Treatment of Metastatic or High-Risk Solid Cancer Patients by Targeting the Immune System and/or Tumor Burden: Six Cases Reports
Abstract
:1. Introduction
2. Six Cases Reports and Methods
2.1. Cases
2.2. The Rationale for a New Immunotherapy (IT) Strategy
2.2.1. Low Dose Cyclophosphamide (CY)
2.2.2. Low Dose Dexamethasone (DX)
2.2.3. Celecoxib (Cyclooxygenase 2 (COX2)-Inhibitor)
2.2.4. Retinyl Palmitate Plus DL-Alpha Tocopheryl Acetate (Vitamins A Plus E)
2.2.5. A New IT Schedule
2.3. Principal Immunological Parameters, Cytokines, and Growth Factors in the Four Patients Receiving Immune-Suppression-Inhibiting Therapy
2.4. Patient 1
2.4.1. History
2.4.2. Comment
2.5. Patient 2
2.5.1. History
2.5.2. Comment
2.6. Patient 3
2.6.1. History
2.6.2. Comment
2.7. Patient 4
2.7.1. History
2.7.2. Comment
2.7.3. Total Lymphocytes, T Sub-populations, Cytokines, and Growth Factors Assessed in the Peripheral Blood of the Four Patients Receiving Immune Suppression Inhibiting Therapy
2.8. Patient 5
2.8.1. History
2.8.2. Comment
2.9. Patient 6
2.9.1. History
2.9.2. Comment
3. Discussion
Supplementary Materials
Funding
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Nicolini, A.; Ferrari, P.; Rossi, G.; Carpi, A. Tumour growth and immune evasion as targets for a new strategy in advanced cancer. Endocr. Relat. Cancer 2018, 25, R577–R604. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, A.; Conte, M.; Rossi, G.; Ferrari, P.; Carpi, A.; Miccoli, P. A new pharmacological approach to gastrointestinal cancer at high risk of relapse based on maintenance of the cytostatic effect. Tumor Biol. 2010, 31, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, A.; Carpi, A. Beta-interferon and interleukin-2 prolong more than three times the survival of 26 consecutive endocrine dependent breast cancer patients with distant metastases: An exploratory trial. Biomed. Pharmacother. 2005, 59, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, A.; Carpi, A.; Rossi, G. Relationship of cellular immunity, cytokines and CRP with clinical course in breast cancer patients with endocrine-dependent distant metastases treated with immunotherapy. Cancer Lett. 2007, 251, 330–338. [Google Scholar] [CrossRef]
- Nicolini, A.; Carpi, A.; Ferrari, P.; Rossi, G. Immunotherapy prolongs the serum CEA-TPA-CA15.3 lead time at the metastatic progression in endocrine-dependent breast cancer patients: A retrospective longitudinal study. Cancer Lett. 2008, 263, 122–129. [Google Scholar] [CrossRef]
- Nicolini, A.; Ferrari, P.; Kotlarova, L.; Rossi, G.; Biava, P.M. The PI3K-AKt-mTOR Pathway and New Tools to Prevent Acquired Hormone Resistance in Breast Cancer. Curr. Pharm. Biotechnol. 2015, 16, 804–815. [Google Scholar] [CrossRef]
- Nicolini, A.; Barak, V.; Biava, P.M.; Ferrari, P.; Rossi, G.; Carpi, A. Use of immunotherapy to treat metastatic breast cancer. Curr. Med. Chem. 2019, 26, 941–962. [Google Scholar] [CrossRef]
- North, R.J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med. 1982, 155, 1063–1674. [Google Scholar] [CrossRef]
- Ghiringhelli, F.; Larmonier, N.; Schmitt, E.; Parcellier, A.; Cathelin, D.; Garrido, C.; Chauffert, B.; Solary, E.; Bonnotte, B.; Martin, F. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. J. Immunol. 2004, 34, 336–344. [Google Scholar] [CrossRef]
