The Development of Functional Non-Viral Vectors for Gene Delivery
Abstract
:1. Introduction
2. Functional Fluorescent and Non-Fluorescent Vectors
2.1. Organic Fluorescent Vectors
2.1.1. Organic Fluorescent Lipids
2.1.2. Organic Fluorescent Polymers
2.1.3. Organic Fluorescent Small Molecules
2.2. Metal Complexes
2.3. Quantum Dots
2.4. Gold Nanoparticles
3. The Targeting Vectors
3.1. Nuclear Targeting Non-Viral Vectors
3.2. Mitochondrial Targeting Non-Viral Vectors
3.3. Tumor Targeting Non-Viral Vectors
3.3.1. Folate-Linked Nanoparticles
3.3.2. Galactose Modified Non-Viral Vectors
3.4. Bone Targeting Non-Viral Vectors
4. Biodegradable Non-Viral Vector
5. Other Functional Vectors
5.1. Carbon Nanotubes Based Functional Vectors
5.2. Graphene-Based Functional Vectors
5.3. Magnetic Nanoparticles (MNPs)
5.4. RGD Modified Polymers
6. Future Directions and Concluding Remarks
Funding
Conflicts of Interest
References
- Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Surface-Engineered Dendrimers in Gene Delivery. Chem. Rev. 2015, 115, 5274–5300. [Google Scholar] [CrossRef] [PubMed]
- Bates, K.; Kostarelos, K. Carbon Nanotubes as Vectors for Gene Therapy: Past Achievements, Present Challenges and Future Goals. Adv. Drug Deliv. Rev. 2013, 65, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shao, N.; Zhang, Q.; Cheng, Y. Mitochondrial Targeting Dendrimer Allows Efficient and Safe Gene Delivery. J. Mater. Chem. B 2014, 2, 2546–2553. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Zhu, D.; Wang, Y.; Zhang, Z.; Zhou, X.; Qiu, N.; Chen, X.; Shen, Y. Nonviral Cancer Gene Therapy: Delivery Cascade and Vector Nanoproperty Integration. Adv. Drug Deliv. Rev. 2017, 115, 115–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, H.; Meng, X.; Yin, J.; Li, D.; Liu, C. Dinuclear Metal(II) Complexes of Polybenzimidazole Ligands as Carriers for DNA Delivery. Biomaterials 2010, 31, 1380–1391. [Google Scholar] [CrossRef] [PubMed]
- Hosseinkhani, H.; Hosseinkhani, M. Biodegradable Polymer-Metal Complexes for Gene and Drug Delivery. Curr. Drug Saf. 2009, 4, 79–83. [Google Scholar] [CrossRef]
- Jeong, G.W.; Nah, J.W. Evaluation of Disulfide Bond-Conjugated LMWSC-G-BPEI as Non-Viral Vector for Low Cytotoxicity and Efficient Gene Delivery. Carbohydr. Polym. 2017, 178, 322–330. [Google Scholar] [CrossRef]
- Gao, Y.G.; Shi, Y.D.; Zhang, Y.; Hu, J.; Lu, Z.L.; He, L. A Naphthalimide-Based [12] Anen 3 Compound as an Effective and Real-Time Fluorescence Tracking Non-Viral Gene Vector. Chem. Commun. 2015, 51, 16695–16698. [Google Scholar] [CrossRef]
- Ura, T.; Okuda, K.; Shimada, M. Developments in Viral Vector-Based Vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef] [Green Version]
- Guan, L.; Huang, S.; Chen, Z.; Li, Y.; Liu, K.; Liu, Y.; Du, L. Low Cytotoxicity Fluorescent PAMAM Dendrimer as Gene Carriers for Monitoring the Delivery of siRNA. J. Nanoparticle Res. 2015, 17, 385. [Google Scholar] [CrossRef]
- Liang, X.; Li, X.; Chang, J.; Duan, Y.; Li, Z. Properties and Evaluation of Quaternized Chitosan/Lipid Cation Polymeric Liposomes for Cancer-Targeted Gene Delivery. Langmuir 2013, 29, 8683–8693. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wang, W.; Wang, Y.; Bao, X.; Wang, Y.; Wang, C.; Chen, J.; Zhang, F.; Zhou, J. Versatile Reticular Polyethylenimine Derivative-Mediated Targeted Drug and Gene Codelivery for Tumor Therapy. Mol. Pharm. 2014, 11, 3307–3321. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.A.; Horton, R.A.; Scrimgeour, K.G.; Perry, M.D. Principles of Biochemistry, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wu, P.; Chen, H.; Jin, R.; Weng, T.; Ho, J.K.; You, C.; Zhang, L.; Wang, X.; Han, C. Non-Viral Gene Delivery Systems for Tissue Repair and Regeneration. J. Transl. Med. 2018, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Qadir, A.; Gao, Y.; Suryaji, P.; Tian, Y.; Lin, X.; Dang, K.; Jiang, S.; Li, Y.; Miao, Z.; Qian, A. Non-Viral Delivery System and Targeted Bone Disease Therapy. Int. J. Mol. Sci. 2019, 20, 565. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.G.; Alam, U.; Ding, A.X.; Tang, Q.; Tan, Z.L.; Shi, Y.D.; Qian, A.R.; Lu, Z.L. [12]aneN3-Based Lipid with Naphthalimide Moiety for Enhanced Gene Transfection Efficiency. Bioorganic Chem. 2018, 79, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Green, J.J.; Langer, R.; Anderson, D.G. A Combinatorial Polymer Library Approach Yields Insight into Nonviral Gene Delivery. Acc. Chem. Res. 2008, 41, 749–759. [Google Scholar] [CrossRef] [Green Version]
