Growth and Metabolic Response of Chinese Perch to Different Dietary Protein-to-Energy Ratios in Artificial Diets
Abstract
:1. Introduction
2. Results
2.1. Growth Performance and Feed Utilization
2.2. Proximate Composition of Whole-Body, Muscle, and Liver Tissue
2.3. Enzyme Activities of Nitrogen Metabolism
2.4. mRNA Expression of Nitrogen Metabolism Genes
2.5. mRNA Expression of Appetite Regulation Genes
2.6. mRNA Expression of AMPK and mTOR Pathway Genes
2.7. Blood Biochemistry
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Experimental Diets
4.3. Chinese Perch Culture and Feeding Trial
4.4. Sample Collection
4.5. Proximate and Chemical Analyses
4.6. Enzyme Activity Assay
4.7. RNA Isolation and Reverse Transcription
4.8. Real-Time qPCR Analysis
4.9. Calculation and Formulas
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Liang, X.-F.; He, S.; Li, J.; Huang, K.; Zhang, Y.-P.; Huang, D. Lipid deposition pattern and adaptive strategy in response to dietary fat in Chinese perch (Siniperca chuatsi). Nutr. Metab. 2018, 15, 77. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Oku, H.; Ogata, H.; Liu, J.; He, X. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding. Aquac. Res. 2001, 32, 76–82. [Google Scholar] [CrossRef]
- Deng, D.-F.; Ju, Z.Y.; Dominy, W.; Murashige, R.; Wilson, R.P. Optimal dietary protein levels for juvenile Pacific threadfin (Polydactylus sexfilis) fed diets with two levels of lipid. Aquaculture 2011, 316, 25–30. [Google Scholar] [CrossRef]
- Sales, J.; Truter, P.; Britz, P. Optimum dietary crude protein level for growth in South African abalone (Haliotis midae L.). Aquac. Nutr. 2003, 9, 85–89. [Google Scholar] [CrossRef]
- Kim, L.O.; Lee, S.-M. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco. Aquaculture 2005, 243, 323–329. [Google Scholar] [CrossRef]
- Cho, C.; Bureau, D. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquac. Res. 2001, 32, 349–360. [Google Scholar] [CrossRef]
- Schulz, C.; Huber, M.; Ogunji, J.; Rennert, B. Effects of varying dietary protein to lipid ratios on growth performance and body composition of juvenile pike perch (Sander lucioperca). Aquac. Nutr. 2008, 14, 166–173. [Google Scholar] [CrossRef]
- Li, Y.; Bordinhon, A.M.; Davis, D.A.; Zhang, W.; Zhu, X. Protein: Energy ratio in practical diets for Nile tilapia Oreochromis niloticus. Aquac. Int. 2013, 21, 1109–1119. [Google Scholar] [CrossRef]
- De Silva, S.S.; Gunasekera, R.M.; Shim, K. Interactions of varying dietary protein and lipid levels in young red tilapia: Evidence of protein sparing. Aquaculture 1991, 95, 305–318. [Google Scholar] [CrossRef]
- Lupatsch, I.; Kissil, G.W.; Sklan, D.; Pfeffer, E. Energy and protein requirements for maintenance and growth in gilthead seabream (Sparus aurata L.). Aquac. Nutr. 1998, 4, 165–173. [Google Scholar] [CrossRef]
- Ali, M.; Jauncey, K. Approaches to optimizing dietary protein to energy ratio for African catfish Clarias gariepinus (Burchell, 1822). Aquac. Nutr. 2005, 11, 95–101. [Google Scholar] [CrossRef]
- Okorie, O.E.; Kim, Y.C.; Lee, S.; Bae, J.Y.; Yoo, J.H.; Han, K.; Bai, S.C.; Park, G.J.; Choi, S.M. Reevaluation of the dietary protein requirements and optimum dietary protein to energy ratios in Japanese eel, Anguilla japonica. J. World Aquac. Soc. 2007, 38, 418–426. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Goto, S.; Ikeda, I.; Sugano, M. Interaction of dietary protein, cholesterol and age on lipid metabolism of the rat. Br. J. Nutr. 1989, 61, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, J.; Song, X.; Zhang, X.; Ge, C.; Gao, S. Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 2010, 7, 6. [Google Scholar] [CrossRef]
- Houlihan, D.; Mathers, E.; Foster, A. Biochemical correlates of growth rate in fish. In Fish Ecophysiology; Springer: Dordrecht South Holland, The Netherlands, 1993; pp. 45–71. [Google Scholar]
