Circadian Gene Polymorphisms Associated with Breast Cancer Susceptibility
Abstract
:1. Introduction
2. Results
2.1. Selected Circadian Gene Polymorphism Is Associated with Breast Cancer Risk
2.2. Circadian Gene Variants Are Associated with an Estrogen and Progesterone Receptor Status
2.3. A Putative Functional Effect of SNP on Circadian Gene Expression
3. Discussion
4. Methods and Materials
4.1. Study Population and Biological Materials
4.2. Ethics Declaration
4.3. DNA Isolation Procedures
4.4. SNP Selection, Genotyping, and Gene Expression.
4.5. Gene Expression
4.6. Statistics Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BC | Breast cancer |
SNP | Single Nucleotide Polymorphism |
ER | Estrogen Receptor |
PR | Progesterone Receptor |
HER2 | Human Epidermal Growth Factor Receptor 2 |
GWAS | Genome-Wide Association Study |
OR | Odds Ratio |
SD | Standard Deviation |
CI | Confidence Intervals |
HWE | Hardy–Weinberg Equilibrium |
MNE | Mean Normalized Expression |
GTex | The Genotype-Tissue Expression |
eQTL | Expression quantitative trait loci |
HRM | High Resolution Melt |
TFBS | Transcription factor binding site |
ESS | exonic splicing silencer |
ESE | exonic splicing enhancer |
LAN | light at night |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef]
- Valenzuela, F.J.; Vera, J.; Venegas, C.; Muñoz, S.; Oyarce, S.; Muñoz, K.; Lagunas, C. Evidences of Polymorphism Associated with Circadian System and Risk of Pathologies: A Review of the Literature. Int. J. Endocrinol. 2016, 2016, 2746909. [Google Scholar] [CrossRef] [PubMed]
- Reszka, E.; Przybek, M.; Muurlink, O.; Peplonska, B. Circadian gene variants and breast cancer. Cancer Lett. 2017, 390, 137–145. [Google Scholar] [CrossRef]
- The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, K.; Gong, P.; Qiao, F.; Wang, L.; Cui, H.; Sui, X.; Gao, J.; Fan, H. A Novel Functional TagSNP Rs7560488 in the DNMT3A1 Promoter Is Associated with Susceptibility to Gastric Cancer by Modulating Promoter Activity. PLoS ONE 2014, 9, e92911. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.T.; VanderWeele, T.J.; Lin, X. Joint Analysis of SNP and Gene Expression data in genetic association studies of complex diseases. Ann. Appl Stat. 2014, 8, 352–376. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015, 348, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J. Clin. 2014, 64, 207–218. [Google Scholar] [CrossRef]
- Bonde, J.P.; Hansen, J.; Kolstad, H.A.; Mikkelsen, S.; Olsen, J.H.; Blask, D.E.; Härmä, M.; Kjuus, H.; de Koning, H.J.; Olsen, J.; et al. Work at night and breast cancer--report on evidence-based options for preventive actions. Scand. J. Work Environ. Health. 2012, 38, 380–390. [Google Scholar] [CrossRef]
- Monsees, G.M.; Kraft, P.; Hankinson, S.E.; Hunter, D.J.; Schernhammer, E.S. Circadian genes and breast cancer susceptibility in rotating shift workers. Int. J. Cancer 2012, 131, 2547–2552. [Google Scholar] [CrossRef]
- Zienolddiny, S.; Haugen, A.; Lie, J.A.; Kjuus, H.; Anmarkrud, K.H.; Kjærheim, K. Analysis of polymorphisms in the circadian-related genes and breast cancer risk in Norwegian nurses working night shifts. Breast Cancer Res. 2013, 15, R53. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Stevens, R.G.; Leaderer, D.; Hoffman, A.; Holford, T.; Zhang, Y.; Brown, H.N.; Zheng, T. Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res. Treat. 2008, 107, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Mu, L.; de la Longrais, I.A.; Sochirca, O.; Arisio, R.; Yu, H.; Hoffman, A.E.; Zhu, Y.; Katsaro, D. The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res. Treat. 2010, 120, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.D.; Burch, J.B.; Hebert, J.R.; Kowtal, P.; Mehrotra-Kapoor, A.; Steck, S.E.; Hurley, T.G.; Gupta, P.C.; Pednekar, M.S.; Youngstedt, S.D.; et al. Case-control study of breast cancer in India: Role of PERIOD3 clock gene length polymorphism and chronotype. Cancer Investig. 2014, 32, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.; Liquet, B.; Menegaux, F.; Plancoulaine, S.; Laurent-Puig, P.; Mulot, C.; Cordina-Duverger, E.; Sanchez, M.; Arveux, P.; Kerbrat, P.; et al. Breast cancer risk, nightwork, and circadian clock gene polymorphisms. Endocr. Relat. Cancer 2014, 21, 629–638. [Google Scholar] [CrossRef]