- Zhi, D.; Zhang, S.; Wang, B.; Zhao, Y.; Yang, B.; Yu, S. Transfection Efficiency of Cationic Lipids with Different Hydrophobic Domains in Gene Delivery. Bioconjugate Chem. 2010, 21, 563–577. [Google Scholar] [CrossRef]
- Zhi, D.; Zhang, S.; Cui, S.; Zhao, Y.; Wang, Y.; Zhao, D. The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjugate Chem. 2013, 24, 487–519. [Google Scholar] [CrossRef]
- Jones, C.H.; Chen, C.K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B.A.; Chen, C.K. Overcoming Nonviral Gene Delivery Barriers: Perspective and Future. Mol. Pharm. 2013, 10, 4082–4098. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Deng, W.; Wang, Y.; Cao, X.; Chen, J.; Wang, Q.; Xu, W.; Du, P.; Yu, Q.; Chen, J.; et al. Cationic Carbon Quantum Dots Derived from Alginate for Gene Delivery: One-Step Synthesis and Cellular Uptake. Acta Biomater. 2016, 42, 209–219. [Google Scholar] [CrossRef]
- Sanpui, P.; Pandey, S.B.; Chattopadhyay, A.; Ghosh, S.S. Incorporation of gene therapy vector in chitosan stabilized Mn2+-doped ZnS quantum dot. Mater. Lett. 2010, 64, 2534–2537. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhang, M.Z.; Li, X.Y.; Wan, M.; Li, Y.Q.; Zhang, R.Y.; Zhao, Y.D. A Convenient Method of Preparing Gene Vector for Real Time Monitoring Transfection Process Based on the Quantum Dots. Mater. Res. Bull. 2012, 47, 3330–3335. [Google Scholar] [CrossRef]
- Zhao, J.; Qiu, X.; Wang, Z.; Pan, J.; Chen, J.; Han, J. Application of Quantum Dots as Vectors in Targeted Survivin Gene siRNA Delivery. OncoTargets Ther. 2013, 6, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Meng, X.; Zhang, S.; Zhang, D.; Wang, L.; Liu, C. The Effect of a Nuclear Localization Sequence on Transfection Efficacy of Genes Delivered by Cobalt(II)–Polybenzimidazole Complexes. Biomaterials 2012, 33, 7884–7894. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Guan, R.L.; Ji, L.N.; Chao, H. DNA Condensation Induced by Metal Complexes. Coord. Chem. Rev. 2014, 281, 100–113. [Google Scholar] [CrossRef]
- Jiang, R.; Yin, J.; Hu, S.; Meng, X.; Liu, C. Cobalt(II)-Polybenzimidazole Complexes as a Nonviral Gene Carrier: Effects of Charges and Benzimidazolyl Groups. Curr. Drug Deliv. 2012, 9, 122–133. [Google Scholar] [CrossRef]
- Huang, X.; Dong, X.; Li, X.; Meng, X.; Zhang, D.; Liu, C. Metal–Polybenzimidazole Complexes as a Nonviral Gene Carrier: Effects of the DNA Affinity on Gene Delivery. J. Inorg. Biochem. 2013, 129, 102–111. [Google Scholar] [CrossRef]
- Pranatharthiharan, S.; Patel, M.D.; D’Souza, A.A.; Devarajan, P.V. Inorganic Nanovectors for Nucleic Acid Delivery. Drug Deliv. Transl. Res. 2013, 3, 446–470. [Google Scholar] [CrossRef]
- Encabo-Berzosa, M.M.; Sancho-Albero, M.; Sebastian, V.; Irusta, S.; Arruebo, M.; Santamaria, J.; Duque, P.M.; Encabo-Berzosa, M.M.; Sancho-Albero, M. Polymer Functionalized Gold Nanoparticles as Nonviral Gene Delivery Reagents. J. Gene Med. 2017, 19, e2964. [Google Scholar] [CrossRef]
- Wang, P.; Lin, L.; Guo, Z.; Chen, J.; Tian, H.; Chen, X.; Yang, H. Highly Fluorescent Gene Carrier Based on Ag–Au Alloy Nanoclusters. Macromol. Biosci. 2016, 16, 160–167. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold Nanoparticles for Nucleic Acid Delivery. Mol. Ther. 2014, 22, 1075–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure. Proc. Natl. Acad. Sci. USA 1987, 84, 7413–7417. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Bae, Y.U.; Doh, K.O.; Hwang, G.B.; Lee, S.H.; Kang, H.; Seu, Y.B. The Synthesis of Cholesterol-Based Cationic Lipids with Trimethylamine Head and the Effect of Spacer Structures on Transfection Efficiency. Bioorganic Med. Chem. Lett. 2011, 21, 3734–3737. [Google Scholar] [CrossRef] [PubMed]
- Mintzer, M.A.; Simanek, E.E. Nonviral Vectors for Gene Delivery. Chem. Rev. 2009, 109, 259–302. [Google Scholar] [CrossRef] [PubMed]
- Niculescu Duvaz, D.; Heyes, J.; Springer, C.J. Structure-Activity Relationship in Cationic Lipid Mediated Gene Transfection. Curr. Med. Chem. 2003, 10, 1233–1261. [Google Scholar] [CrossRef]
- Gao, Y.G.; Shi, Y.D.; Alam, U.; Tang, Q.; Zhang, Y.; Wang, R.; Lu, Z.L. Functional Lipids Based on [12]aneN 3 and Naphthalimide as Efficient Non-Viral Gene Vectors. Org. Biomol. Chem. 2016, 14, 6346–6354. [Google Scholar] [CrossRef]
- Berchel, M.; Haelters, J.E.; Afonso, D.; Maroto, A.; Deschamps, L.; Giamarchi, P.; Jaffres, P.A. Functionalized Phospholipid Molecular Platform: Use for Production of Cationic Fluorescent Lipids. Eur. J. Org. Chem. 2014, 5, 1076–1083. [Google Scholar] [CrossRef]