- Ballantyne, J. Amino acid metabolism. Fish. Physiol. 2001, 20, 77–107. [Google Scholar]
- Stone, D.; Allan, G.; Anderson, A.J. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). III. The protein-sparing effect of wheat starch-based carbohydrates. Aquac. Res. 2003, 34, 123–134. [Google Scholar] [CrossRef]
- Metón, I. New insights into the regulation of hepatic glucose metabolism in fish. Recent Res. Dev. Biochem. 2003, 4, 125–149. [Google Scholar]
- Kim, K.-I.; Grimshaw, T.W.; Kayes, T.B.; Amundson, C.H. Effect of fasting or feeding diets containing different levels of protein or amino acids on the activities of the liver amino acid-degrading enzymes and amino acid oxidation in rainbow trout (Oncorhynchus mykiss). Aquaculture 1992, 107, 89–105. [Google Scholar] [CrossRef]
- Metón, I.; Mediavilla, D.; Caseras, A.; Cantó, E.; Fernández, F.; Baanante, I. Effect of diet composition and ration size on key enzyme activities of glycolysis–gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br. J. Nutr. 1999, 82, 223–232. [Google Scholar] [CrossRef]
- Melo, J.F.B.; Lundstedt, L.M.; Metón, I.; Baanante, I.V.; Moraes, G. Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comp. Biochem. Physiol. Part. A Mol. Integr. Physiol. 2006, 145, 181–187. [Google Scholar] [CrossRef]
- Fournier, V.; Gouillou-Coustans, M.; Metailler, R.; Vachot, C.; Moriceau, J.; Le Delliou, H.; Huelvan, C.; Desbruyeres, E.; Kaushik, S. Excess dietary arginine affects urea excretion but does not improve N utilisation in rainbow trout Oncorhynchus mykiss and turbot Psetta maxima. Aquaculture 2003, 217, 559–576. [Google Scholar] [CrossRef]
- Peres, H.; Oliva-Teles, A. The effect of dietary protein replacement by crystalline amino acid on growth and nitrogen utilization of turbot Scophthalmus maximus juveniles. Aquaculture 2005, 250, 755–764. [Google Scholar] [CrossRef]
- Lushchak, V. Functional role and properties of AMP-deaminase. Biokhimiia 1996, 61, 195–211. [Google Scholar] [PubMed]
- Walton, M.J.; Cowey, C.B. Aspects of ammoniogenesis in rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. Part. B Comp. Biochem. 1977, 57, 143–149. [Google Scholar] [CrossRef]
- Xu, J.; Ji, J.; Yan, X.-H. Cross-talk between AMPK and mTOR in regulating energy balance. Crit. Rev. Food Sci. Nutr. 2012, 52, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Kenney, J.W.; Moore, C.E.; Wang, X.; Proud, C.G. Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Adv. Biol. Regul. 2014, 55, 15–27. [Google Scholar] [CrossRef]
- Shamji, A.F.; Nghiem, P.; Schreiber, S.L. Integration of growth factor and nutrient signaling: Implications for cancer biology. Mol. Cell 2003, 12, 271–280. [Google Scholar] [CrossRef]
- Fang, Y.; Vilella-Bach, M.; Bachmann, R.; Flanigan, A.; Chen, J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001, 294, 1942–1945. [Google Scholar] [CrossRef]
- Kim, K.W.; Wang, X.J.; Bai, S.C. Optimum dietary protein level for maximum growth of juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquac. Res. 2002, 33, 673–679. [Google Scholar] [CrossRef]
- Stephens, L.; Anderson, K.; Stokoe, D.; Erdjument-Bromage, H.; Painter, G.F.; Holmes, A.B.; Gaffney, P.R.; Reese, C.B.; McCormick, F.; Tempst, P. Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B. Science 1998, 279, 710–714. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, W.; Jin, H.; Wang, X. mTOR in viral hepatitis and hepatocellular carcinoma: Function and treatment. BioMed Res. Int. 2014, 735672. [Google Scholar] [CrossRef] [PubMed]
- Hindupur, S.K.; González, A.; Hall, M.N. The opposing actions of target of rapamycin and AMP-activated protein kinase in cell growth control. Cold Spring Harbor Perspect. Biol. 2015, 7, a019141. [Google Scholar] [CrossRef] [PubMed]