- Berd, D.; Mastrangelo, M.J. Effect of low dose cyclophosphamide on the immune system of cancer patients: Reduction of T-suppressor function without depletion of the CD8 + subset. Cancer Res. 1987, 47, 3317–3321. [Google Scholar] [PubMed]
- Berd, D.; Maguire, H.C., Jr.; Mastrangelo, M.J. Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res. 1986, 46, 2572–2577. [Google Scholar] [PubMed]
- Berd, D.; Mastrangelo, M.J. Effect of low dose cyclophosphamide on the immune system of cancer patients: Depletion of CD4 +, 2H4 + suppressor-inducer T-cells. Cancer Res. 1988, 48, 1671–1675. [Google Scholar] [PubMed]
- Cao, Y.; Zhao, J.; Yang, Z.; Cai, Z.; Zhang, B.; Zhou, Y.; Shen, G.X.; Chen, X.; Li, S.; Huang, B. CD4+FOXP3+ regulatory T cell depletion by low-dose cyclophosphamide prevents recurrence in patients with large condylomata acuminata after laser therapy. Clin. Immunol. 2010, 136, 21–29. [Google Scholar] [CrossRef]
- Chiarella, P.; Vulcano, M.; Bruzzo, J.; Vermeulen, M.; Vanzulli, S.; Maglioco, A.; Camerano, G.; Palacios, V.; Fernández, G.; Brando, R.F.; et al. Anti-inflammatory pretreatment enables an efficient dendritic cell-based immunotherapy against established tumors. Cancer Immunol. Immunother. 2008, 57, 701–718. [Google Scholar] [CrossRef]
- Obermajer, N.; Muthuswamy, R.; Lesnock, J.; Edwards, R.P.; Kalinski, P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 2011, 118, 5498–5505. [Google Scholar] [CrossRef]
- Kurihara, Y.; Hatori, M.; Ando, Y.; Ito, D.; Toyoshima, T.; Tanaka, M.; Shintani, S. Inhibition of cyclooxygenase-2 suppresses the invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 production and activation. Clin. Exp. Metastasis 2009, 26, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, S.; Taskén, K. Role for the cAMP-protein kinase A signaling pathway in suppression of antitumor immune responses by regulatory T cells. Crit. Rev. Oncog. 2008, 14, 57–77. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, Y.; Nakatsuji, M.; Seno, H.; Ishizu, S.; Akitake-Kawano, R.; Kanda, K.; Ueo, T.; Komekado, H.; Kawada, M.; Minami, M.; et al. COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 2011, 32, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Kohanbash, G.; Fellows-Mayle, W.; Hamilton, R.L.; Komohara, Y.; Decker, S.A.; Ohlfest, J.R.; Okada, H. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 2011, 71, 2664–2674. [Google Scholar] [CrossRef]
- Jin, C.H.; Wang, A.H.; Chen, J.M.; Li, R.X.; Liu, X.M.; Wang, G.P.; Xing, L.Q. Observation of curative efficacy and prognosis following combination chemotherapy with celecoxib in the treatment of advanced colorectal cancer. J. Int. Med. Res. 2011, 39, 2129–2140. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.T.; Roth, M.D.; Fishbein, M.C.; Aberle, D.R.; Zhang, Z.F.; Rao, J.Y.; Tashkin, D.P.; Goodglick, L.; Holmes, E.C.; Cameron, R.B.; et al. Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev. Res. 2011, 4, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Garattini, E.; Bolis, M.; Garattini, S.K.; Fratelli, M.; Centritto, F.; Paroni, G.; Gianni, M.; Zanetti, A.; Pagani, A.; Fisher, J.N.; et al. Retinoids and breast cancer: From basic studies to the clinic and back again. Cancer Treat. Rev. 2014, 40, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.C.; McCormick, D.L.; Mehta, R.G. Inhibition of carcinogenesis by retinoids. Cancer Res. 1983, 43, 2469s–2475s. [Google Scholar]