- Alton, E.W.F.W.; Boyd, A.C.; Cheng, S.H.; Cunningham, S.; Davies, J.C.; Gill, D.R.; Griesenbach, U.; Higgins, T.; Hyde, S.C.; Innes, J.A.; et al. A Randomised, Double-Blind, Placebo-Controlled Phase IIB Clinical Trial of Repeated Application of Gene Therapy in Patients with Cystic Fibrosis. Thorax 2013, 68, 1075–1077. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, M.J. Liposome-Mediated Cancer Gene Therapy: Clinical Trials and Their Lessons to Stem Cell Therapy. Bull. Korean Chem. Soc. 2012, 33, 433–442. [Google Scholar] [CrossRef]
- Kleusch, C.; Hersch, N.; Hoffmann, B.; Merkel, R.; Csiszar, A. Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization. Molecules 2012, 17, 1055–1073. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.C.; Peterson, R.; Mallik, S.; Campiglia, A.D. Synthesis and Fluorescence Properties of New Fluorescent, Polymerizable, Metal-Chelating lipids. J. Org. Chem. 2000, 65, 3644–3651. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Feng, L.; Wang, D.D.; Wu, J.J.; Hou, J.; Dai, Z.R.; Sun, S.G.; Wang, J.Y.; Ge, G.B.; Cui, J.N.; et al. A Highly Selective Near-Infrared Fluorescent Probe for Carboxylesterase 2 and its Bioimaging Applications in Living Cells and Animals. Biosens. Bioelectron. 2016, 83, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Characterization of DNA Condensates Induced by Poly(Ethylene Oxide) and Polylysine. Proc. Natl. Acad. Sci. USA 1975, 72, 4288–4292. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H. Enhanced Delivery of Antisense Oligonucleotides with Fluorophore-Conjugated PAMAM Dendrimers. Nucleic Acids Res. 2000, 28, 4225–4231. [Google Scholar] [CrossRef]
- Mastorakos, P.; Kambhampati, S.P.; Mishra, M.K.; Wu, T.; Song, E.; Hanes, J.; Kannan, R.M. Hydroxyl PAMAM Dendrimer-Based Gene Vectors for Transgene Delivery to Human retinal Pigment Epithelial Cells. Nanoscale 2015, 7, 3845–3856. [Google Scholar] [CrossRef]
- Xu, C.T.; Chen, G.; Nie, X.; Wang, L.O.; Ding, S.H.; You, Y.E. Low Generation PAMAM-Based Nanomicelles as ROS-Responsive Gene Vectors with Enhanced Transfection Efficacy and Reduced Cytotoxicity in Vitro. New J. Chem. 2017, 41, 3273–3279. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, X.; Yang, L.; Wu, Y.; Liu, H.; Zhang, X.; Wei, Y. Preparation of Fluorescent Organic Nanoparticles from Polyethylenimine and Sucrose for Cell Imaging. Mater. Sci. Eng. C 2016, 68, 37–42. [Google Scholar] [CrossRef]
- Yu, J.C.; Zhu, S.; Feng, P.J.; Qian, C.G.; Huang, J.; Sun, M.J.; Shen, Q.D. Cationic Fluorescent Polymer Core–Shell Nanoparticles for Encapsulation, Delivery, and Non-Invasively Tracking the Intracellular Release of siRNA. Chem. Commun. 2015, 51, 2976–2979. [Google Scholar] [CrossRef]
- Wang, M.; Guo, Y.; Yu, M.; Ma, P.X.; Mao, C.; Lei, B. Photoluminescent and Biodegradable Polycitrate-Polyethylene Glycol-Polyethyleneimine Polymers as Highly Biocompatible and Efficient Vectors for Bioimaging-Guided siRNA and miRNA Delivery. Acta Biomater. 2017, 54, 69–80. [Google Scholar] [CrossRef]
- Terai, T.; Nagano, T. Small-Molecule Fluorophores and Fluorescent Probes for Bioimaging. Pflugers Arch. Eur. J. Physiol. 2013, 465, 347–359. [Google Scholar] [CrossRef]
- Xie, Z.; Kim, J.P.; Cai, Q.; Zhang, Y.; Guo, J.; Dhami, R.S.; Li, L.; Kong, B.; Su, Y.; Schug, K.A.; et al. Synthesis and Characterization of Citrate-Based Fluorescent Small Molecules and Biodegradable Polymers. Acta Biomater. 2017, 50, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.G.; Tang, Q.; Shi, Y.O.; Zhang, Y.; Wang, R.; Lu, Z.H. A Novel Non-Viral Gene Vector for Hepatocytetargeting and in Situ Monitoring of DNA Delivery in Single Cells. RSC Adv. 2016, 6, 50053–50060. [Google Scholar] [CrossRef]
- Maldonadoa, C.R.; Salassab, L.; Gomez Blancob, N.; Juan, C. Mareque-Rivasb, Nano-Functionalization of Metal Complexes for Molecular Imaging and Anticancer Therapy. Coord. Chem. Rev. 2013, 257, 2668–2688. [Google Scholar] [CrossRef]
- Yu, B.; Ouyang, C.; Qiu, K.; Zhao, J.; Ji, L.; Chao, H. Lipophilic Tetranuclear Ruthenium(II) Complexes as Two-Photon Luminescent Tracking Non-Viral Gene Vectors. Chem. A Eur. J. 2015, 21, 3691–3700. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.Y.; Guo, Y.; Zhang, J.; Huang, Z.; Yu, X.I. Zn(II) Coordination to Cyclen-Based Polycations for Enhanced Gene Delivery. J. Mater. Chem. B 2019, 7, 451–459. [Google Scholar] [CrossRef]
- Quantum dot. Available online: https://en.wikipedia.org/wiki/Quantum_dot (accessed on 21 January 2019).
