A Preclinical Evaluation towards the Clinical Application of Oxygen Consumption Measurement by CERMs by a Mouse Chimera Model
Abstract
:1. Introduction
2. Results
2.1. Effect of Oxygen Consumption Rate (OCR) Measurement by the Chip-Sensing Embryo Respiration Monitoring System (CERMs) on Embryo Development and Their Future Fertility
2.2. Correlations between the OCR and the Adenosine Triphosphate (ATP) Levels and Cell Counts in Blastocysts Developed from a Single Embryo
2.3. Correlations between the OCR and the ATP Levels and Cell Counts in Chimera Blastocysts
2.4. Correlation between the OCR and Mitochondrial Activity
2.5. The OCR and In Vivo Embryo Viability
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Embryos and Recipient Mice
4.3. Chimeric Embryo Production
4.4. OCR Measurement by CERMs
4.5. ATP Measurement
4.6. Immunocytochemical Procedure and Cell Count
4.7. MtDNA Copy Number Assay
4.8. Mitochondrial Membrane Potential Assay
4.9. Embryo Transfer
4.10. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
IVF | in vitro fertilization |
eSET | elective single embryo transfer |
ART | assisted reproductive technology |
TLM | time-lapse monitoring |
PGT-A | preimplantation genetic testing for aneuploidy |
ATP | adenosine triphosphate |
OCR | oxygen consumption rate |
OXPHOS | oxidative phosphorylation |
CERMs | Chip-sensing Embryo Respiratory Measurement system |
SECM | sensitive as scanning electrochemical microscopy |
BQS | blastocyst quality score |
ICM | inner cell mass |
mtDNA | mitochondrial DNA |
TE | trophectoderm |
ROS | reactive oxygen species |
COCs | cumulus–oocyte complexes |
FCCP | carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone |
References
- Gardner, D.K. Blastocyst culture: Toward single embryo transfers. Hum. Fertil. 2000, 3, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Veleva, Z.; Vilska, S.; Hyden-Granskog, C.; Tiitinen, A.; Tapanainen, J.S.; Martikainen, H. Elective single embryo transfer in women aged 36–39 years. Hum. Reprod. 2006, 21, 2098–2102. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the Society for Assisted Reproductive Technology; Practice Committee of the American Society for Reproductive Medicine. Elective single-embryo transfer. Fertil. Steril. 2012, 97, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, M.; Vitagliano, A.; Di Giovanni, M.V.; Lagana, A.S.; Vitale, S.G.; Blaganje, M.; Drusany Staric, K.; Borut, K.; Patrelli, T.S.; Noventa, M. Ultrasound-guided embryo transfer: Summary of the evidence and new perspectives. A systematic review and meta-analysis. Reprod. Biomed. Online 2018, 36, 524–542. [Google Scholar] [CrossRef] [PubMed]
- Larue, L.; Keromnes, G.; Massari, A.; Roche, C.; Moulin, J.; Gronier, H.; Bouret, D.; Cassuto, N.G.; Ayel, J.P. Transvaginal ultrasound-guided embryo transfer in IVF. J. Gynecol. Obstet. Hum. Reprod. 2017, 46, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Dieamant, F.; Petersen, C.G.; Mauri, A.L.; Comar, V.; Mattila, M.; Vagnini, L.D.; Renzi, A.; Petersen, B.; Ricci, J.; Oliveira, J.B.A.; et al. Single versus sequential culture medium: Which is better at improving ongoing pregnancy rates? A systematic review and meta-analysis. JBRA Assist. Reprod. 2017, 21, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Veeck, L.L. Atlas of the Human Oocyte and Early Conceptus; Williams & Wilkins: Philadelphia, PA, USA, 1991. [Google Scholar]
- Jansen, R.; Mortimer, D. Towards Reproductive Certainty: Fertility & Genetics Beyond 1999: The Plenary Proceedings of the 11th World Congress; Parthenon: Pearl River, NY, USA; London, UK, 1999; p. 534. [Google Scholar]
- Hardarson, T.; Hanson, C.; Sjogren, A.; Lundin, K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: Indications for aneuploidy and multinucleation. Hum. Reprod. 2001, 16, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.K.; Surrey, E.; Minjarez, D.; Leitz, A.; Stevens, J.; Schoolcraft, W.B. Single blastocyst transfer: A prospective randomized trial. Fertil. Steril. 2004, 81, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Finn, A.; Scott, L.; O’Leary, T.; Davies, D.; Hill, J. Sequential embryo scoring as a predictor of aneuploidy in poor-prognosis patients. Reprod. Biomed. Online 2010, 21, 381–390. [Google Scholar] [CrossRef] [PubMed]