- Bolster, D.R.; Crozier, S.J.; Kimball, S.R.; Jefferson, L.S. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J. Biol. Chem. 2002, 277, 23977–23980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, C.A.; Mayhew, D.L.; Hornberger, T.A. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell. Signal. 2011, 23, 1896–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30, 214–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Meilán, I.; Ordóñez-Grande, B.; Gallardo, M. Meal timing affects protein-sparing effect by carbohydrates in sea bream: Effects on digestive and absorptive processes. Aquaculture 2014, 434, 121–128. [Google Scholar] [CrossRef]
- Letelier-Gordo, C.O.; Dalsgaard, J.; Suhr, K.I.; Ekmann, K.S.; Pedersen, P.B. Reducing the dietary protein: Energy (P: E) ratio changes solubilization and fermentation of rainbow trout (Oncorhynchus mykiss) faeces. Aquac. Eng. 2015, 66, 22–29. [Google Scholar] [CrossRef]
- Kim, K.-W.; Moniruzzaman, M.; Kim, K.-D.; Han, H.S.; Yun, H.; Lee, S.; Bai, S.C. Effects of dietary protein levels on growth performance and body composition of juvenile parrot fish, Oplegnathus fasciatus. Int. Aquac. Res. 2016, 8, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Han, T.; Li, X.; Yang, Y.; Yang, M.; Hu, S.; Jiang, Y.; Harpaz, S. Effects of dietary protein and lipid levels with different protein-to-energy ratios on growth performance, feed utilization and body composition of juvenile red-spotted grouper, Epinephelus akaara. Aquac. Nutr. 2017, 23, 994–1002. [Google Scholar] [CrossRef]
- Haidar, M.; Bleeker, S.; Heinsbroek, L.; Schrama, J. Effect of constant digestible protein intake and varying digestible energy levels on energy and protein utilization in Nile tilapia. Aquaculture 2018, 489, 28–35. [Google Scholar] [CrossRef]
- Rueda-López, S.; Lazo, J.P.; Reyes, G.C.; Viana, M.T. Effect of dietary protein and energy levels on growth, survival and body composition of juvenile Totoaba macdonaldi. Aquaculture 2011, 319, 385–390. [Google Scholar] [CrossRef]
- Jamabo, N.; Alfred-Ockiya, J. Effects of dietary protein levels on the growth performance of Heterobranchus bidorsalis (Geoffroy-Saint-Hilaire, 1809) fingerlings from the Niger Delta. Afr. J. Biotechnol. 2008, 7, 2483–2485. [Google Scholar]
- Arshad Hossain, M.; Almatar, S.M.; James, C.M. Optimum dietary protein level for juvenile silver pomfret, Pampus argenteus (Euphrasen). J. World Aquac. Soc. 2010, 41, 710–720. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kim, K.-D.; Park, H.G.; Kim, C.H.; Hong, K.E. Protein requirement of juvenile Manchurian trout Brachymystax lenok. Fish. Sci. 2001, 67, 46–51. [Google Scholar] [CrossRef]
- Jauncey, K. The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture 1982, 27, 43–54. [Google Scholar] [CrossRef]
- Martinez-Palacios, C.; Harfush-Melendez, M.; Chavez-Sanchez, C.; Ross, L. The optimum dietary protein level for the Mexican cichlid Cichlasoma urophthalmus (Günther): A comparison of estimates derived from experiments using fixed-rate feeding and satiation feeding. Aquac. Nutr. 1996, 2, 11–20. [Google Scholar] [CrossRef]
- Vergara, J.M.; Fernández-Palacios, H.; Robainà, L.; Jauncey, K.; De La Higuera, M.; Izquierdo, M. The effects of varying dietary protein level on the growth, feed efficiency, protein utilization and body composition of gilthead sea bream fry. Fish. Sci. 1996, 62, 620–623. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.D.; Lin, T.S.; Liou, C.H.; Peng, H.K. Influence of dietary protein levels on growth performance, carcass composition and liver lipid classes of juvenile Spinibarbus hollandi (Oshima). Aquac. Res. 2003, 34, 661–666. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, X.; Liu, J.; Han, D.; Yang, Y.; Lan, Z.; Xie, S. Effects of dietary protein level on growth performance, nitrogen and energy budget of juvenile hybrid sturgeon, Acipenser baerii♀× A. gueldenstaedtii♂. Aquaculture 2012, 338, 89–95. [Google Scholar] [CrossRef]