- Xu, C.; Yang, D.; Mei, L.; Lu, B.; Chen, L.; Li, Q.; Zhu, H.; Wang, T. Encapsulating Gold Nanoparticles or Nanorods in Graphene Oxide Shells as a Novel Gene Vector. ACS Appl. Mater. Interfaces 2013, 5, 2715–2724. [Google Scholar] [CrossRef]
- Remant Bahadur, K.C. Bindu Thapa and Narayan Bhattarai, Gold Nanoparticle-Based Gene Delivery: Promises and Challenges. Nanotechnol. Rev. 2014, 3, 269–280. [Google Scholar]
- Guo, S.; Huang, Y.; Jiang, Q.; Sun, Y.; Deng, L.; Liang, Z.; Du, Q.; Xing, J.; Zhao, Y.; Wang, P.C.; et al. Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano 2010, 4, 5505–5511. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.S.; Kim, C.K.; Han, G.; Forbes, N.S.; Rotello, V.M. Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano 2008, 2, 2213–2218. [Google Scholar] [CrossRef] [Green Version]
- Strohbach, C.A.; Dean, D.A.; Stivers, C.A.; Strong, D.D.; Linkhart, T.A. Development of an Osteoblast-Specific Non-Viral Vector with Enhanced Nuclear Entry for Gene Therapy. In Proceedings of the 56th Annual Meeting of the Orthopaedic Research Society, Rosemont, IA, USA, 6–9 March 2010; Orthopaedic Research Society: Rosemont, IA, USA, 2010. [Google Scholar]
- Yigit, S.; Tokareva, O.; Varone, A.; Georgakoudi, I.; Kaplan, D.L. Bioengineered Silk Gene Delivery System for Nuclear Targeting. Macromol. Biosci. 2014, 14, 1291–1298. [Google Scholar] [CrossRef] [Green Version]
- Dean, D.A.; Strong, D.D.; Zimmer, W.E. Nuclear Entry of Nonviral Vectors. Gene Ther. 2005, 12, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Vaysse, L.; Harbottle, R.; Bigger, B.; Bergau, A.; Tolmachov, O.; Coutelle, C. Development of a Self-Assembling Nuclear Targeting Vector System Based on the Tetracycline Repressor Protein. J. Biol. Chem. 2004, 279, 5555–5564. [Google Scholar] [CrossRef] [PubMed]
- Selvi, B.R.; Jagadeesan, D.; Suma, B.S.; Nagashankar, G.; Arif, M.; Balasubramanyam, K.; Eswaramoorthy, M.; Kundu, T.K. Intrinsically Fluorescent Carbon Nanospheres as a Nuclear Targeting Vector: Delivery of Membrane-Impermeable Molecule to Modulate Gene Expression In Vivo. Nano Lett. 2008, 8, 3182–3188. [Google Scholar] [CrossRef] [PubMed]
- Salvado, R.; Sousa, F.; Queiroz, J.; Costa, D. Development of Mitochondrial Targeting Plasmid DNA Nanoparticles: Characterization and in Vitro Studies. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 287–295. [Google Scholar] [CrossRef]
- Zhang, C.X.; Cheng, Y.; Liu, D.Z.; Liu, M.; Cui, H.; Zhang, B.L.; Mei, Q.B.; Zhou, S.Y. Mitochondria-Targeted Cyclosporin A Delivery System to Treat Myocardial Ischemia Reperfusion Injury of Rats. J. Nanobiotechnology 2019, 17, 18. [Google Scholar] [CrossRef]
- D’Souza, G.G.M.; Wagle, M.A.; Saxena, V.; Shah, A. Approaches for Targeting Mitochondria in Cancer Therapy. Biochim. Et Biophys. Acta (BBA) Bioenerg. 2011, 1807, 689–696. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, W.; Kuang, X.; Hou, S.; Liu, H. Nanopreparations for Mitochondria Targeting Drug Delivery System: Current Strategies and Future Prospective. Asian J. Pharm. Sci. 2017, 12, 498–508. [Google Scholar] [CrossRef]
- Liao, C.; Xu, D.; Liu, X.; Fang, Y.; Yi, J.; Li, X.; Guo, B. Iridium (III) Complex-Loaded Liposomes as a Drug Delivery System for Lung Cancer Through Mitochondrial Dysfunction. Int. J. Nanomed. 2018, 13, 4417–4431. [Google Scholar] [CrossRef]
- Lei, E.K.; Kelley, S.O. Delivery and Release of Small-Molecule Probes in Mitochondria Using Traceless Linkers. J. Am. Chem. Soc. 2017, 139, 9455–9458. [Google Scholar] [CrossRef]
- Yang, H.M.; Park, C.W.; Bae, P.K.; Ahn, T.; Seo, B.K.; Chung, B.H.; Kim, J.D. Folate-Conjugated Cross-Linked Magnetic Nanoparticles as Potential Magnetic Resonance Probes for in Vivo Cancer Imaging. J. Mater. Chem. B 2013, 1, 3035. [Google Scholar] [CrossRef]