- van Loendersloot, L.; van Wely, M.; van der Veen, F.; Bossuyt, P.; Repping, S. Selection of embryos for transfer in IVF: Ranking embryos based on their implantation potential using morphological scoring. Reprod. Biomed. Online 2014, 29, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Baxter Bendus, A.E.; Mayer, J.F.; Shipley, S.K.; Catherino, W.H. Interobserver and intraobserver variation in day 3 embryo grading. Fertil. Steril. 2006, 86, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Rodgaard, T.; Heegaard, P.M.; Callesen, H. Non-invasive assessment of in-vitro embryo quality to improve transfer success. Reprod. Biomed. Online 2015, 31, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, S.; Arroll, N.; Cree, L.M.; Jordan, V.; Farquhar, C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 2015, 2, CD011320. [Google Scholar] [CrossRef] [PubMed]
- Twisk, M.; Mastenbroek, S.; van Wely, M.; Heineman, M.J.; Van der Veen, F.; Repping, S. Preimplantation genetic screening for abnormal number of chromosomes (aneuploidies) in in vitro fertilisation or intracytoplasmic sperm injection. Cochrane Database Syst. Rev. 2006, 1, CD005291. [Google Scholar] [CrossRef] [PubMed]
- Sathananthan, A.H.; Trounson, A.O. Mitochondrial morphology during preimplantational human embryogenesis. Hum. Reprod. 2000, 15, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Brinster, R.; Greep, R.; Astwood, E. Nutrition and Metabolism of the Ovum, Zygote and Blastocyst; American Physiological Society: Rockville, MD, USA, 1973; pp. 165–185. [Google Scholar]
- Kurosawa, H.; Utsunomiya, H.; Shiga, N.; Takahashi, A.; Ihara, M.; Ishibashi, M.; Nishimoto, M.; Watanabe, Z.; Abe, H.; Kumagai, J.; et al. Development of a new clinically applicable device for embryo evaluation which measures embryo oxygen consumption. Hum. Reprod. 2016, 31, 2321–2330. [Google Scholar] [CrossRef] [PubMed]
- Shiku, H.; Shiraishi, T.; Ohya, H.; Matsue, T.; Abe, H.; Hoshi, H.; Kobayashi, M. Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy. Anal. Chem. 2001, 73, 3751–3758. [Google Scholar] [CrossRef] [PubMed]
- Abe, H. A Non-invasive and Sensitive Method for Measuring Cellular Respiration with a Scanning Electrochemical Microscopy to Evaluate Embryo Quality. J. Mamm. Ova Res. 2007, 24, 70–78. [Google Scholar] [CrossRef]
- Rehman, K.S.; Bukulmez, O.; Langley, M.; Carr, B.R.; Nackley, A.C.; Doody, K.M.; Doody, K.J. Late stages of embryo progression are a much better predictor of clinical pregnancy than early cleavage in intracytoplasmic sperm injection and in vitro fertilization cycles with blastocyst-stage transfer. Fertil. Steril. 2007, 87, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, M.; Sparman, M.; Ramsey, C.; Ma, H.; Lee, H.S.; Penedo, M.C.; Mitalipov, S. Generation of chimeric rhesus monkeys. Cell 2012, 148, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Wai, T.; Ao, A.; Zhang, X.; Cyr, D.; Dufort, D.; Shoubridge, E.A. The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 2010, 83, 52–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Blerkom, J.; Cox, H.; Davis, P. Regulatory roles for mitochondria in the peri-implantation mouse blastocyst: Possible origins and developmental significance of differential DeltaPsim. Reproduction 2006, 131, 961–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilding, M.; Dale, B.; Marino, M.; di Matteo, L.; Alviggi, C.; Pisaturo, M.L.; Lombardi, L.; De Placido, G. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 2001, 16, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Shiga, N.; Utsunomiya, H.; Kurosawa, H.; Suganuma, R.; Fukui, A.; Takahashi, T.; Abe, H.; Terada, Y.; Yaegashi, N. Evaluation of the objective assessment using a novel chip sensor mediated embryo respiratory activity monitoring system. Sannfujinnka No Jissai 2015, 64, 1213–1217. (In Japanese) [Google Scholar]