- Sporn, M.B.; Roberts, A.B. Role of retinoids in differentiation and carcinogenesis. Cancer Res. 1983, 43, 3034–3040. [Google Scholar]
- Uray, I.P.; Brown, P.H. Chemoprevention of hormone receptor-negative breast cancer: New approaches needed. Recent Results Cancer Res. 2011, 188, 147–162. [Google Scholar]
- Recchia, F.; Saggio, G.; Nuzzo, A.; Biondi, E.; Di Blasiol, A.; Cestal, A.; Candelorol, G.; Alessel, E.; Rea, S. Multicenter phase 2 study of interleukin-2 and 13-cis retinoic acid as maintenance therapy in advanced non-small-cell lung cancer. J. Immunother. 2006, 29, 87–94. [Google Scholar] [CrossRef]
- Mirza, N.; Fishman, M.; Fricke, I.; Dunn, M.; Neuger, A.M.; Frost, T.J.; Lush, R.M.; Antonia, S.; Gabrilovich, D.I. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006, 66, 9299–9307. [Google Scholar] [CrossRef]
- Prabhala, R.H.; Garewal, H.S.; Hicks, M.J.; Sampliner, R.E.; Watson, R.R. The effects of 13-cis-retinoic acid and beta-carotene on cellular immunity in humans. Cancer 1991, 67, 1556–1560. [Google Scholar] [CrossRef]
- Kusmartsev, S.; Cheng, F.; Yu, B.; Nefedova, Y.; Sotomayor, E.; Lush, R.; Gabrilovich, D. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 2003, 63, 4441–4449. [Google Scholar]
- Hengesbach, L.M.; Hoag, K.A. Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J. Nutr. 2004, 134, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Pan, P.Y.; Li, Q.; Sato, A.I.; Levy, D.E.; Bromberg, J.; Divino, C.M.; Chen, S.H. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006, 66, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Recchia, F.; Saggio, G.; Cesta, A.; Candeloro, G.; Nuzzo, A.; Lombardo, M.; Carta, G.; Rea, S. Interleukin-2 and 13-cis retinoic acid as maintenance therapy in advanced ovarian cancer. Int. J. Oncol. 2005, 27, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ruiz, A.; García-Villanova, B.; Guerra-Hernández, E.; Amiano, P.; Sánchez, M.J.; Dorronsoro, M.; Molina-Montes, E. Comparison of the Dietary Antioxidant Profiles of 21 a priori Defined Mediterranean Diet Indexes. J. Acad. Nutr. Diet. 2018, 118, 2254–2268. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Yang, H.; Zhang, Q.; Lu, P.; Feng, Y.; Geng, X.; Zhang, L.; Jia, X. Alpha-Tocopherol prevents esophageal squamous cell carcinoma by modulating PPARγ-Akt signaling pathway at the early stage of carcinogenesis. Oncotarget 2017, 8, 95914–95930. [Google Scholar]
- Tam, K.W.; Ho, C.T.; Tu, S.H.; Lee, W.J.; Huang, C.S.; Chen, C.S.; Wu, C.H.; Lee, C.H.; Ho, Y.S. α-Tocopherol succinate enhances pterostilbene anti-tumor activity in human breast cancer cells in vivo and in vitro. Oncotarget 2017, 9, 4593–4606. [Google Scholar]