- Wu, X.; Gatlin, D.M., III. Effects of altering dietary protein content in morning and evening feedings on growth and ammonia excretion of red drum (Sciaenops ocellatus). Aquaculture 2014, 434, 33–37. [Google Scholar] [CrossRef]
- Ng, W.K.; Soon, S.C.; Hashim, R. The dietary protein requirement of a bagrid catfish, Mystus nemurus (Cuvier and Valenciennes), determined using semipurified diets of varying protein level. Aquac. Nutr. 2001, 7, 45–51. [Google Scholar] [CrossRef]
- Mohanta, K.; Mohanty, S.; Jena, J.; Sahu, N. Protein requirement of silver barb, Puntius gonionotus fingerlings. Aquac. Nutr. 2008, 14, 143–152. [Google Scholar] [CrossRef]
- Ozório, R.; Valente, L.; Correia, S.; Pousao-Ferreira, P.; Damasceno-Oliveira, A.; Escorcio, C.; Oliva-Teles, A. Protein requirement for maintenance and maximum growth of two-banded seabream (Diplodus vulgaris) juveniles. Aquac. Nutr. 2009, 15, 85–93. [Google Scholar] [CrossRef]
- Kim, S.-S.; Lee, K.-J. Dietary protein requirement of juvenile tiger puffer (Takifugu rubripes). Aquaculture 2009, 287, 219–222. [Google Scholar] [CrossRef]
- Jin, Y.; Tian, L.-X.; Xie, S.-W.; Guo, D.-Q.; Yang, H.-J.; Liang, G.-Y.; Liu, Y.-J. Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 2015, 437, 75–83. [Google Scholar] [CrossRef]
- Lall, S.P.; Tibbetts, S.M. Nutrition, feeding, and behavior of fish. Vet. Clin. N. Am. Exotic Anim. Pract. 2009, 12, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-D.; Wang, J.-T.; Han, T.; Li, X.-Y.; Hu, S.-X. Effect of dietary lipid level on growth performance, feed utilization and body composition by juvenile red spotted grouper (Epinephelus akaara). Aquac. Int. 2015, 23, 99–110. [Google Scholar] [CrossRef]
- Wang, J.-T.; Liu, Y.-J.; Tian, L.-X.; Mai, K.-S.; Du, Z.-Y.; Wang, Y.; Yang, H.-J. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 2005, 249, 439–447. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, H.S.; Myung, S.H.; Jung, W.G.; Choi, J.; Lee, S.M. Optimum dietary protein and lipid levels for juvenile rockfish (S ebastes schlegeli, H ilgendorf 1880). Aquac. Res. 2015, 46, 2954–2961. [Google Scholar] [CrossRef]
- Yang, S.-D.; Liou, C.-H.; Liu, F.-G. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquaculture 2002, 213, 363–372. [Google Scholar] [CrossRef]
- Wu, X.; Castillo, S.; Rosales, M.; Burns, A.; Mendoza, M.; Gatlin, D.M., III. Relative use of dietary carbohydrate, non-essential amino acids, and lipids for energy by hybrid striped bass, Morone chrysops♀× M. saxatilis♂. Aquaculture 2015, 435, 116–119. [Google Scholar] [CrossRef]
- Hu, Y.H.; Liu, Y.J.; Tian, L.X.; Yang, H.J.; Liang, G.Y.; Gao, W. Optimal dietary carbohydrate to lipid ratio for juvenile yellowfin seabream (Sparus latus). Aquac. Nutr. 2007, 13, 291–297. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, Y.; Liu, W.B.; Jiang, G.Z.; Zhu, J. Effects of dietary carbohydrate/lipid ratios on growth performance, body composition and glucose metabolism of fingerling blunt snout bream Megalobrama amblycephala. Aquac. Nutr. 2013, 19, 701–708. [Google Scholar] [CrossRef]
- Coutinho, F.; Peres, H.; Guerreiro, I.; Pousão-Ferreira, P.; Oliva-Teles, A. Dietary protein requirement of sharpsnout sea bream (Diplodus puntazzo, Cetti 1777) juveniles. Aquaculture 2012, 356, 391–397. [Google Scholar] [CrossRef]
- Kim, J.-D.; Lall, S.P. Effects of dietary protein level on growth and utilization of protein and energy by juvenile haddock (Melanogrammus aeglefinus). Aquaculture 2001, 195, 311–319. [Google Scholar] [CrossRef]
- Sa, R.; Gavilán, M.; Rioseco, M.; Llancabure, A.; Vargas-Chacoff, L.; Augsburger, A.; Bas, F. Dietary protein requirement of Patagonian blennie (Eleginops maclovinus, Cuvier 1830) juveniles. Aquaculture 2014, 428, 125–134. [Google Scholar] [CrossRef]