- Rabstein, S.; Harth, V.; Justenhoven, C.; Pesch, B.; Plöttner, S.; Heinze, E.; Lotz, A.; Baisch, C.; Schiffermann, M.; Brauch, H.; et al. Polymorphisms in circadian genes, night work and breast cancer: Results from the GENICA study. Chronobiol. Int. 2014, 31, 1115–1122. [Google Scholar] [CrossRef]
- Zhou, F.; He, X.; Liu, H.; Zhu, Y.; Jin, T.; Chen, C.; Qu, F.; Li, Y.; Bao, G.; Chen, Z.; et al. Functional polymorphisms of circadian positive feedback regulation genes and clinical outcome of Chinese patients with resected colorectal cancer. Cancer 2012, 118, 937–946. [Google Scholar] [CrossRef]
- Karantanos, T.; Theodoropoulos, G.; Gazouli, M.; Vaiopoulou, A.; Karantanou, C.; Stravopodis, D.J.; Bramis, K.; Lymperi, M.; Pektasidis, D. Association of the clock genes polymorphisms with colorectal cancer susceptibility. J. Surg. Oncol. 2013, 108, 563–567. [Google Scholar] [CrossRef]
- Alexander, M.; Burch, J.B.; Steck, S.E.; Chen, C.F.; Hurley, T.G.; Cavicchia, P.; Ray, M.; Shivappa, N.; Guess, J.; Zhang, H.; et al. Case-control study of the PERIOD3 clock gene length polymorphism and colorectal adenoma formation. Oncol. Rep. 2015, 33, 935–941. [Google Scholar] [CrossRef]
- Madden, M.H.; Anic, G.M.; Thompson, R.C.; Nabors, L.B.; Olson, J.J.; Browning, J.E.; Monteiro, A.N.; Egan, K.M. Circadian pathway genes in relation to glioma risk and outcome. Cancer Causes Control. 2014, 25, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Markt, S.C.; Valdimarsdottir, U.A.; Shui, I.M.; Sigurdardottir, L.G.; Rider, J.R.; Tamimi, R.M.; Batista, J.L.; Haneuse, S.; Flynn-Evans, E.; Lockley, S.W.; et al. Circadian clock genes and risk of fatal prostate cancer. Cancer Causes Control. 2015, 26, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.W.; Zhu, Y.; Yu, K.; Zheng, T.; Yu, H.; Zhang, Y.; Sesterhenn, I.; Chokkalingam, A.P.; Danforth, K.N.; Shen, M.C.; et al. Variants in circadian genes and prostate cancer risk: A population-based study in China. Prostate Cancer Prostatic. Dis. 2008, 11, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ma, F.; Zhou, F.; Chen, Y.; Wang, X.; Zhang, H.; Zhu, Y.; Bi, J.; Zhang, Y. Functional polymorphisms of circadian negative feedback regulation genes are associated with clinical outcome in hepatocellular carcinoma patients receiving radical resection. Med. Oncol. 2014, 31, 179. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Wang, S.; Zhou, F.; Wan, S.; Yang, Y.; Huang, X.; Zhang, Z.; Zhu, Y.; Zhang, H.; Xing, J. Functional polymorphisms in the NPAS2 gene are associated with overall survival in transcatheter arterial chemoembolization-treated hepatocellular carcinoma patients. Cancer Sci. 2014, 105, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Couto, P.; Miranda, D.; Vieira, R.; Vilhena, A.; De Marco, L.; Bastos-Rodrigues, L. Association between CLOCK, PER3 and CCRN4L with non-small cell lung cancer in Brazilian patients. Mol. Med. Rep. 2014, 10, 435–440. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, T. Clock-cancer connection in non-Hodgkin’s lymphoma. Med. Hypotheses 2008, 70, 788–792. [Google Scholar] [CrossRef]
- Benedetti, F.; Riccaboni, R.; Dallaspezia, S.; Locatelli, C.; Smeraldi, E.; Colombo, C. Effects of CLOCK gene variants and early stress on hopelessness and suicide in bipolar depression. Chronobiol. Int. 2015, 32, 1156–1161. [Google Scholar] [CrossRef]