- Jiang, J.; Wang, K.; Chen, Y.; Chen, H.; Nice, E.C.; Huang, C. Redox regulation in tumor cell epithelial-mesenchymal transition: Molecular basis and therapeutic strategy. Signal. Transduct. Target. Ther. 2017, 2, 17036. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.Q.; Zhang, J.M.; Fang, X.F.; Yu, H.; Liu, Y.L.; Li, H.; Wang, Y.T.; Chen, M.W. Reversal of paclitaxel resistance in human ovarian cancer cells with redox-responsive micelles consisting of α-tocopheryl succinate-based polyphosphoester copolymers. Acta Pharmacol. Sin. 2017, 38, 859–873. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Zhang, W.; Dong, H.; Zhang, W.; Mao, J.; Dai, Y. Combination of Oxaliplatin and Vit.E-TPGS in Lipid Nanosystem for Enhanced Therapeutic Efficacy in Colon Cancers. Pharm Res. 2018, 35, 27. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, H.J. An α-tocopheryl succinate enzyme-based nanoassembly for cancer imaging and therapy. Drug Deliv. 2018, 25, 738–749. [Google Scholar] [CrossRef]
- Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J.; et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol. 2007, 177, 540–545. [Google Scholar] [PubMed]
- Byun, S.J.; Kim, Y.S.; Ahn, H.; Kim, C.S. Image-guided, whole-pelvic, intensity-modulated radiotherapy for biochemical recurrence following radical prostatectomy in high-risk prostate cancer patients. PLoS ONE 2018, 13, e0190479. [Google Scholar] [CrossRef] [Green Version]
- Niehoff, P.; Loch, T.; Nürnberg, N.; Galalae, R.; Egberts, J.; Kohr, P.; Kovács, G. Feasibility and preliminary outcome of salvage combined HDR brachytherapy and external beam radiotherapy (EBRT) for local recurrences after radical prostatectomy. Brachytherapy 2005, 4, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Höcht, S.; Wiegel, T.; Schostak, M.; Hinkelbein, W. Adjuvant and salvage radiotherapy after radical prostatectomy. Onkologie 2002, 25, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.; Grossfeld, G.D.; Roach, M., 3rd; Shinohara, K.; Presti, J.C., Jr.; Carroll, P.R. Radiation therapy for the management of biopsy proved local recurrence after radical prostatectomy. J. Urol. 1998, 160, 1748–1753. [Google Scholar] [CrossRef]
- Sridharan, S.; Dal Pra, A.; Catton, C.; Bristow, R.G.; Warde, P. Locally advanced prostate cancer: Current controversies and optimisation opportunities. Clin. Oncol. 2013, 25, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Slovin, S.F.; Wilton, A.S.; Heller, G.; Scher, H.I. Time to detectable metastatic disease in patients with rising prostate-specific antigen values following surgery or radiation therapy. Clin. Cancer Res. 2005, 11, 8669–8673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, P.K.; Sadetsky, N.; Konety, B.R.; Resnick, M.I.; Carroll, P.R. Cancer of the Prostate Strategic Urological Research Endeavor (CaPSURE). Treatment failure after primary and salvage therapy for prostate cancer: Likelihood, patterns of care, and outcomes. Cancer 2008, 112, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Bolla, M.; Collette, L.; Blank, L.; Warde, P.; Dubois, J.B.; Mirimanoff, R.O.; Storme, G.; Bernier, J.; Kuten, A.; Sternberg, C.; et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): A phase III randomised trial. Lancet 2002, 360, 103–106. [Google Scholar] [CrossRef]
- Saridaki, Z.; Malamos, N.; Kourakos, P.; Polyzos, A.; Ardavanis, A.; Androulakis, N.; Kalbakis, K.; Vamvakas, L.; Georgoulias, V.; Mavroudis, D. A phase I trial of oral metronomic vinorelbine plus capecitabine in patients with metastatic breast cancer. Cancer Chemother. Pharmacol. 2012, 69, 35–42. [Google Scholar] [CrossRef]