- Ottosen, L.D.; Hindkjaer, J.; Lindenberg, S.; Ingerslev, H.J. Murine pre-embryo oxygen consumption and developmental competence. J. Assist. Reprod. Genet. 2007, 24, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, F.D.; Thompson, J.G.; Kennedy, C.J.; Leese, H.J. Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. 1996, 44, 476–485. [Google Scholar] [CrossRef]
- Kane, M.T.; Buckley, N.J. The effects of inhibitors of energy metabolism on the growth of one-cell rabbit ova to blastocysts in vitro. J. Reprod. Fertil. 1977, 49, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Trimarchi, J.R.; Keefe, D.L. Thiol oxidation-induced embryonic cell death in mice is prevented by the antioxidant dithiothreitol. Biol. Reprod. 1999, 61, 1162–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.G.; Partridge, R.J.; Houghton, F.D.; Cox, C.I.; Leese, H.J. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J. Reprod. Fertil. 1996, 106, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturmey, R.G.; Leese, H.J. Energy metabolism in pig oocytes and early embryos. Reproduction 2003, 126, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trimarchi, J.R.; Liu, L.; Porterfield, D.M.; Smith, P.J.; Keefe, D.L. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol. Reprod. 2000, 62, 1866–1874. [Google Scholar] [CrossRef] [PubMed]
- Manes, C.; Lai, N.C. Nonmitochondrial oxygen utilization by rabbit blastocysts and surface production of superoxide radicals. J. Reprod. Fertil. 1995, 104, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leese, H.J.; Baumann, C.G.; Brison, D.R.; McEvoy, T.G.; Sturmey, R.G. Metabolism of the viable mammalian embryo: Quietness revisited. Mol. Hum. Reprod. 2008, 14, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Ebert, K.M.; Liem, H.; Hecht, N.B. Mitochondrial DNA in the mouse preimplantation embryo. J. Reprod. Fertil. 1988, 82, 145–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piko, L.; Taylor, K.D. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 1987, 123, 364–374. [Google Scholar] [CrossRef]
- Duran, H.E.; Simsek-Duran, F.; Oehninger, S.C.; Jones, H.W., Jr.; Castora, F.J. The association of reproductive senescence with mitochondrial quantity, function, and DNA integrity in human oocytes at different stages of maturation. Fertil. Steril. 2011, 96, 384–388. [Google Scholar] [CrossRef] [PubMed]
- May-Panloup, P.; Chretien, M.F.; Jacques, C.; Vasseur, C.; Malthiery, Y.; Reynier, P. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum. Reprod. 2005, 20, 593–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diez-Juan, A.; Rubio, C.; Marin, C.; Martinez, S.; Al-Asmar, N.; Riboldi, M.; Diaz-Gimeno, P.; Valbuena, D.; Simon, C. Mitochondrial DNA content as a viability score in human euploid embryos: Less is better. Fertil. Steril. 2015, 104, 534–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fragouli, E.; Spath, K.; Alfarawati, S.; Kaper, F.; Craig, A.; Michel, C.E.; Kokocinski, F.; Cohen, J.; Munne, S.; Wells, D. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015, 11, e1005241. [Google Scholar] [CrossRef] [PubMed]
- Cavelier, L.; Johannisson, A.; Gyllensten, U. Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp. Cell Res. 2000, 259, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Satoh, M.; Kuroiwa, T. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp. Cell Res. 1991, 196, 137–140. [Google Scholar] [CrossRef]
- Victor, A.R.; Brake, A.J.; Tyndall, J.C.; Griffin, D.K.; Zouves, C.G.; Barnes, F.L.; Viotti, M. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil. Steril. 2017, 107, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, A.; Nagy, K.; Gertsenstein, M. Production of mouse chimeras by aggregating pluripotent stem cells with embryos. Methods Enzymol. 2010, 476, 123–149. [Google Scholar] [PubMed]