- Kim, H.I.; Lee, H.J.; Cho, C.H.; Kang, S.G.; Yoon, H.K.; Park, Y.M.; Lee, S.H.; Moon, J.H.; Song, H.M.; Lee, E.; et al. Association of CLOCK, ARNTL, and NPAS2 gene polymorphisms and seasonal variations in mood and behavior. Chronobiol. Int. 2015, 32, 785–791. [Google Scholar] [CrossRef]
- Corella, D.; Asensio, E.M.; Coltell, O.; Sorlí, J.V.; Estruch, R.; Martínez-González, M.; Salas-Salvadó, J.; Castañer, O.; Arós, F.; Lapetra, J.; et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: Dietary modulation in the PREDIMED randomized trial. Cardiovasc. Diabetol. 2016, 15, 4. [Google Scholar] [CrossRef]
- Qu, F.; Qiao, Q.; Wang, N.; Ji, G.; Zhao, H.; He, L.; Wang, H.; Bao, G. Genetic polymorphisms in circadian negative feedback regulation genes predict overall survival and response to chemotherapy in gastric cancer patients. Sci. Rep. 2016, 6, 22424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benna, C.; Rajendran, S.; Spiro, G.; Tropea, S.; Del Fiore, P.; Rossi, C.R.; Mocellin, S. Associations of clock genes polymorphisms with soft tissue sarcoma susceptibility and prognosis. J. Transl. Med. 2018, 16, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, D.; Song, Y.; Zhang, X.; Jiao, Z.; Dong, J.; Lu, L.; Zou, Z.; Du, W.; Qu, F. Functional polymorphisms in circadian positive feedback loop genes predict postsurgical prognosis of gastric cancer. Cancer Med. 2019, 8, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.E.; Yi, C.H.; Zheng, T.; Stevens, R.G.; Leaderer, D.; Zhang, Y.; Holford, T.R.; Hansen, J.; Paulson, J.; Zhu, Y. CLOCK in breast tumorigenesis: Genetic, epigenetic, and transcriptional profiling analyses. Cancer Res. 2010, 70, 1459–1468. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, A.E.; Zheng, T.; Yi, C.H.; Stevens, R.G.; Ba, Y.; Zhang, Y.; Leaderer, D.; Holford, T.; Hansen, J.; Zhu, Y. The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prev. Res. 2010, 3, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Fu, A.; Leaderer, D.; Zheng, T.; Hoffman, A.E.; Stevens, R.G.; Zhu, Y. Genetic and epigenetic associations of circadian gene TIMELESS and breast cancer risk. Mol. Carcinog. 2012, 51, 923–929. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, L.; Cao, M.; Song, F.; Zheng, H.; Zhu, X.; Wei, Q.; Zhang, W.; Chen, K. The role of polymorphisms in circadian pathway genes in breast tumorigenesis. Breast Cancer Res. Treat. 2011, 127, 531–540. [Google Scholar] [CrossRef]
- Grundy, A.; Schuetz, J.M.; Lai, A.S.; Janoo-Gilani, R.; Leach, S.; Burstyn, I.; Richardson, H.; Brooks-Wilson, A.; Spinelli, J.J.; Aronson, K.J. Shift work, circadian gene variants and risk of breast cancer. Cancer Epidemiol. 2013, 37, 606–612. [Google Scholar] [CrossRef]
- Xiong, D.D.; Lv, J.; Wei, K.L.; Feng, Z.B.; Chen, J.T.; Liu, K.C.; Chen, G.; Luo, D.Z. A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: An integrated study of 1,110 cases. Oncol. Rep. 2017, 37, 3297–3304. [Google Scholar] [CrossRef]
- Rajendran, B.; Janakarajan, V.N. Circadian clock gene aryl hydrocarbon receptor nuclear translocator-like polymorphisms are associated with seasonal affective disorder: An Indian family study. Indian J. Psychiatry 2016, 58, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Coffelt, S.B.; Mao, L.; Yuan, L.; Cheng, Q.; Hill, S.M. Period-2: A tumor suppressor gene in breast cancer. J. Circadian Rhythms 2008, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Pelicano, H.; Liu, J.; Huang, P.; Lee, C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002, 111, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Donehower, L.A.; Herron, A.J.; Moore, D.D.; Fu, L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS ONE 2010, 5, e10995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, J.S.; Hong, H.K.; Ko, C.H.; McDearmon, E.L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 2008, 9, 764–775. [Google Scholar] [CrossRef]