- Zwicke, G.L.; Mansoori, G.A.; Jeffery, C.J. Utilizing the Folate Receptor for Active Targeting of Cancer Nanotherapeutics. Nano Rev. 2012, 3, 346. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Sakaguchi, M.; Maitani, Y. Folate-Linked Lipid-Based Nanoparticles Deliver a NFk B Decoy into Activated Murine Macrophage-Like RAW264.7 Cells. Biol. Pharm. Bull. 2006, 29, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, T.; Hattori, Y.; Hakoshima, M.; Koga, K.; Maitani, Y. Folate-Linked Lipid-Based Nanoparticles for Synthetic siRNA Delivery in KB Tumor Xenografts. Eur. J. Pharm. Biopharm. 2008, 70, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Jin, J.; Siu, L.K.; Yao, H.; Sze, J.; Sun, H.; Kung, H.F.; Poon, W.S.; Ng, S.S.; Lin, M.C. Folic Acid Conjugated mPEG-PEI600 as an Efficient Non-Viral Vector for Targeted Nucleic Acid Delivery. Int. J. Pharm. 2012, 426, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Maitani, Y. Folate-Linked Nanoparticle-Mediated Suicide Gene Therapy in Human Prostate Cancer and Nasopharyngeal Cancer with Herpes Simplex Virus Thymidine Kinase. Cancer Gene Ther. 2005, 12, 796–809. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.G.; Robinson, M.A. Drug Delivery Systems Based on Sugar-Macromolecule Conjugates. Curr. Opin. Drug Discov. Dev. 2002, 5, 279–288. [Google Scholar]
- Liu, X.; Shao, W.; Zheng, Y.; Yao, C.; Peng, L.; Zhang, D.; Hu, X.I.; Wang, L. GSH-Responsive Supramolecular Nanoparticles Constructed by B-D-Galactose-Modified Pillar[5]Arene and Camptothecin Prodrug for Targeted Anticancer Drug Delivery. Chem. Commun. 2017, 53, 8596–8599. [Google Scholar] [CrossRef]
- Mukthavaram, R.; Marepally, S.; Venkata, M.Y.; Vegi, G.N.; Sistla, R.; Chaudhuri, A. Cationic Glycolipids with Cyclic and Open Galactose Head Groups for the Selective Targeting of Genes to Mouse Liver. Biomaterials 2009, 30, 2369–2384. [Google Scholar] [CrossRef]
- Sakashita, M.; Mochizuki, S.; Sakurai, K. Hepatocyte-Targeting Gene Delivery Using a Lipoplex Composed of Galactose-Modified Aromatic Lipid Synthesized with Click Chemistry. Bioorganic Med. Chem. 2014, 22, 5212–5219. [Google Scholar] [CrossRef]
- Liu, L.; Zong, Z.M.; Liu, Q.; Jiang, S.S.; Zhang, Q.; Cen, L.Q.; Gao, J.; Gao, X.G.; Huang, J.D.; Liu, Y.; et al. A Novel Galactose-PEG-Conjugated Biodegradable Copolymer is an Efficient Gene Delivery Vector for Immunotherapy of Hepatocellular Carcinoma. Biomaterials 2018, 184, 20–30. [Google Scholar] [CrossRef]
- Crevecoeur, J.; Jossa, V.; Gennigens, C.; Parmentier, J.E.; Crevecoeur, A. Primary Osteosarcoma of the Breast: A Case Report. Clin. Case Rep. 2016, 4, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, G.; Chi, H.; Wang, D.; Tu, C.; Pan, L.; Zhu, L.; Qiu, F.; Guo, F.; Zhu, X. Alendronate-Conjugated Amphiphilic Hyperbranched Polymer Based on Boltorn H40 and Poly(Ethylene Glycol) for Bone-Targeted Drug Delivery. Bioconjugate Chem. 2012, 23, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Cai, L.; Hu, H.; Zhang, Y. Experiments and Synthesis of Bone-Targeting Epirubicin with the Water-Soluble Macromolecular Drug Delivery Systems of Oxidized-Dextran. J. Drug Target. 2014, 22, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Uludag, H.; Yang, J. Targeting Systemically Administered Proteins to Bone by Bisphosphonate Conjugation. Biotechnol. Prog. 2002, 18, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.; Han, Y.; Opas, E.E.; Rodan, G.A.; Ruel, R.; Seedor, J.; Tyler, P.C.; Young, R.N. Prostaglandin E2-Bisphosphonate Conjugates: Potential Agents for Treatment of Osteoporosis. Bioorganic Med. Chem. 1999, 7, 901–919. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, X.; Cai, M.; Liu, X.; Xiao, J.; Zhang, C.; Wang, Y.; Yang, L.; Liu, J.; Li, S.; et al. Osteoblast-Targeting-Peptide Modified Nanoparticle for siRNA/microRNA Delivery. ACS Nano 2016, 10, 5759–5768. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, B.; Wu, H.; Tang, T.; Zhang, B.A.; Zheng, L.; He, Y.; Yang, Z.; Pan, X.; Chow, H.; et al. A Delivery System Targeting Bone Formation Surfaces to Facilitate RNAi-Based Anabolic Therapy. Nat. Med. 2012, 18, 307–314. [Google Scholar] [CrossRef]
- Liu, J.; Dang, L.; Li, D.; Liangf, C.; He, X.; Wu, H.; Qian, A.; Yang, Z.; Au, D.W.T.; Chiang, M.W.L.; et al. A Delivery System Specifically Approaching Bone Resorption Surfaces to Facilitate Therapeutic Modulation of microRNAs in Osteoclasts. Biomaterials 2015, 52, 148–160. [Google Scholar] [CrossRef]
- Liu, Q.; Su, R.O.; Yi, W.E.; Zhao, Z.H. Biodegradable Poly(Amino Ester) with Aromatic Backbone as Efficient Nonviral Gene Delivery Vectors. Molecules 2017, 22, 566. [Google Scholar] [CrossRef]