- Leese, H.J. Quiet please, do not disturb: A hypothesis of embryo metabolism and viability. BioEssays 2002, 24, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.G.; Capriglione, S.; Peterlunger, I.; La Rosa, V.L.; Vitagliano, A.; Noventa, M.; Valenti, G.; Sapia, F.; Angioli, R.; Lopez, S.; et al. The Role of Oxidative Stress and Membrane Transport Systems during Endometriosis: A Fresh Look at a Busy Corner. Oxid. Med. Cell. Longev. 2018, 2018, 7924021. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.G.; Rossetti, P.; Corrado, F.; Rapisarda, A.M.; La Vignera, S.; Condorelli, R.A.; Valenti, G.; Sapia, F.; Lagana, A.S.; Buscema, M. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin. Int. J. Endocrinol. 2016, 2016, 4987436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mintz, B. Experimental Study of the Developing Mammalian Egg: Removal of the Zona Pellucida. Science 1962, 138, 594–595. [Google Scholar] [CrossRef] [PubMed]
- Tarkowski, A.K. Mouse chimaeras developed from fused eggs. Nature 1961, 190, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Sritanaudomchai, H.; Sparman, M.; Tachibana, M.; Clepper, L.; Woodward, J.; Gokhale, S.; Wolf, D.; Hennebold, J.; Hurlbut, W.; Grompe, M.; et al. CDX2 in the formation of the trophectoderm lineage in primate embryos. Dev. Biol. 2009, 335, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, Y.; Yanagimachi, R. Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 1995, 52, 709–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Rep Number | Number of Embryos Transferred | Mean OCR (fmol/s) | Mean Diameter (μm) | Implantation Rate (%) | Fetus Rate (%) | Average Fetus Weight (g) | |
---|---|---|---|---|---|---|---|
High-OCR | 6 | 60 | 14.71 ± 4.61 * | 113.08 ± 19.27 | 34/60 (56.6) | 10/60 (16.7) | 80.93 ± 26.4 |
Low-OCR | 6 | 60 | 7.65 ± 1.50 * | 110.67 ± 21.28 | 42/60 (60.0) | 23/60 (38.3) | 90.37 ± 28.5 |
* p < 0.05 | NS | NS | NS | NS |
Rep Number | Number of Embryos Transferred | Mean OCR (fmol/s) | Mean Diameter (μm) | Implantation Rate (%) | Fetus Rate (%) | Average Fetus Weight (g) | |
---|---|---|---|---|---|---|---|
Large | 3 | 30 | 9.28 ± 3.01 | 135.18 ± 13.28 * | 20/30 (66.7) | 13/30 (43.3) | 74.34 ± 20.0 |
Small | 3 | 30 | 10.2 ± 3.96 | 108.40 ± 13.19 * | 17/30 (56.7) | 8/30 (26.7) | 72.10 ± 28.8 |
NS | * p < 0.05 | NS | NS | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuno, T.; Tachibana, M.; Fujimine-Sato, A.; Fue, M.; Higashi, K.; Takahashi, A.; Kurosawa, H.; Nishio, K.; Shiga, N.; Watanabe, Z.; et al. A Preclinical Evaluation towards the Clinical Application of Oxygen Consumption Measurement by CERMs by a Mouse Chimera Model. Int. J. Mol. Sci. 2019, 20, 5650. https://doi.org/10.3390/ijms20225650
Kuno T, Tachibana M, Fujimine-Sato A, Fue M, Higashi K, Takahashi A, Kurosawa H, Nishio K, Shiga N, Watanabe Z, et al. A Preclinical Evaluation towards the Clinical Application of Oxygen Consumption Measurement by CERMs by a Mouse Chimera Model. International Journal of Molecular Sciences. 2019; 20(22):5650. https://doi.org/10.3390/ijms20225650
Chicago/Turabian StyleKuno, Takashi, Masahito Tachibana, Ayako Fujimine-Sato, Misaki Fue, Keiko Higashi, Aiko Takahashi, Hiroki Kurosawa, Keisuke Nishio, Naomi Shiga, Zen Watanabe, and et al. 2019. "A Preclinical Evaluation towards the Clinical Application of Oxygen Consumption Measurement by CERMs by a Mouse Chimera Model" International Journal of Molecular Sciences 20, no. 22: 5650. https://doi.org/10.3390/ijms20225650
APA StyleKuno, T., Tachibana, M., Fujimine-Sato, A., Fue, M., Higashi, K., Takahashi, A., Kurosawa, H., Nishio, K., Shiga, N., Watanabe, Z., & Yaegashi, N. (2019). A Preclinical Evaluation towards the Clinical Application of Oxygen Consumption Measurement by CERMs by a Mouse Chimera Model. International Journal of Molecular Sciences, 20(22), 5650. https://doi.org/10.3390/ijms20225650