- Hoffman, A.E.; Zheng, T.; Ba, Y.; Stevens, R.G.; Yi, C.H.; Leaderer, D.; Zhu, Y. Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways. BMC Cancer 2010, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Lavebratt, C.; Sjoholm, L.K.; Soronen, P.; Paunio, T.; Vawter, M.P.; Bunney, W.E.; Adolfsson, R.; Forsell, Y.; Wu, J.C.; Kelsoe, J.R.; et al. CRY2 is associated with depression. PLoS ONE 2010, 5, e9407. [Google Scholar] [CrossRef] [Green Version]
- Straif, K.; Baan, R.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Altieri, A.; Benbrahim-Tallaa, L.; Cogliano, V. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007, 8, 1065–1066. [Google Scholar] [CrossRef]
- Stevens, R.G.; Hansen, J.; Costa, G.; Haus, E.; Kauppinen, T.; Aronson, K.J.; Castano-Vinyals, G.; Davis, S.; Frings-Dresen, M.H.; Fritschi, L.; et al. Considerations of circadian impact for defining ‘shift work’ in cancer studies: IARC Working Group Report. Occup. Environ. Med. 2011, 68, 154–162. [Google Scholar] [CrossRef]
- Lesicka, M.; Jablonska, E.; Wieczorek, E.; Seroczynska, B.; Siekierzycka, A.; Skokowski, J.; Kalinowski, L.; Wasowicz, W.; Reszka, E. Altered circadian genes expression in breast cancer tissue according to the clinical characteristics. PLoS ONE 2018, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Lesicka, M.; Jablonska, E.; Wieczorek, E.; Seroczynska, B.; Kalinowski, L.; Skokowski, J.; Reszka, E. A different methylation profile of circadian genes promoter in breast cancer patients according to clinicopathological features. Chronobiol. Int. 2019, 36, 1103–1114. [Google Scholar] [CrossRef]
Characteristics | Breast Cancer Patients (n = 321) | Healthy Population (n = 364) | p-Value |
---|---|---|---|
Age (years), mean (SD) | 58.85 (11.50) | 60.80 (7.11) | 0.007 1 |
BMI (kg/m2); mean (SD) | 27.13 (4.67) | 27.08 (4.62) | 0.90 1 |
Menopausal status | |||
Pre-menopause | 77 | 37 | 0.00001 2 |
Post-menopause | 233 | 325 | |
Unknown | 11 | 2 | |
Smoking status | |||
Never smokers | 249 | 225 | 0.00001 2 |
Past/Current smokers | 69 | 138 | |
Unknown | 3 | 1 | |
Tumor stage | |||
I | 157 | ||
II | 83 | ||
III | 58 | ||
IV | 9 | ||
Unknown | 14 | ||
Nodal status | |||
Yes | 123 | ||
No | 183 | ||
Unknown | 15 | ||
Histological type | |||
Carcinoma ductale | 174 | ||
Carcinoma lobulare | 30 | ||
Mix type of carcinoma | 115 | ||
Unknown | 2 | ||
Differentiation Grade (G) | |||
Well | 27 | ||
Moderate | 151 | ||
Poor | 104 | ||
Unknown | 39 | ||
Estrogen receptor status (ER) | |||
Positive | 227 | ||
Negative | 80 | ||
Unknown | 14 | ||
Progesterone Receptor status (PR) | |||
Positive | 192 | ||
Negative | 115 | ||
Unknown | 14 | ||
HER2 receptor status | |||
positive | 139 | ||
negative | 161 | ||
Unknown | 21 |
Gene | SNP ID | Chromosome Position | Allele Major/Minor | Region | MAF Global | MAF Control Group | Probable Function | Genotyping |
---|---|---|---|---|---|---|---|---|
BMAL1 | rs2279287 | chr11:13298485 | C/T | 5′UTR | 0.43 | 0.37 | TFBS | HRM |
CLOCK | rs12505266 | chr4: 56412169 | C/T | intron | 0.33 | 0.43 1 | TFBS | TaqMan probes |
CLOCK | rs1801260 | chr4:56301369 | A/G | 3′UTR | 0.25 | 0.33 | probable miRNA binding site hsa-miR-141 | HRM |
CRY1 | rs8192440 | chr12:107395106 | C/T | exon 5 | 0.21 | 0.36 | Splicing (ESE or ESS) Gly/Gly | HRM |
CRY2 | rs3824872 | chr11:45905605 | C/A | near gene | 0.46 | 0.24 | TFBS | TaqMan probes |
CRY2 | rs10838524 | chr11:45870177 | A/G | intron | 0.33 | 0.47 | N/A | TaqMan probes |
NPAS2 | rs2305160 | chr2:101591304 | G/A | intron | 0.2 | 0.36 | Splicing (ESE or ESS) Thr/Ala | TaqMan probes |
PER1 | rs2735611 | chr17:8048283 | G/A | exon 18 | 0.42 | 0.13 | Splicing (ESE or ESS) Gly/Gly | TaqMan probes |