- Ganas, C.; Weiis, A.; Nazarenus, M.; Rosler, S.; Kissel, T.; Rivera Gil, P.; Parak, W.J. Biodegradable Capsules as Non-Viral Vectors for in Vitro Delivery of PEI/siRNA Polyplexes for Efficient Gene Silencing. J. Control. Release 2014, 196, 132–138. [Google Scholar] [CrossRef]
- Wang, W.; Balk, M.; Deng, Z.; Wischke, C.; Gossen, M.; Behl, M.; Ma, N.; Lendlein, A. Engineering Biodegradable Micelles of Polyethylenimine-Based Amphiphilic Block Copolymers for Efficient DNA and siRNA Delivery. J. Control. Release 2016, 242, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Sun, Y.; Shi, Q.I.; Liu, P.E.; Zhu, M.I.; Wang, C.H.; Du, L.I.; Duan, Y.O. Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing. Int. J. Mol. Sci. 2012, 13, 516–533. [Google Scholar] [CrossRef] [PubMed]
- Xun, M.I.; Zhang, X.U.; Zhang, J.; Jiang, Q.I.; Yi, W.E.; Zhu, W.; Yu, X.I. Low Molecular Weight PEI-Based Biodegradable Lipopolymers as Gene Delivery Vectors. Org. Biomol. Chem. 2013, 11, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Wang, H.J.; Cao, J.M.; Zhang, J.; Yu, X.Q. Bioreducible Cross-Linked Polymers Based on G1 Peptide Dendrimer as Potential Gene Delivery Vectors. Eur. J. Med. Chem. 2014, 87, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Endres, T.; Zheng, M.; Kılıç, A.; Turowska, A.; Beck Broichsitter, M.; Renz, H.; Merkel, O.M.; Kissel, T. Amphiphilic Biodegradable PEG-PCL-PEI Triblock Copolymers for FRET-Capable in Vitro and in Vivo Delivery of siRNA and Quantum Dots. Mol. Pharm. 2014, 11, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Wang, S.; Zhang, J.; Wu, S.H.; Wang, B.O.; Zhu, W.; Yu, X.I. Biodegradable Cyclen-Based Linear and Cross-Linked Polymers as Non-Viral Gene Vectors. Bioorganic Med. Chem. 2012, 20, 1380–1387. [Google Scholar] [CrossRef]
- Nam, J.P.; Nam, K.; Nah, J.W.; Kim, S.W. Evaluation of Histidylated Arginine-Grafted Bioreducible Polymer To Enhance Transfection Efficiency for Use as a Gene Carrier. Mol. Pharm. 2015, 12, 2352–2364. [Google Scholar] [CrossRef]
- Petersen, H.; Merdan, T.; Kunath, K.; Fischer, D.; Kissel, T. Poly(Ethylenimine-Co-l-Lactamide-Co-Succinamide): A Biodegradable Polyethylenimine Derivative with an Advantageous pH-Dependent Hydrolytic Degradation for Gene Delivery. Bioconjugate Chem. 2002, 13, 812–821. [Google Scholar] [CrossRef]
- Shuai, X.; Merdan, T.; Unger, F.; Wittmar, M.; Kissel, T. Novel Biodegradable Ternary Copolymers hy-PEI-G-PCL-B-PEG: Synthesis, Characterization, and Potential as Efficient Nonviral Gene Delivery Vectors. Macromolecules 2003, 36, 5751–5759. [Google Scholar] [CrossRef]
- Lee, Y.; El Andaloussi, S.; Wood, M.J. Exosomes and Microvesicles: Extracellular Vesicles for Genetic Information Transfer and Gene Therapy. Hum. Mol. Genet. 2012, 21, R125–R134. [Google Scholar] [CrossRef]
- Rufino Ramos, D.; Albuquerque, P.R.; Carmona, V.; Perfeito, R.; Nobre, R.J.; De Almeida, L.P. Extracellular Vesicles: Novel Promising Delivery Systems for Therapy of Brain Diseases. J. Control. Release 2017, 262, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Costa Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Mark, M.T.; Singh, S.; Kure, E.H.; Jain, M.; Pantel, M.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, M.; Villa, A.; Rizzi, N.; Kuryk, L.; Mazzaferro, V.; Ciana, P. Systemic Administration and Targeted Delivery of Immunogenic Oncolytic Adenovirus Encapsulated in Extracellular Vesicles for Cancer Therapies. Viruses 2018, 10, 558. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, A.; Silva, A.M.; Teixeira, J.H.; Gonçalves, R.M.; Almeida, M.I.; Barbosa, M.A.; Santos, S.G. Extracellular Vesicles: Intelligent Delivery Strategies for Therapeutic Applications. J. Control. Release 2018, 289, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Kooijmans, S.; Fliervoet, L.; Van Der Meel, R.; Fens, M.; Heijnen, H.; Henegouwen, P.V.B.E.; Vader, P.; Schiffelers, R.; Schiffelers, R. PEGylated and Targeted Extracellular Vesicles Display Enhanced Cell Specificity and Circulation Time. J. Control. Release 2016, 224, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Carbon Nanotube. Available online: https://en.wikipedia.org/wiki/Carbon_nanotube (accessed on 23 January 2019).