- Aldegunde, M.; Mancebo, M. Effects of neuropeptide Y on food intake and brain biogenic amines in the rainbow trout (Oncorhynchus mykiss). Peptides 2006, 27, 719–727. [Google Scholar] [CrossRef]
- Kamijo, M.; Kojima, K.; Maruyama, K.; Konno, N.; Motohashi, E.; Ikegami, T.; Uchiyama, M.; Shioda, S.; Ando, H.; Matsuda, K. Neuropeptide Y in tiger puffer (Takifugu rubripes): Distribution, cloning, characterization, and mRNA expression responses to prandial condition. Zool. Sci. 2011, 28, 882–891. [Google Scholar] [CrossRef]
- Volkoff, H.; Hoskins, L.J.; Tuziak, S.M. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: Potential application in aquaculture. Gen. Comp. Endocrinol. 2010, 167, 352–359. [Google Scholar] [CrossRef]
- Hahn, T.M.; Breininger, J.F.; Baskin, D.G.; Schwartz, M.W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1998, 1, 271. [Google Scholar] [CrossRef]
- Barsh, G.S.; Schwartz, M.W. Genetic approaches to studying energy balance: Perception and integration. Nat. Rev. Genet. 2002, 3, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawwab, M.; Ahmad, M.H. Effect of dietary protein regime during the growing period on growth performance, feed utilization and whole-body chemical composition of Nile Tilapia, Oreochromis niloticus (L.). Aquac. Res. 2009, 40, 1532–1537. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Khattab, Y.A.; Ahmad, M.H.; Shalaby, A.M. Compensatory growth, feed utilization, whole-body composition, and hematological changes in starved juvenile Nile Tilapia, Oreochromis niloticus (L.). J. Appl. Aquac. 2006, 18, 17–36. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Pan, J.; Wang, M.; Zhong, L.; Wang, J.; Qin, Q.; Liu, H.; Shao, J.; Chen, X.J.A. Use of comparative transcriptome analysis to identify candidate genes related to albinism in channel catfish (Ictalurus punctatus). Aquaculture 2019, 500, 75–81. [Google Scholar] [CrossRef]
- El-Dakar, A.Y.; Shalaby, S.M.; Saoud, I.P. Dietary protein requirement of juvenile marbled spinefoot rabbitfish Siganus rivulatus. Aquac. Res. 2011, 42, 1050–1055. [Google Scholar] [CrossRef]
- Shah Alam, M.; Watanabe, W.O.; Carroll, P.M. Dietary protein requirements of juvenile black sea bass, Centropristis striata. J. World Aquac. Soc. 2008, 39, 656–663. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Y.; Mai, K.; Tian, L.; Liu, D.; Tan, X. Optimal dietary protein requirement of grouper Epinephelus coioides juveniles fed isoenergetic diets in floating net cages. Aquac. Nutr. 2004, 10, 247–252. [Google Scholar] [CrossRef]
- Islam, M.S.; Tanaka, M. Optimization of dietary protein requirement for pond-reared mahseer Tor putitora Hamilton (Cypriniformes: Cyprinidae). Aquac. Res. 2004, 35, 1270–1276. [Google Scholar] [CrossRef]
- Shyong, W.-J.; Huang, C.-H.; Chen, H.-C. Effects of dietary protein concentration on growth and muscle composition of juvenile Zacco barbata. Aquaculture 1998, 167, 35–42. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, F.; Wang, L.L.; Shao, Q.; Xu, Z.; Xu, J. Dietary protein requirement of juvenile black sea bream, Sparus macrocephalus. J. World Aquac. Soc. 2010, 41, 151–164. [Google Scholar] [CrossRef]
- Williams, K.C. Optimum dietary protein and lipid specifications for juvenile malabar grouper (Epinephelus malabaricus). Aquaculture 2007, 267, 129–138. [Google Scholar]
- Lee, J.; Cho, S.; Park, S.; Kim, K.D.; Lee, S.M. Dietary protein requirement for young turbot (Scophthalmus maximus L.). Aquac. Nutr. 2003, 9, 283–286. [Google Scholar] [CrossRef]
- Schulz, C.; Böhm, M.; Wirth, M.; Rennert, B. Effect of dietary protein on growth, feed conversion, body composition and survival of pike perch fingerlings (Sander lucioperca). Aquac. Nutr. 2007, 13, 373–380. [Google Scholar] [CrossRef]