PER1 | rs3027178 | chr17: 8053085 | T/G | exon 5 | 0.29 | 0.25 1 | Splicing (ESE or ESS) Thr/Thr | TaqMan probes |
PER2 | rs11894491 | chr2:239198325 | G/A | intron | 0.24 | 0.34 | TFBS | TaqMan probes |
PER2 | rs2304672 | chr2 239186589 | G/C | 5′UTR | 0.09 | 0.13 | Splicing (ESE or ESS) | TaqMan probes |
PER2 | rs934945 | chr2:239155053 | C/T | exon 23 | 0.22 | 0.13 | CRY binding domain Gly/Glu | TaqMan probes |
PER3 | rs10462020 | chr1:7880683 | T/G | exon 15 | 0.12 | 0.19 | Splicing (ESE or ESS) Val/Gly | TaqMan probes |
PER3 | rs2640909 | chr1:7830057 | T/C | exon 18 | 0.18 | 0.30 1 | Met/Thr | TaqMan probes |
TIMELESS | rs2279665 | chr12:56827694 | G/C | exon 3 | 0.46 | 0.43 | Splicing (ESE or ESS) Leu/Leu | TaqMan probes |
TIMELESS | rs774047 | chr12:56815922 | C/T | exon 20 | 0.49 | 0.43 | Splicing (ESE or ESS) Gln/Arg | TaqMan probes |
Gene | Genotype | Ctrl | Cases | OR (95%CI) | p-Value 3 |
---|---|---|---|---|---|
BMAL1 rs2279287 | CC | 152 | 159 | Ref. | |
CT | 155 | 127 | 0.76 (0.54–1.07) | 0.56 | |
TT | 57 | 28 | 0.47 (0.27–0.80) | 0.02 | |
CT + TT 1 | 212 | 155 | 0.69 (0.50–0.95) | 0.02 | |
TT 2 | 57 | 28 | 0.53 (0.32–0.89) | 0.02 | |
unknown | 0 | 7 | |||
CLOCK rs1801260 | AA | 160 | 146 | Ref. | |
AG | 168 | 125 | 0.79 (0.56–1.12) | 0.18 | |
GG | 34 | 40 | 1.03 (0.60–1.78) | 0.57 | |
AG + GG 1 | 202 | 165 | 0.84 (0.60–1.16) | 0.28 | |
GG 2 | 34 | 40 | 1.16 (0.69–1.94) | 0.58 | |
unknown | 2 | 10 | |||
CLOCK rs12505266 | CC | 145 | 134 | Ref. | |
CT | 125 | 88 | 0.75 (0.51–1.10) | 0.03 | |
TT | 94 | 98 | 1.22 (0.83–1.79) | 0.057 | |
TT + CT 1 | 219 | 186 | 0.95 (0.69–1.31) | 0.75 | |
TT 2 | 94 | 98 | 1.38 (0.97–1.96) | 0.07 | |
unknown | 0 | 1 | |||
CRY1 rs8192440 | CC | 148 | 105 | Ref. | |
CT | 165 | 118 | 0.98 (0.68–1.41) | 0.94 | |
TT | 49 | 34 | 0.98 (0.58–1.66) | 0.97 | |
CT + TT 1 | 214 | 152 | 0.98 (0.69–1.38) | 0.89 | |
TT 2 | 49 | 34 | 0.99 (0.60–1.62) | 0.97 | |
unknown | 2 | 64 | |||
CRY2 rs10838524 | AA | 104 | 69 | Ref. | |
AG | 177 | 157 | 1.36 (0.91–2.01) | 0.73 | |
GG | 83 | 91 | 1.65 (1.05–2.58) | 0.07 | |
AG + GG 1 | 260 | 248 | 1.45 (1.00–2.10) | 0.05 | |
GG 2 | 83 | 91 | 1.35 (0.93–1.95) | 0.11 | |
unknown | 0 | 4 | |||
CRY2 rs3824872 | CC | 210 | 195 | Ref. | |
CA | 133 | 108 | 0.95 (0.68–1.34) | 0.73 | |
AA | 21 | 17 | 1.06 (0.53–2.13) | 0.82 | |
CA + AA 1 | 154 | 125 | 0.97 (0.70–1.34) | 0.84 | |
AA 2 | 21 | 17 | 1.08 (0.54–2.14) | 0.83 | |
unknown | 0 | 1 | |||
PER1 rs2735611 | GG | 278 | 222 | Ref. | |
GA | 79 | 69 | 0.97 (0.66–1.44) | 0.01 | |
AA | 7 | 22 | 4.34 (1.77–10.67) | 0.001 | |
GA + AA 1 | 86 | 91 | 1.23 (0.85–1.77) | 0.26 | |
AA 2 | 7 | 22 | 4.37 (1.78–10.69) | 0.001 | |
unknown | 0 | 8 | |||
PER1 rs3027178 | TT | 214 | 180 | Ref. | |
TG | 120 | 120 | 0.96 (0.68–1.35) | 0.24 | |
GG | 30 | 18 | 0.54 (0.28–1.08) | 0.09 | |
TG + GG 1 | 150 | 138 | 0.88 (0.63–1.22) | 0.43 | |
GG 2 | 30 | 18 | 0.55 (0.28–1.08) | 0.08 | |
unknown | 0 | 3 | |||
PER2 rs934945 | CC | 275 | 215 | Ref. | |
CT | 82 | 91 | 1.52 (1.05–2.19) | 0.87 | |
TT | 7 | 11 | 2.08 (0.74–5.83) | 0.32 | |
CT + TT 1 | 89 | 102 | 1.56 (1.09–2.23) | 0.01 | |
TT 2 | 7 | 11 | 1.85 (0.66–5.17) | 0.24 | |
unknown | 0 | 4 | |||
PER2 rs2304672 | GC | 280 | 254 | Ref. | |
GC | 77 | 60 | 0.86 (0.57–1.29) | 0.31 | |
CC | 7 | 3 | 0.3 (0.06–1.46) | 0.16 | |
GC + CC1 | 84 | 63 | 0.81 (0.54–1.20) | 0.28 | |
CC 2 | 7 | 3 | 0.31 (0.06–1.50) | 0.14 | |
unknown | 0 | 4 | |||
PER2 rs11894491 | GG | 156 | 139 | Ref. | |
GA | 170 | 136 | 0.94 (0.67–1.32) | 0.15 | |
AA | 38 | 45 | 1.48 (0.88–2.50) | 0.09 | |
AA + GA 1 | 1.03 (0.75–1.42) | 0.86 | |||
AA 2 | 38 | 45 | 1.53 (0.93–2.50) | 0.09 | |
unknown | 0 | 1 | |||
PER3 rs10462020 | TT | 241 | 206 | Ref. | |
TG | 110 | 95 | 1.01 (0.71–1.43) | 0.19 | |
GG | 13 | 19 | 1.98 (0.88–4.44) | 0.10 | |