- Heister, E.; Neves, V.; Lamprecht, C.; Silva, S.R.P.; Coley, H.M.; McFadden, J. Drug Loading, Dispersion Stability, and Therapeutic Efficacy in Targeted Drug Delivery with Carbon Nanotubes. Carbon 2012, 50, 622–632. [Google Scholar] [CrossRef]
- Ramos Perez, V.; Cifuentes, A.; Coronas, N.; De Pablo, A.; Borros, S. Modification of Carbon Nanotubes for Gene Delivery Vectors. In Nanomaterial Interfaces in Biology: Methods and Protocols, Methods in Molecular Biology; Springer Science Business Media: New York, NJ, USA, 2013; Volume 1025, pp. 261–268. [Google Scholar]
- Zhang, X.; Meng, L.; Wang, X.; Lu, Q. Preparation and Cellular Uptake of pH-Dependent Fluorescent Single-Wall Carbon Nanotubes. Chem. A Eur. J. 2010, 16, 556–561. [Google Scholar] [CrossRef]
- Ketabi, S.; Rahmani, L. Carbon Nanotube as a Carrier in Drug Delivery System for Carnosine Dipeptide: A Computer Simulation Study. Mater. Sci. Eng. C 2017, 73, 173–181. [Google Scholar] [CrossRef]
- Sanz, V.; Tilmaciu, C.; Soula, B.; Flahaut, E.; Coley, H.M.; Silva, S.R.P.; McFadden, J. Chloroquine-Enhanced Gene Delivery Mediated by Carbon Nanotubes. Carbon 2011, 49, 5348–5358. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Ma, D.; Tang, H.; Tan, L.; Xie, Q.; Yao, S. Biocompatible Multi-Walled Carbon Nanotube-Chitosan–Folic Acid Nanoparticle Hybrids as GFP Gene Delivery Materials. Colloids Surf. B Biointerfaces 2013, 111, 224–231. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, S.; Liu, Z. Graphene Based Gene Transfection. Nanoscale 2011, 3, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Dowaidar, M.; Abdelhamid, H.N.; Hallbrink, M.; Zou, X.; Langel, U.L.O. Graphene Oxide Nanosheets in Complex with Cell Penetrating Peptides for Oligonucleotides Delivery. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2017, 1861, 2334–2341. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cui, L.; Losic, D. Graphene and Graphene Oxide as New Nanocarriers for Drug Delivery Applications. Acta Biomater. 2013, 9, 9243–9257. [Google Scholar] [CrossRef] [PubMed]
- Imani, R.; Mohabatpour, F.; Mostafavi, F. Graphene-Based Nano-Carrier Modifications for Gene Delivery Applications. Carbon 2018, 140, 569–591. [Google Scholar] [CrossRef]
- Mo, R.; Jiang, T.; Sun, W.; Gu, Z. ATP-Responsive DNA-Graphene Hybrid Nanoaggregates for Anticancer Drug Delivery. Biomaterials 2015, 50, 67–74. [Google Scholar] [CrossRef]
- Teimouri, M.; Nia, A.H.; Abnous, K.; Eshghi, H.; Ramezani, M. Graphene Oxide–Cationic Polymer Conjugates: Synthesis and Application as Gene Delivery Vectors. Plasmid 2016, 84, 51–60. [Google Scholar] [CrossRef]
- Lima Tenorio, M.K.; Pineda, E.A.G.; Ahmad, N.M.; Fessi, H.; Elaissari, A. Magnetic Nanoparticles: In Vivo Cancer Diagnosis and Therapy. Int. J. Pharm. 2015, 493, 313–327. [Google Scholar] [CrossRef]
- Veiseh, O.; Gunn, J.W.; Zhang, M. Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304. [Google Scholar] [CrossRef]
- Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pottler, M.; Durr, S.; Alexiou, C. Magnetic Nanoparticle-Based Drug Delivery for Cancer Therapy. Biochem. Biophys. Res. Commun. 2015, 468, 463–470. [Google Scholar] [CrossRef]
- Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic Nanoparticles and Targeted Drug Delivering. Pharmacol. Res. 2010, 62, 144–149. [Google Scholar] [CrossRef]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Arginylglycylaspartic Acid. Available online: https://en.wikipedia.org/wiki/Arginylglycylaspartic_acid (accessed on 25 January 2019).