- Shiau, S.-Y.; Lan, C.-W. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture 1996, 145, 259–266. [Google Scholar] [CrossRef]
- Bai, S.C.; Wang, X.; Cho, E. Optimum dietary protein level for maximum growth of juvenile yellow puffer. Fish. Sci. 1999, 65, 380–383. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Wang, X.; Han, K.; Bai, S.C.; Kang, J.C. Optimum dietary protein level and protein-to-energy ratio for growth of juvenile Korean rockfish Sebastes schlegeli. J. World Aquac. Soc. 2004, 35, 305–314. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Tsai, J.-C. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semipurified diets. Aquaculture 1994, 119, 265–271. [Google Scholar] [CrossRef]
- McGoogan, B.B.; Gatlin Iii, D.M. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus I. Effects of dietary protein and energy levels. Aquaculture 1999, 178, 333–348. [Google Scholar] [CrossRef]
- Alexis, M.N.; Papaparaskeva-Papoutsoglou, E. Aminotransferase activity in the liver and white muscle of Mugil capito fed diets containing different levels of protein and carbohydrate. Comp. Biochem. Physiol. B Comp. Biochem. 1986, 83, 245–249. [Google Scholar] [CrossRef]
- Moyano, F.; Cardenete, G.; De la Higuera, M. Nutritive and metabolic utilization of proteins with high glutamic acid content by the rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part. A Physiol. 1991, 100, 759–762. [Google Scholar] [CrossRef]
- Suárez, M.; Hidalgo, M.; Gallego, M.G.; Sanz, A.; De la Higuera, M. Influence of the relative proportions of energy yielding nutrients on liver intermediary metabolism of the European eel. Comp. Biochem. Physiol. Part. A Physiol. 1995, 111, 421–428. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Liu, S.; Zhong, H.; Zhang, C.; Liu, Y. Characterization and dietary regulation of glutamate dehydrogenase in different ploidy fishes. Amino Acids 2012, 43, 2339–2348. [Google Scholar] [CrossRef] [PubMed]
- Mommsen, T.P.; Hochachka, P.W. The purine nucleotide cycle as two temporally separated metabolic units: A study on trout muscle. Metabolism 1988, 37, 552–556. [Google Scholar] [CrossRef]
- Liu, Y.; Vertommen, D.; Rider, M.H.; Lai, Y.-C. Mammalian target of rapamycin-independent S6K1 and 4E-BP1 phosphorylation during contraction in rat skeletal muscle. Cell. Signal. 2013, 25, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Shackelford, D.B.; Shaw, R.J. The LKB1–AMPK pathway: Metabolism and growth control in tumor suppression. Nat. Rev. Cancer 2009, 9, 563. [Google Scholar] [CrossRef]
- Browne, G.J.; Finn, S.G.; Proud, C.G. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J. Biol. Chem. 2004, 279, 12220–12231. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Kang, J.-C. Changes in hematological parameters, plasma cortisol, and acetylcholinesterase of juvenile rockfish, Sebastes schlegelii supplemented with the dietary ascorbic acid. Aquac. Rep. 2016, 4, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Mourente, G.; Dick, J.R.; Bell, J.G.; Tocher, D.R. Effect of partial substitution of dietary fish oil by vegetable oils on desaturation and β-oxidation of [1-14C] 18: 3n− 3 (LNA) and [1-14C] 20: 5n− 3 (EPA) in hepatocytes and enterocytes of European sea bass (Dicentrarchus labrax L.). Aquaculture 2005, 248, 173–186. [Google Scholar] [CrossRef]
- Yengkokpam, S.; Debnath, D.; Sahu, N.; Pal, A.; Jain, K.; Baruah, K. Dietary protein enhances non-specific immunity, anti-oxidative capability and resistance to Aeromonas hydrophila in Labeo rohita fingerlings pre-exposed to short feed deprivation stress. Fish. Shellfish Immunol. 2016, 59, 439–446. [Google Scholar] [CrossRef]
- Peres, H.; Oliva-Teles, A. Effect of dietary protein and lipid level on metabolic utilization of diets by European sea bass (Dicentrarchus labrax) juveniles. Fish. Physiol. Biochem. 2001, 25, 269–275. [Google Scholar] [CrossRef]