TG + GG 1 | 123 | 114 | 1.09 (0.78–1.53) | 0.60 | |
GG 2 | 13 | 19 | 1.97 (0.89–4.39) | 0.10 | |
unknown | 0 | 1 | |||
PER3 rs2640909 | TT | 193 | 162 | Ref. | |
TC | 125 | 106 | 0.98 (0.69–1.40) | 0.33 | |
CC | 45 | 52 | 1.38 (0.85–2.23) | 0.16 | |
TC + CC 1 | 170 | 158 | 1.08 (0.79–1.49) | 0.63 | |
CC 2 | 45 | 52 | 1.39 (0.88–2.20) | 0.16 | |
unknown | 1 | 1 | |||
NPAS2 rs2305160 | GG | 150 | 131 | Ref. | |
GA | 166 | 136 | 0.92 (0.65–1.31) | 0.38 | |
AA | 48 | 49 | 1.16 (0.71–1.89) | 0.41 | |
GA + AA 1 | 214 | 185 | 0.98 (0.71–1.35) | 0.89 | |
AA 2 | 48 | 49 | 1.21 (0.77–1.90) | 0.41 | |
unknown | 0 | 5 | |||
TIMELESS rs774047 | CC | 118 | 99 | Ref. | |
CT | 183 | 155 | 0.98 (0.68–1.41) | 0.35 | |
TT | 63 | 66 | 1.32 (0.83–2.10) | 0.18 | |
CT + TT 1 | 246 | 221 | 1.06 (0.76–1.50) | 0.72 | |
TT 2 | 63 | 66 | 1.33 (0.88–2.01) | 0.17 | |
unknown | 0 | 1 | |||
TIMELESS rs2279665 | GG | 114 | 112 | Ref. | |
GC | 188 | 133 | 0.69 (0.48–1.00) | 0.02 | |
CC | 62 | 62 | 1.04 (0.66–1.66) | 0.29 | |
GC + CC 1 | 250 | 195 | 0.78 (0.55–1.10) | 0.15 | |
CC 2 | 62 | 62 | 1.29 (0.86–1.95) | 0.22 | |
unknown | 0 | 14 |
Gene | Ctrl | Cases | OR (95%CI) | p-Value 3 |
---|---|---|---|---|
One risk allele 1 | 90 | 100 | 1.53 (1.07–2.20) | 0.020 |
Two risk alleles 1 | 2 | 12 | 8.21 (1.71–39.42) | 0.009 |
One or two risk alleles 1 | 92 | 112 | 1.67 (1.17–2.37) | 0.004 |
One or more risk 1 alleles | 93 | 112 | 1.66 (1.17–2.35) | 0.005 |
One protective allele 2 | 77 | 41 | 0.48 (0.30–0.77) | 0.002 |
Two protective alleles 2 | 5 | 3 | 0.71 (0.16–3.08) | 0.650 |
One or two protective alleles 2 | 82 | 44 | 0.49 (0.32–0.77) | 0.002 |
ER+/PR+ | ER-/PR- | |||||||
---|---|---|---|---|---|---|---|---|
Gene | Genotypes | Ctrl | Cases | OR (95%CI) | p-Value 3 | Cases | OR (95%CI) | p-Value 3 |
BMAL1 rs2279287 | CC | 152 | 94 | Ref. | 37 | Ref. | ||
CT | 155 | 76 | 0.74 (0.50–1.10) | 0.67 | 30 | 0.83 (0.46–1.50) | 0.46 | |
TT | 57 | 15 | 0.45 (0.24–0.86) | 0.04 | 6 | 0.42 (0.15–1.19) | 0.13 | |
CT + TT 1 | 212 | 91 | 0.66 (0.46–0.97) | 0.03 | 36 | 0.73 (0.42–1.28) | 0.27 | |
TT 2 | 57 | 15 | 0.52 (0.28–0.97) | 0.04 | 6 | 0.46 (0.17–1.25) | 0.13 | |
CLOCK rs1801260 | AA | 160 | 88 | Ref. | 33 | Ref. | ||
AG | 168 | 76 | 0.76 (0.51–1.13) | 0.52 | 26 | 0.68 (0.37–1.26) | 0.07 | |
GG | 34 | 18 | 0.77 (0.40–1.5) | 0.70 | 14 | 1.46 (0.64–3.35) | 0.16 | |
AG + GG 1 | 202 | 94 | 0.76 (0.52–1.11) | 0.16 | 40 | 0.83 (0.47–1.44) | 0.50 | |
GG 2 | 34 | 18 | 0.88 (0.47–1.66) | 0.70 | 14 | 1.74 (0.80–3.82) | 0.17 | |
CLOCK rs12505266 | CC | 145 | 77 | Ref. | 32 | Ref. | ||
CT | 125 | 52 | 0.81 (0.52–1.27) | 0.11 | 24 | 0.80 (0.41–1.56) | 0.48 | |
TT | 94 | 59 | 1.28 (0.82–2.01) | 0.09 | 20 | 1.00 (0.51–1.95) | 0.73 | |
TT + CT 1 | 219 | 111 | 1.01 (0.69–1.48) | 0.95 | 44 | 0.89 (0.51–1.55) | 0.68 | |
TT 2 | 94 | 59 | 1.40 (0.93–2.11) | 0.10 | 20 | 1.09 (0.59–2.02) | 0.78 | |
CRY1 rs8192440 | CC | 148 | 69 | Ref. | 22 | Ref. | ||
CT | 165 | 61 | 0.83 (0.54–1.28) | 0.24 | 30 | 1.13 (0.59–2.17) | 0.51 | |
TT | 49 | 24 | 1.16 (0.64–2.09) | 0.39 | 6 | 0.82 (0.30–2.26) | 0.59 | |
CT + TT 1 | 214 | 85 | 0.91 (0.61–1.36) | 0.63 | 36 | 1.06 (0.57–1.97) | 0.86 | |
TT 2 | 49 | 24 | 1.27 (0.73–2.20) | 0.39 | 6 | 0.76 (0.29–1.98) | 0.58 | |
CRY2 rs10838524 | AA | 104 | 38 | Ref. | 14 | Ref. | ||
AG | 177 | 96 | 1.52 (0.96–2.43) | 0.39 | 37 | 1.32 (0.64–2.73) | 0.66 | |
GG | 83 | 51 | 1.67 (0.98–2.84) | 0.18 | 24 | 2.26 (1.03–4.94) | 0.03 | |
AG + GG 1 | 260 | 147 | 1.57 (1.01–2.44) | 0.05 | 61 | 1.60 (0.81–3.16) | 0.17 | |
GG 2 | 83 | 51 | 1.26 (0.82–1.93) | 0.29 | 24 | 1.87 (1.02–3.42) | 0.04 | |
CRY2 rs3824872 | CC | 210 | 112 | Ref. | 50 | Ref. | ||
CA | 133 | 68 | 1.07 (0.72–1.58) | 0.68 | 24 | 0.66 (0.36–1.21) | 0.90 | |
AA | 21 | 8 | 0.91 (0.38–2.18) | 0.78 | 2 | 0.50 (0.10–2.36) | 0.53 | |