- Cheng, Y.; Ji, Y. RGD-Modified Polymer and Liposome Nanovehicles: Recent Research Progress for Drug Delivery in Cancer Therapeutics. Eur. J. Pharm. Sci. 2019, 128, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.A.; Mofrad, M.R.K. Cell Adhesion and Detachment on Gold Surfaces Modified with a Thiol-Functionalized RGD Peptide. Biomaterials 2011, 32, 7286–7296. [Google Scholar] [CrossRef] [PubMed]
- Hoesli, C.A.; Garnier, A.; Juneau, P.M.; Chevallier, P.; Duchesne, C.; Laroche, G. A Fluorophore-Tagged RGD Peptide to Control Endothelial Cell Adhesion to Micropatterned Surfaces. Biomaterials 2014, 35, 879–890. [Google Scholar] [CrossRef]
- Hersel, U.; Dahmen, C.; Kessler, H. RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond. Biomaterials 2003, 24, 4385–4415. [Google Scholar] [CrossRef]
Vectors | Virus | Advantages | Disadvantages |
---|---|---|---|
Viral | Retrovirus | Long-term gene expression | Low efficiency in vivo, immunogenic problems, the inability to transduce the nondividing cells, and the risk of insertion, infects dividing cells only. |
Lentivirus | Long-term gene expression, infects non-dividing and dividing cells | Generation of replication-competent virus, Potential for tumorigenesis | |
Vaccinia virus | High immunogenicity safety: used as a smallpox vaccine, high titer production | Pre-existing immunity | |
Adenovirus | Transfect dividing and non-dividing cells and have low host specificity, deliver large DNA particles (up to 38 kb), high immunogenicity safety: used in many clinic trails, high titer production | Gene expression is too short term, pre-existing immunity. | |
Adeno-associated virus | Long-term gene expression, non-pathogenic virus | Low titer production | |
Cytomegalovirus | Induces a unique CTL response, protects against SIV infection in an animal model | Pre-existing immunity risk of pathogenesis in specific individuals |
Cancer | Major Carrier | Gene | Administration Route | Phase (Start Year) | Note |
---|---|---|---|---|---|
Stage IV melanoma | DC-Chol | HLA-B7 | Intratumoral, Intrapulmonaty | Phase I (1993) | |
Head and neck cancer | DC-Chol | EGFR antisense | Intratumoral | Phase I (1999) | |
Head and neck cancer, breast cancer, | DC-Chol | E1A | Intratumoral with catheter | Phase I (1999) | |
Breast cancer, ovarian cancer | DC-Chol | E1A | Intrapleural, Intraperitoneal | Phase I (1999) | |
Ovarian cancer | DC-Chol | E1A | Intraperitoneal | Phase I/II (2004) | tgDCC-E1A in combination with paclitaxel |
Head and neck cancer | DC-Chol | E1A | Intratumoral | Phase II (2002) | tgDCC-E1A |
Metastatic melanoma | DMRIE | HLA-B7/β2-microglobulin | Intratumoral | Phase I (1997) | |
Metastatic melanoma | DMRIE | HLA-B7/β2-microglobulin | Intratumoral | Phase II (2002) | Allovectin-7 alone |
Stage 3 or Stage 4 melanoma | DMRIE | HLA-B7/β2-micrOglobulin | Intratumoral | Phase III (2006) | Allovectin-7 alone compared with chemotherapy |
Head and neck cancer | DMRIE | HLA-B7 | Intratumoral | Phase I (2001) Phase II 2002) | Allovectin-7 |
Prostate cancer | DMRIE | IL-2 | Intraprostatiscal | Phase I/II (2000) | Leuvectin |
Leukemia | DOTIM | Non-coding plasmid DNA | Vaccination | Phase I (2009) | As an adjuvant (JVRS-100) |
Advanced solid tumor, advanced malignancy | Cationic cardiolipin | c-raf antisense | Intravenous | Phase I (2004) | LErafAON-ETU |
Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, and Myelodysplastic Syndrome | Unknown | L-Grb-2 antisense | Intravenous | Phase I (2010) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S.; Gao, Y.-G.; Lin, X.; Li, Y.; Dang, K.; Tian, Y.; Zhang, W.-J.; Jiang, S.-F.; Qadir, A.; Qian, A.-R. The Development of Functional Non-Viral Vectors for Gene Delivery. Int. J. Mol. Sci. 2019, 20, 5491. https://doi.org/10.3390/ijms20215491
Patil S, Gao Y-G, Lin X, Li Y, Dang K, Tian Y, Zhang W-J, Jiang S-F, Qadir A, Qian A-R. The Development of Functional Non-Viral Vectors for Gene Delivery. International Journal of Molecular Sciences. 2019; 20(21):5491. https://doi.org/10.3390/ijms20215491
Chicago/Turabian StylePatil, Suryaji, Yong-Guang Gao, Xiao Lin, Yu Li, Kai Dang, Ye Tian, Wen-Juan Zhang, Shan-Feng Jiang, Abdul Qadir, and Ai-Rong Qian. 2019. "The Development of Functional Non-Viral Vectors for Gene Delivery" International Journal of Molecular Sciences 20, no. 21: 5491. https://doi.org/10.3390/ijms20215491
APA StylePatil, S., Gao, Y. -G., Lin, X., Li, Y., Dang, K., Tian, Y., Zhang, W. -J., Jiang, S. -F., Qadir, A., & Qian, A. -R. (2019). The Development of Functional Non-Viral Vectors for Gene Delivery. International Journal of Molecular Sciences, 20(21), 5491. https://doi.org/10.3390/ijms20215491