- Driedzic, W.R.; Hochachka, P. Metabolism in fish during exercise. In Fish Physiology; Elsevier: Amsterdam, The Netherlands, 1978; Volume 7, pp. 503–543. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; AOAC Intl. pv (loose-leaf): Arlington, VA, USA, 1995. [Google Scholar]
- Valente, L.; Bandarra, N.; Figueiredo-Silva, A.; Cordeiro, A.; Simoes, R.; Nunes, M. Influence of conjugated linoleic acid on growth, lipid composition and hepatic lipogenesis in juvenile European sea bass (Dicentrarchus labrax). Aquaculture 2007, 267, 225–235. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bergmeyer, H.U.; Gawehn, K. Principles of Enzymatic Analysis; Verlag Chemie Weinheim: New York, NY, USA, 1978. [Google Scholar]
- He, S.; Liang, X.-F.; Sun, J.; Li, L.; Yu, Y.; Huang, W.; Qu, C.-M.; Cao, L.; Bai, X.-L.; Tao, Y.-X. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀)× Siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genomics 2013, 14, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Growth Index | A (P/E: 30.58) | B (P/E: 33.22) | C (P/E: 35.90) | D (P/E: 38.60) | E (P/E: 41.35) |
---|---|---|---|---|---|
Initial weight | 64.65 ± 0.40 | 64.71 ± 0.34 | 64.48 ± 0.10 | 65.09 ± 0.11 | 65.52 ± 0.43 |
Final weight | 108.80 ± 0.44 a | 115.80 ± 0.36 b | 130.76 ± 0.19 e | 127.02 ± 0.15 d | 124.31 ± 0.23 c |
Weight gain % | 68.13 ± 0.6 a | 79.54 ± 0.35 b | 102.64 ± 1.37 e | 95.55 ± 0.80 d | 92.19 ± 0.08 c |
Weight gain | 44.09 ± 0.37 a | 51.29 ± 0.24 b | 66.23 ± 0.53 e | 62.06 ± 0.07 d | 59.63 ± 0.14 c |
Weight gain rate | 0.68 ± 0.01 a | 0.80 ± 0.02 b | 0.11 ± 0.01 e | 0.97 ± 0.01 d | 0.93 ± 0.02 c |
Feed intake | 1.56 ± 0.12 b | 1.50 ± 0.05 a | 1.51 ± 0.18 a | 1.63 ± 0.01 c | 1.83 ± 0.06 d |
SGR (%/day) | 0..74 ± 0.01 a | 0.84 ± 0.01 b | 1.01 ± 0.01 e | 0.96 ± 0.01 d | 0.93 ± 0.01 c |
FCR | 2.48 ± 0.02 e | 2.06 ± 0.01 c | 1.59 ± 0.01 a | 1.84 ± 0.07 b | 2.16 ± 0.1d |
PER | 1.04 ± 0.01 a | 1.16 ± 0.01 b | 1.40 ± 0.1 e | 1.14 ± 0.01 d | 0.90 ± 0.02 c |
Feed efficiency | 40.33 ± 0.28 a | 48.54 ± 0.31 c | 62.80 ± 0.53 e | 54.51 ± 0.03 d | 46.43 ± 0.15 b |
PRE | 26.20 ± 0.21 b | 33.22 ± 0.38 d | 37.44 ± 0.07 e | 29.20 ± 0.13 c | 25.20 ± 0.08 a |
ERE | 31.12 ± 0.10 b | 41.46 ± 0.43 c | 51.01 ± 0.05 e | 44.80 ± 0.03 d | 29.58 ± 0.10 a |
VSI | 13.05 ± 0.32 c | 11.62 ± 0.37 ab | 10.91 ± 0.26 a | 11.18 ± 0.35 ab | 11.78 ± 0.10 b |
HSI | 1.27 ± 0.04 b | 0.92 ± 0.03 a | 0.91 ± 0.03 a | 0.87 ± 0.01 a | 1.20 ± 0.01 b |
IPF | 0.97 ± 0.11 b | 0.84 ± 0.04 ab | 0.74 ± 0.07 a | 0.80 ± 0.04 a | 0.88 ± 0.04 b |
Whole Body | ||||
---|---|---|---|---|
Groups | Moisture | Protein | Lipids | Ash |
Initial | 79.30 ± 0.42 | 15.06 ± 0.07 | 3.13 ± 0.11 | 2.83 ± 0.08 |
A | 75.03 ± 0.18 d | 16.46 ± 0.12 a | 4.52 ± 0.07 d | 3.59 ± 0.02 a |
B | 74.53 ± 0.13 c | 17.36 ± 0.13 b | 4.07 ± 0.04 c | 3.83 ± 0.03 b |
C | 73.47 ± 0.14 a | 18.52 ± 0.19 d | 3.30 ± 0.05 a | 4.63 ± 0.03 d |
D | 74.07 ± 0.22 b | 18.09 ± 0.17 c | 3.62 ± 0.03 b | 4.14 ± 0.04 c |
E | 74.37 ± 0.13b c | 17.59 ± 0.07 b | 4.15 ± 0.04 c | 3.82 ± 0.4 b |
Muscle | Liver | |||||
---|---|---|---|---|---|---|
Groups | Moisture | Protein | Lipids | Moisture | Protein | Lipids |
A | 78.07 ± 0.18 d | 17.45 ± 0.46 a | 1.7 ± 0.02 d | 83.72 ± 0.21 e | 10.99 ± 0.08 a | 2.6 ± 0.03 d |
B | 76.53 ± 0.05 c | 18.19 ± 0.59 c | 1.51 ± 0.02 b | 82.03 ± 0.11 c | 11.59 ± 0.09 c | 2.19 ± 0.04 c |
C | 75.16 ± 0.09 a | 18.83 ± 0.33 e | 1.22 ± 0.02 a | 80.24 ± 0.12 a | 12.46 ± 0.16 e | 1.86 ± 0.02 a |
D | 75.54 ± 0.10 b | 18.51 ± 0.64 d | 1.59 ± 0.03 c | 81.03 ± 0.14 b | 11.98 ± 0.05 d | 2.06 ± 0.01 b |
E | 76.28 ± 0.18 c | 17.97 ± 0.06 b | 1.62 ± 0.01 c | 82.42 ± 0.05 d | 11.30 ± 0.11 b | 2.24 ± 0.02 c |
Blood Indexes | A | B | C | D | E | |
---|---|---|---|---|---|---|
1 | ALT | 13.00 ± 0.37 b | 9.67 ± 0.42 a | 10.50 ± 0.50 a | 10.33 ± 0.42 a | 13.17 ± 0.31 b |