- Cazzaniga, M.E.; Torri, V.; Villa, F.; Giuntini, N.; Riva, F.; Zeppellini, A.; Cortinovis, D.; Bidoli, P. Efficacy and Safety of the All-Oral Schedule of Metronomic Vinorelbine and Capecitabine in Locally Advanced or Metastatic Breast Cancer Patients: The Phase I-II VICTOR-1 Study. Int. J. Breast Cancer 2014, 2014, 769790. [Google Scholar] [CrossRef] [PubMed]
- Montagna, E.; Bagnardi, V.; Cancello, G.; Sangalli, C.; Pagan, E.; Iorfida, M.; Mazza, M.; Mazzarol, G.; Dellapasqua, S.; Munzone, E.; et al. Metronomic Chemotherapy for First-Line Treatment of Metastatic Triple-Negative Breast Cancer: A Phase II Trial. Breast Care 2018, 13, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Friedel, G.; Linder, A.; Toomes, H. The significance of prognostic factors for the resection of pulmonary metastases of breast cancer. Thorac. Cardiovasc. Surg. 1994, 42, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Lanza, L.A.; Natarajan, G.; Roth, J.A.; Putnam, J.B., Jr. Long-term survival after resection of pulmonary metastases from carcinoma of the breast. Ann. Thorac. Surg. 1992, 54, 244–247. [Google Scholar] [CrossRef]
- McDonald, M.L.; Deschamps, C.; Ilstrup, D.M.; Allen, M.S.; Trastek, V.F.; Pairolero, P.C. Pulmonary resection for metastatic breast cancer. Ann. Thorac. Surg. 1994, 58, 1599–1602. [Google Scholar] [CrossRef]
- Tanaka, K.; Shimizu, K.; Ohtaki, Y.; Nakano, T.; Kamiyoshihara, M.; Kaira, K.; Rokutanda, N.; Horiguchi, J.; Oyama, T.; Takeyoshi, I. Diagnosis and surgical resection of solitary pulmonary nodules in patients with breast cancer. Mol. Clin. Oncol. 2013, 1, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Rena, O.; Papalia, E.; Ruffini, E.; Filosso, P.L.; Oliaro, A.; Maggi, G.; Casadio, C. The role of surgery in the management of solitary pulmonary nodule in breast cancer patients. Eur. J. Surg. Oncol. 2007, 33, 546–550. [Google Scholar] [CrossRef]
- Matsumoto, H.; Kawazoe, A.; Shimada, K.; Fukuoka, S.; Kuboki, Y.; Bando, H.; Kojima, T.; Ohtsu, A.; Yoshino, T.; Doi, T.; et al. A retrospective study of the safety and efficacy of paclitaxel plus ramucirumab in patients with advanced or recurrent gastric cancer with ascites. BMC Cancer 2018, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Shitara, K.; Mizota, A.; Matsuo, K.; Sato, Y.; Kondo, C.; Takahari, D.; Ura, T.; Tajika, M.; Muro, K. Fluoropyrimidine plus cisplatin for patients with advanced or recurrent gastric cancer with peritoneal metastasis. Gastric Cancer 2013, 16, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Salama, J.K.; Chmura, S.J. Surgery or ablative radiotherapy for breast cancer oligometastases. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e8–e15. [Google Scholar] [CrossRef]