CA + AA 1 | 154 | 76 | 1.05 (0.72–1.53) | 0.81 | 26 | 0.64 (0.36–1.15) | 0.14 | |
AA 2 | 21 | 8 | 0.89 (0.38–2.09) | 0.79 | 2 | 0.57 (0.12–2.69) | 0.48 | |
PER1 rs2735611 | GG | 278 | 131 | Ref. | 52 | Ref. | ||
GA | 79 | 40 | 0.93 (0.58–1.47) | 0.03 | 16 | 0.89 (0.45–1.77) | 0.02 | |
AA | 7 | 12 | 3.76 (1.38–10.24) | 0.01 | 6 | 6.08 (1.80–20.56) | 0.003 | |
GA+AA 1 | 86 | 52 | 1.14 (0.75–1.75) | 0.54 | 22 | 1.24 (0.67–2.28) | 0.50 | |
AA 2 | 7 | 12 | 3.82 (1.41–10.35) | 0.01 | 6 | 6.23 (1.86–20.9) | 0.003 | |
PER1 rs3027178 | TT | 214 | 113 | Ref. | 45 | Ref. | ||
TG | 120 | 62 | 0.87 (0.58–1.30) | 0.79 | 27 | 0.75 (0.41–1.38) | 0.57 | |
GG | 30 | 13 | 0.65 (0.31–1.40) | 0.35 | 4 | 0.35 (0.10–1.31) | 0.17 | |
TG + GG 1 | 150 | 75 | 0.82 (0.56–1.21) | 0.32 | 31 | 0.67 (0.37–1.19) | 0.17 | |
GG 2 | 30 | 13 | 0.69 (0.33–1.45) | 0.33 | 4 | 0.40 (0.11–1.43) | 0.16 | |
PER2 rs934945 | CC | 275 | 122 | Ref. | 52 | Ref. | ||
CT | 82 | 57 | 1.73 (1.13–2.63) | 0.59 | 19 | 1.44 (0.76–2.71) | 0.64 | |
TT | 7 | 6 | 2.02 (0.6–6.76) | 0.48 | 7 | 3.16 (0.74–13.42) | 0.19 | |
CT + TT 1 | 89 | 63 | 1.75 (1.16–2.63) | 0.01 | 202 | 1.57 (0.86–2.87) | 0.14 | |
TT 2 | 7 | 6 | 1.71 (0.52–5.68) | 0.38 | 7 | 2.88 (0.69–12.08) | 0.15 | |
PER2 rs2304672 | GC | 280 | 154 | Ref. | 57 | Ref. | ||
GC | 77 | 30 | 0.71 (0.43–1.16) | 0.52 | 17 | 1.01 (0.52–1.95) | 0.70 | |
CC | 7 | 1 | 0.24 (0.03–1.98) | 0.24 | 1 | 0.63 (0.07–5.37) | 0.67 | |
GC + CC 1 | 84 | 31 | 0.66 (0.41–1.07) | 0.10 | 18 | 0.97 (0.51–1.85) | 0.92 | |
CC 2 | 7 | 1 | 0.25 (0.03–2.11) | 0.20 | 1 | 0.63 (0.07–5.33) | 0.67 | |
PER2 rs11894491 | GG | 156 | 82 | Ref. | 30 | Ref. | ||
GA | 170 | 79 | 0.94 (0.63–1.4) | 0.15 | 37 | 1.11 (0.62–1.98) | 0.95 | |
AA | 38 | 27 | 1.61 (0.88–2.94) | 0.08 | 9 | 1.28 (0.49–3.30) | 0.66 | |
AA + GA 1 | 208 | 106 | 1.05 (0.72–1.53) | 0.80 | 46 | 1.14 (0.65–1.98) | 0.65 | |
AA 2 | 38 | 27 | 1.66 (0.94–2.93) | 0.08 | 9 | 1.21 (0.49–2.97) | 0.68 | |
PER3 rs10462020 | TT | 241 | 121 | Ref. | 48 | Ref. | ||
TG | 110 | 58 | 0.99 (0.66–1.49) | 0.37 | 23 | 1.15 (0.63–2.08) | 0.54 | |
GG | 13 | 8 | 1.69 (0.63–4.50) | 0.29 | 5 | 2.2 (0.58–8.44) | 0.29 | |
TG + GG 1 | 123 | 66 | 1.05 (0.71–1.55) | 0.82 | 28 | 1.23 (0.70–2.18) | 0.47 | |
GG 2 | 13 | 8 | 1.69 (0.64–4.47) | 0.29 | 5 | 2.10 (0.56–7.9) | 0.27 | |
PER3 rs2640909 | TT | 193 | 97 | Ref. | 40 | Ref. | ||
TC | 125 | 61 | 0.93 (0.62–1.41) | 0.51 | 23 | 0.79 (0.42–1.5) | 0.11 | |
CC | 45 | 30 | 1.16 (0.66–2.03) | 0.50 | 13 | 1.79 (0.83–3.86) | 0.06 | |
TC + CC 1 | 170 | 91 | 0.99 (0.69–1.44) | 0.98 | 36 | 1.03 (0.59–1.79) | 0.92 | |
CC 2 | 45 | 30 | 1.19 (0.7–2.04) | 0.52 | 13 | 1.95 (0.94–4.07) | 0.07 | |
NPAS2 rs2305160 | GG | 150 | 76 | Ref. | 30 | Ref. | ||
GA | 166 | 81 | 0.97 (0.65–1.46) | 0.60 | 33 | 1.05 (0.57–1.92) | 0.93 | |
AA | 48 | 28 | 1.17 (0.67–2.05) | 0.52 | 11 | 1.04 (0.44–2.46) | 0.96 | |
GA + AA 1 | 214 | 109 | 1.02 (0.7–1.49) | 0.93 | 44 | 1.05 (0.59–1.85) | 0.87 | |
AA 2 | 48 | 28 | 1.19 (0.70–2.00) | 0.52 | 11 | 1.02 (0.46–2.26) | 0.96 | |
TIMELESS rs774047 | CC | 118 | 59 | Ref. | 22 | Ref. | ||
CT | 183 | 94 | 1.02 (0.67–1.55) | 0.81 | 38 | 1.05 (0.56–1.99) | 0.65 | |
TT | 63 | 35 | 1.13 (0.66–1.96) | 0.64 | 16 | 1.44 (0.65–3.17) | 0.34 | |
CT + TT 1 | 246 | 129 | 1.05 (0.70–1.56) | 0.83 | 54 | 1.15 (0.63–2.10) | 0.65 | |
TT 2 | 63 | 35 | 1.12 (0.69–1.83) | 0.64 | 16 | 1.39 (0.70–2.76) | 0.34 | |
TIMELESS rs2279665 | GG | 114 | 71 | Ref. | 20 | Ref. | ||
GC | 188 | 75 | 0.64 (0.42–0.98) | 0.08 | 38 | 1.13 (0.58–2.20) | 0.51 | |
CC | 62 | 32 | 0.82 (0.48–1.42) | 0.91 | 16 | 1.86 (0.83–4.17) | 0.11 | |
GC + CC 1 | 250 | 107 | 0.69 (0.46–1.02) | 0.06 | 54 | 1.30 (0.69–2.43) | 0.42 | |
CC 2 | 62 | 32 | 1.06 (0.65–1.74) | 0.81 | 16 | 1.72 (0.87–3.40) | 0.12 |