2 | AST | 43.67 ± 1.09 b | 33.33 ± 0.42 a | 33.83 ± 0.70 a | 34.00 ± 0.86 a | 43.83 ± 1.38 b |
3 | TP | 37.30 ± 0.34 a | 41.33 ± 0.42 b | 43.83 ± 0.31 c | 44.87 ± 0.48 c | 46.67 ± 0.49 d |
4 | ALP | 50.67 ± 1.45 | 51.67 ± 2.19 | 50.33 ± 1.84 | 51.33 ± 1.78 | 50.83 ± 2.33 |
5 | GLU | 7.76 ± 0.08 a | 8.20 ± 0.15 b | 8.83 ± 0.19 c | 8.70 ± 0.07 c | 8.79 ± 0.19 c |
6 | BUN | 3.45 ± 0.12 a | 4.37 ± 0.23 b | 4.50 ± 0.06 b | 5.79 ± 0.34 c | 6.33 ± 0.17 c |
7 | TG | 1.46 ± 0.03 a | 1.69 ± 0.03 b | 1.78 ± 0.03 c | 1.91 ± 0.04 d | 1.96 ± 0.02 e |
Ingredient | A (P/E: 30.58) | B (P/E: 33.22) | C (P/E: 35.90) | D (P/E: 38.60) | E (P/E: 41.35) |
---|---|---|---|---|---|
Fish meal | 630 | 680 | 730 | 780 | 830 |
Fish oil | 60 | 45 | 30 | 15 | 0 |
α-starch | 120 | 100 | 80 | 60 | 40 |
Vitamin premix (1) | 20 | 20 | 20 | 20 | 20 |
Mineral premix (2) | 20 | 20 | 20 | 20 | 20 |
Sodium carboxymethyl cellulose | 10 | 10 | 10 | 10 | 10 |
Microcrystalline cellulose | 140 | 125 | 110 | 95 | 80 |
Diet Compositions (% Dry Matter Basis) | |||||
Dry matter | 97.97 | 97.61 | 97.61 | 97.26 | 97.42 |
Crude protein | 38.66 | 41.90 | 44.78 | 48.04 | 51.71 |
Crude lipid | 12.93 | 11.98 | 11.03 | 10.08 | 9.13 |
Ash | 24.05 | 18.86 | 19.86 | 21.10 | 22.32 |
Gross energy (kJ/g) | 18.78 | 18.75 | 18.46 | 18.18 | 18.07 |
Digestible energy (kJ/g) (3) | 12.77 | 12.69 | 12.61 | 12.53 | 12.45 |
Protein/energy (mg/kJ) (4) | 30.27 | 33.02 | 35.51 | 38.35 | 41.55 |
Gene | Primer Sequence (5′-3′) | Product Size (bp) | Annealing Temperature (°C) | Amplification Efficiency (%) |
---|---|---|---|---|
AMPD1 | CATTTCCTTCCCGTGTT | 242 | 58 | 103.6 |
TCTGTCTGCGGAGTTGGT | ||||
GDH | GACGACGACCCCAACTTCT | 126 | 57 | 94.3 |
GACCCGCTTCCTCTTCTGC | ||||
RPL13A | CACCCTATGACAAGAGGAAGC | 100 | 59 | 102.9 |
TGTGCCAGACGCCCAAG | ||||
eEf2 | TCTGCTGTTATCCCGCCT | 221 | 58 | 98.2 |
TCGCCATCACTCCTCCTCT | ||||
LKB1 | GACGGGGCACTTAAAATC | 136 | 58 | 98 |
GTGTTACTCCAGCAGACCAAA | ||||
AMPK | GGGATGCAAACCAAGATG | 134 | 54 | 101.7 |
ACAGACCCAGAGCGGAGA | ||||
mTOR | GCATCAACGAGAGCACCA | 113 | 55 | 96.5 |
CGCTTCAAAATTCATAACCG | ||||
S6K | CCTTCAAACCTTTCCTGCAATC | 249 | 58 | 101.9 |
ATTTAACTGGGCTGAGAGGTG | ||||
4EBP1 | ACTGACTGCCAGAAGACCA | 167 | 58 | 100.8 |
TTCTCATCGGCGTCCTT | ||||
NPY | GTTGAAGGAAAGCACAGACA | 202 | 52 | 98.2 |
GCTCATAGAGGTAAAAGGGG | ||||
POMC | GTGTCATCCTCGTTACTGC | 268 | 58 | 100.3 |
GCGACGCTCCTATTCAAT | ||||
AgRp | GTGCTGCTCTGCTGTTGG | 295 | 65 | 96.0 |
AGGTGTCACAGGGGTCGC | ||||
CART | CGAACCTAACCAGTGAGAAG | 176 | 56 | 98.2 |
GGGACAGTCGCACATCTT |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.S.; Liang, X.-F.; Liu, L.; He, S.; Kuang, Y.; Hoseinifar, S.H.; Dawar, F.U. Growth and Metabolic Response of Chinese Perch to Different Dietary Protein-to-Energy Ratios in Artificial Diets. Int. J. Mol. Sci. 2019, 20, 5983. https://doi.org/10.3390/ijms20235983
Alam MS, Liang X-F, Liu L, He S, Kuang Y, Hoseinifar SH, Dawar FU. Growth and Metabolic Response of Chinese Perch to Different Dietary Protein-to-Energy Ratios in Artificial Diets. International Journal of Molecular Sciences. 2019; 20(23):5983. https://doi.org/10.3390/ijms20235983
Chicago/Turabian StyleAlam, Muhammad Shoaib, Xu-Fang Liang, Liwei Liu, Shan He, Yulan Kuang, Seyed Hossein Hoseinifar, and Farman Ullah Dawar. 2019. "Growth and Metabolic Response of Chinese Perch to Different Dietary Protein-to-Energy Ratios in Artificial Diets" International Journal of Molecular Sciences 20, no. 23: 5983. https://doi.org/10.3390/ijms20235983
APA StyleAlam, M. S., Liang, X. -F., Liu, L., He, S., Kuang, Y., Hoseinifar, S. H., & Dawar, F. U. (2019). Growth and Metabolic Response of Chinese Perch to Different Dietary Protein-to-Energy Ratios in Artificial Diets. International Journal of Molecular Sciences, 20(23), 5983. https://doi.org/10.3390/ijms20235983