- Greenberg, P.A.; Hortobagyi, G.N.; Smith, T.L.; Ziegler, L.D.; Frye, D.K.; Buzdar, A.U. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J. Clin. Oncol. 1996, 14, 2197–2205. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Katsumata, N.; Watanabe, T.; Omuro, Y.; Ando, M.; Narabayashi, M.; Adachi, I. Clinical characteristics of patients with metastatic breast cancer with complete remission following systemic treatment. Jpn. J. Clin. Oncol. 1998, 28, 368–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erhunmwunsee, L.; D’Amico, T.A. Surgical management of pulmonary metastases. Ann. Thorac. Surg. 2009, 88, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Duijm, M.; Oomen-de Hoop, E.; Aerts, J.G.; Verhoef, C.; Hoogeman, M.; Nuyttens, J.J. Survival and prognostic factors of pulmonary oligometastases treated with stereotactic body radiotherapy. Acta Oncol. 2018, 3, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marudanayagam, R.; Ramkumar, K.; Shanmugam, V.; Langman, G.; Rajesh, P.; Coldham, C.; Bramhall, S.R.; Mayer, D.; Buckels, J.; Mirza, D.F. Long-term outcome after sequential resections of liver and lung metastases from colorectal carcinoma. HPB 2009, 11, 671–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortylewski, M.; Yu, H. Role of Stat3 in suppressing anti-tumor immunity. Curr. Opin. Immunol. 2008, 20, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesh, S.; Shui, X.; Craig, K.P.; Koser, M.L.; Chopda, G.R.; Cyr, W.A.; Lai, C.; Dudek, H.; Wang, W.; Brown, B.D.; et al. β-Catenin mRNA Silencing and MEK Inhibition Display Synergistic Efficacy in Preclinical Tumor Models. Mol. Cancer Ther. 2018, 17, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Luo, F.; Yang, J.; Liu, J.; Liu, R.; Wang, L.; Wang, C.; Deng, Y.; Lu, Z.; Wang, Y.; et al. TLR2 Promotes Glioma Immune Evasion by Downregulating MHC Class II Molecules in Microglia. Cancer Immunol. Res. 2018, 6, 1220–1233. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Xiang, S.D.; Wilson, K.; Madondo, M.; Stephens, A.N.; Plebanski, M. Sperm Protein 17 Expression by Murine Epithelial Ovarian Cancer Cells and Its Impact on Tumor Progression. Cancers 2018, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Pizon, M.; Schott, D.S.; Pachmann, U.; Pachmann, K. B7-H3 on circulating epithelial tumor cells correlates with the proliferation marker, Ki-67, and may be associated with the aggressiveness of tumors in breast cancer patients. Int. J. Oncol. 2018, 53, 2289–2299. [Google Scholar] [CrossRef] [Green Version]
- Takao, A.; Yoshikawa, K.; Karnan, S.; Ota, A.; Uemura, H.; De Velasco, M.A.; Kura, Y.; Suzuki, S.; Ueda, R.; Nishino, T.; et al. Generation of PTEN-knockout (-/-) murine prostate cancer cells using the CRISPR/Cas9 system and comprehensive gene expression profiling. Oncol. Rep. 2018, 40, 2455–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Zhang, Y.; Yang, J.; Qi, Y.; Ming, Y.; Sun, M.; Shang, Y.; Yang, Y.; Zhu, X.; Gao, Q. Efficacy and safety of trastuzumab as maintenance or palliative therapy in advanced HER2-positive gastric cancer. OncoTargets Ther. 2018, 11, 6091–6100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiselev, V.I.; Ashrafyan, L.A.; Muyzhnek, E.L.; Gerfanova, E.V.; Antonova, I.B.; Aleshikova, O.I.; Sarkar, F.H. A new promising way of maintenance therapy in advanced ovarian cancer: A comparative clinical study. BMC Cancer 2018, 18, 904. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Di, L.; Song, G.; Yan, Y.; Wang, C.; Jiang, H.; Li, H. Capecitabine maintenance therapy for XT chemotherapy-sensitive patients with metastatic triple-negative breast cancer. Chin. J. Cancer Res. 2014, 26, 550–557. [Google Scholar] [PubMed]