Gene | Adjacent Non-Tumor Tissues | Breast Cancer Tissues | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | N 1 | Mean ± SD | N 1 | p-Value | Mean ± SD | N1 | Mean ± SD | N1 | p-Value 2 | |
BMAL1 rs2279287 | CC | CT + TT | CC | CT + TT | ||||||
1.78 ± 0.37 | 41 | 1.8 ± 0.29 | 38 | 0.82 | 1.88 ± 0.34 | 50 | 1.75 ± 0.30 | 45 | 0.05 | |
CLOCK rs1801260 | AA + AG | GG | AA + AG | GG | ||||||
1.82 ± 0.34 | 72 | 1.97 ± 0.24 | 11 | 0.17 | 2.03 ± 0.41 | 82 | 2.00 ± 0.40 | 15 | 0.79 | |
CLOCK rs12505266 | CC + CT | TT | CC + CT | TT | ||||||
1.79 ± 0.37 | 57 | 1.91 ± 0.27 | 34 | 0.09 | 2.03 ± 0.42 | 67 | 2.01 ± 0.4 | 38 | 0.80 | |
CRY1 rs8192440 | CC + CT | TT | CC + CT | TT | ||||||
2.1 ± 0.38 | 70 | 2.05 ± 0.25 | 8 | 0.74 | 2.13 ± 0.38 | 75 | 1.91 ± 0.56 | 10 | 0.10 | |
CRY2 rs10838524 | CC + CA | AA | CC + CA | AA | ||||||
2.37 ± 0.39 | 91 | 2.16 ± 0.66 | 5 | 0.26 | 1.98 ± 0.45 | 99 | 1.27 ± 0.46 | 6 | 0.0004 | |
CRY2 rs3824872 | AG + GG | AA | AG + GG | AA | ||||||
2.38 ± 0.42 | 75 | 2.27 ± 0.38 | 17 | 0.34 | 1.97 ± 0.48 | 83 | 1.81 ± 0.42 | 19 | 0.18 | |
PER1 rs3027178 | TT | TG + GG | TT | TG + GG | ||||||
2.12 ± 0.45 | 58 | 1.77 ± 0.37 | 40 | 0.002 | 1.63 ± 0.56 | 64 | 1.66 ± 0.94 | 41 | 0.88 | |
PER1 rs2735611 | GA + GG | AA | GA + GG | AA | ||||||
2.14 ± 0.45 | 83 | 1.81 ± 0.47 | 9 | 0.04 | 1.67 ± 0.56 | 88 | 1.41 ± 0.67 | 12 | 0.14 | |
PER2 rs934945 | CT + TT | CC | CT + TT | CC | ||||||
2.2 ± 0.45 | 33 | 2.12 ± 0.31 | 60 | 0.30 | 2.04 ± 0.4 | 38 | 1.97 ± 0.46 | 63 | 0.45 | |
PER2 rs11894491 | GA + GG | AA | GA + GG | AA | ||||||
2.11 ± 0.36 | 86 | 2.42 ± 0.23 | 11 | 0.007 | 1.99 ± 0.44 | 92 | 2.06 ± 0.49 | 12 | 0.61 | |
PER2 rs2304672 | GG | GC + CC | CC | CG + GG | ||||||
2.16 ± 0.36 | 75 | 2.1 ± 0.39 | 18 | 0.61 | 1.99 ± 0.45 | 82 | 2.05 ± 0.4 | 19 | 0.57 | |
PER3 rs10462020 | TT | TG + GG | TT | TG + GG | ||||||
2.42 ± 0.34 | 70 | 2.5 ± 0.38 | 26 | 0.33 | 2.14 ± 0.52 | 76 | 2.4 ± 0.55 | 28 | 0.02 | |
PER3 rs2640909 | TC + TT | CC | TC + TT | CC | ||||||
2.44 ± 0.36 | 65 | 2.46 ± 0.35 | 31 | 0.78 | 2.22 ± 0.51 | 71 | 2.18 ± 0.61 | 33 | 0.76 | |
NPAS2 rs2305160 | GG + GA | AA | GG + GA | AA | ||||||
1.29 ± 0.54 | 66 | 1.56 ± 0.66 | 15 | 0.06 | 1.44 ± 0.64 | 70 | 1.55 ± 0.65 | 17 | 0.53 | |
TIMELESS rs2279665 | GG | GC + CC | GG | GC + CC | ||||||
1.34 ± 0.48 | 26 | 1.33 ± 0.57 | 59 | 0.97 | 1.66 ± 0.64 | 30 | 1.66 ± 0.54 | 72 | 0.98 | |
TIMELESS rs774047 | CC + CT | TT | CC + CT | TT | ||||||
1.31 ± 0.53 | 73 | 1.44 ± 0.59 | 15 | 0.38 | 1.69 ± 0.57 | 80 | 1.58 ± 0.58 | 25 | 0.39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesicka, M.; Jabłońska, E.; Wieczorek, E.; Pepłońska, B.; Gromadzińska, J.; Seroczyńska, B.; Kalinowski, L.; Skokowski, J.; Reszka, E. Circadian Gene Polymorphisms Associated with Breast Cancer Susceptibility. Int. J. Mol. Sci. 2019, 20, 5704. https://doi.org/10.3390/ijms20225704
Lesicka M, Jabłońska E, Wieczorek E, Pepłońska B, Gromadzińska J, Seroczyńska B, Kalinowski L, Skokowski J, Reszka E. Circadian Gene Polymorphisms Associated with Breast Cancer Susceptibility. International Journal of Molecular Sciences. 2019; 20(22):5704. https://doi.org/10.3390/ijms20225704
Chicago/Turabian StyleLesicka, Monika, Ewa Jabłońska, Edyta Wieczorek, Beata Pepłońska, Jolanta Gromadzińska, Barbara Seroczyńska, Leszek Kalinowski, Jarosław Skokowski, and Edyta Reszka. 2019. "Circadian Gene Polymorphisms Associated with Breast Cancer Susceptibility" International Journal of Molecular Sciences 20, no. 22: 5704. https://doi.org/10.3390/ijms20225704
APA StyleLesicka, M., Jabłońska, E., Wieczorek, E., Pepłońska, B., Gromadzińska, J., Seroczyńska, B., Kalinowski, L., Skokowski, J., & Reszka, E. (2019). Circadian Gene Polymorphisms Associated with Breast Cancer Susceptibility. International Journal of Molecular Sciences, 20(22), 5704. https://doi.org/10.3390/ijms20225704