Regulating Vascular Smooth Muscle Cell Proliferation: A Minireview. International Journal of Molecular Sciences. 2019; 20(2):324. https://doi.org/10.3390/ijms20020324
Chicago/Turabian StyleWang, Dongdong, and Atanas G. Atanasov. 2019. "The microRNAs Regulating Vascular Smooth Muscle Cell Proliferation: A Minireview" International Journal of Molecular Sciences 20, no. 2: 324. https://doi.org/10.3390/ijms20020324
APA StyleWang, D., & Atanasov, A. G. (2019). The microRNAs Regulating Vascular Smooth Muscle Cell Proliferation: A Minireview. International Journal of Molecular Sciences, 20(2), 324. https://doi.org/10.3390/ijms20020324