- Hyung, J.; Kim, B.; Yoo, C.; Kim, K.P.; Jeong, J.H.; Chang, H.M.; Ryoo, B.Y. Clinical Benefit of Maintenance Therapy for Advanced Biliary Tract Cancer Patients Showing No Progression after First-Line Gemcitabine Plus Cisplatin. Cancer Res. Treat. 2019, 51, 901–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, R.M.; De Vlaeminck, Y.; Maebe, J.; Goyvaerts, C.; Breckpot, K. Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Front. Immunol. 2018, 9, 1977. [Google Scholar] [CrossRef]
- Vlashi, E.; Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin. Cancer Biol. 2015, 31, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Lu, X. Impact of IL-12 in Cancer. Curr. Cancer Drug Targets 2017, 17, 682–697. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Wang, J.; Gao, D.; Li, Y.; Li, H.; Chu, Y.; Zhang, Z.; Liu, H.; Jiang, G.; et al. Re-designing Interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat. Commun. 2017, 8, 1395. [Google Scholar] [CrossRef] [Green Version]
- Tugues, S.; Burkhard, S.H.; Ohs, I.; Vrohlings, M.; Nussbaum, K.; Vom Berg, J.; Kulig, P.; Becher, B. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015, 22, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapeyre-Prost, A.; Terme, M.; Pernot, S.; Pointet, A.L.; Voron, T.; Tartour, E.; Taieb, J. Immunomodulatory Activity of VEGF in Cancer. Int. Rev. Cell Mol. Biol. 2017, 330, 295–342. [Google Scholar] [PubMed]
Drug | Dose | Days |
---|---|---|
dexamethasone | 1.5 mg twice a day | 1 (week 1) |
cyclophosphamide | 50 mg per day | 1–7 (week 1) |
celecoxib | 400 mg twice a day | 8–14 (week 2) |
retinyl palmitate plus dl-alpha tocopheryl acetate | 30,000 IU plus 70 mg three times per day | 15–28 (weeks 3–4) |
Patient 1 | |||||||||
Parameter | Time | D | Mean | SD | p-Value * | Median | Minimum | Maximum | p-Value ** |
Ly tot (n) | Basal | 2 | 1867.0 | 23.3 | 0.076 | 1867.5 | 1851.0 | 1884.0 | 0.083 |
IT | 3 | 1616 | 125.0 | 1612.0 | 1494.0 | 1744.0 | |||
CD3+(n) | Basal | 2 | 1596.5 | 6.4 | 0.040 | 1596.5 | 1592.0 | 1601.0 | 0.083 |
IT | 3 | 1383.3 | 82.0 | 1386.0 | 1300.0 | 1464.0 | |||
CD4+(n) | Basal | 2 | 887.0 | 50.9 | 0.053 | 887.0 | 851.0 | 923.0 | 0.083 |
IT | 3 | 725.7 | 59.7 | 715.0 | 672.0 | 790.0 | |||
CD19+(n) | Basal | 2 | 56.0 | 0.7 | 0.063 | 56.0 | 55.5 | 56.5 | 0.083 |
IT | 3 | 48.3 | 3.5 | 48.0 | 45.0 | 52.0 | |||
sIL-2 (pg/mL) | Basal | 2 | 90.2 | 4.2 | 0.061 | 90.2 | 87.2 | 93.1 | 0.083 |
IT | 3 | 122.1 | 14.3 | 127.7 | 105.8 | 132.7 | |||
IL-12 (pg/mL) | Basal | 2 | 64.50 | 7.78 | 0.106 | 64.50 | 59.00 | 70.00 | 0.083 |
IT | 3 | 49.00 | 7.21 | 51.00 | 41.00 | 55.00 | |||
VEGF-A (pg/mL) | Basal | 2 | 334.5 | 84.1 | 0.101 | 334.5 | 275.0 | 394.0 | 0.083 |
IT | 3 | 158.7 | 80.6 | 155.0 | 80.0 | 241.0 | |||
Patient 2 | |||||||||
Parameter | Time | D | Mean | SD | p-Value * | Median | Minimum | Maximum | p-Value ** |
sIL-2 (pg/mL) | Basal | 2 | 17.0 | 6.7 | 0.049 | 17.0 | 12.2 | 21.7 | 0.083 |
IT | 3 | 63.3 | 18.8 | 68.9 | 42.3 | 78.7 | |||
IL-12 (pg/mL) | Basal | 2 | 171.50 | 3.54 | 0.040 | 171.50 | 169.00 | 174.00 | 0.083 |
IT | 3 | 158.00 | 4.58 | 157.00 | 154.00 | 163.00 | |||
Patient 3 | |||||||||
Parameter | Time | D | Mean | SD | p-Value * | Median | Minimum | Maximum | p-Value ** |
CD4+(n) | Basal | 2 | 614.1 | 2.8 | 0.198 | 614.00 | 612.00 | 616.00 | 0.083 |
IT | 3 | 588.6 | 20.5 | 599.00 | 565.00 | 602.00 | |||
VEGF-A (pg/mL) | Basal | 2 | 12.00 | 2.83 | 0.247 | 12.00 | 10.00 | 14.00 | 0.083 |
IT | 3 | 45.00 | 30.81 | 33.00 | 22.00 | 80.00 | |||
Patient 4 | |||||||||
Parameter | Time | D | Mean | SD | p-Value * | Median | Minimum | Maximum | p-Value ** |
Ly tot(n) | Basal | 2 | 1425.0 | 204.0 | 0.079 | 1425.0 | 1281.0 | 1570.0 | 0.083 |
IT | 3 | 1035.0 | 139.0 | 987.0 | 926.0 | 1191.0 | |||
CD3+(n) | Basal | 3 | 917.0 | 134.2 | 0.088 | 994.0 | 762.0 | 995.0 | 0.127 |
IT | 3 | 709.3 | 87.5 | 667.0 | 651.0 | 810.0 | |||
CD8+(n) | Basal | 3 | 239.3 | 88.8 | 0.078 | 257.0 | 143.0 | 318.0 | 0.077 |
IT | 3 | 111.7 | 30.1 | 109.0 | 83.0 | 143.0 | |||
CD19+(n) | Basal | 3 | 108.8 | 22.7 | 0.071 | 118.0 | 83.0 | 125.5 | 0.077 |
IT | 3 | 75.3 | 7.1 | 74.0 | 69.0 | 83.0 | |||
sIL-2 (pg/mL) | Basal | 3 | 0.9 | 1.5 | 0.145 | nd | nd | 2.6 | 0.046 |
IT | 3 | 64.5 | 47.2 | 79.2 | 11.7 | 102.7 |
Patient (n) | Cancer Type | Non-Conventional Therapy | Expected Outcome | Observed Outcome | |||||
---|---|---|---|---|---|---|---|---|---|
sPSA Nadir after srt (Months) | DFS (PFS) | OS (Months) | Ref. | sPSA Nadir after sRT (Months) | DFS (Months) | OS (Months) | |||
1 | Prostate | IT | 10–16 12–24 | <27.5 mean/median | - | 43, 46 | 62 | b 201 | b 201 |
2 | Prostate | IT | - | b 32% at 3 years b 16% at 5 years | b 59 median | 47.48 | - | b 78 | b 78 |
3 | Breast | IT a | - | c 19 months median | c 15 ± 3.6 mean | 55, 54 | - | c 28 | c 28 |
4 | Gastric–esophageal junction | IT | - | d 3.2 months (PFS) | d 9.6–13.5 median | 58, 59 | - | d 35 | d 35 |
5 | Breast | Beta-IFN plus IL-2 | - | - | e 24–31 median | 8 | - | - | e 140 e* 112 |
6 | Colon | Repeated surgical removals of metastases | - | - | 29–40.5 median (0% at 4 years) | 64, 65 | - | - | e 98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolini, A.; Ferrari, P.; Morganti, R.; Carpi, A. Treatment of Metastatic or High-Risk Solid Cancer Patients by Targeting the Immune System and/or Tumor Burden: Six Cases Reports. Int. J. Mol. Sci. 2019, 20, 5986. https://doi.org/10.3390/ijms20235986
Nicolini A, Ferrari P, Morganti R, Carpi A. Treatment of Metastatic or High-Risk Solid Cancer Patients by Targeting the Immune System and/or Tumor Burden: Six Cases Reports. International Journal of Molecular Sciences. 2019; 20(23):5986. https://doi.org/10.3390/ijms20235986
Chicago/Turabian StyleNicolini, Andrea, Paola Ferrari, Riccardo Morganti, and Angelo Carpi. 2019. "Treatment of Metastatic or High-Risk Solid Cancer Patients by Targeting the Immune System and/or Tumor Burden: Six Cases Reports" International Journal of Molecular Sciences 20, no. 23: 5986. https://doi.org/10.3390/ijms20235986
APA StyleNicolini, A., Ferrari, P., Morganti, R., & Carpi, A. (2019). Treatment of Metastatic or High-Risk Solid Cancer Patients by Targeting the Immune System and/or Tumor Burden: Six Cases Reports. International Journal of Molecular Sciences, 20(23), 5986. https://doi.org/10.3390/ijms20235986