The Phylogeny and Biological Function of Gastric Juice—Microbiological Consequences of Removing Gastric Acid
Abstract
:1. Introduction
1.1. The Biological Function of Gastric Juice
1.2. The Phylogeny and Physiology of Gastric Acid Secretion
1.3. PPI Induced Gastric Hypochlorhydria
2. Microbiological Consequences of Removing Gastric Acid
2.1. Hypochlorhydria and Infections of the Gastrointestinal Tract
2.1.1. Bacterial Enteric Infections
Experimental Studies of Bacterial Infections due to Hypo/Achlorhydria
Specific Bacterial Agents
2.1.2. Parasitic Enteric Infections
2.1.3. Fungal Gastrointestinal Tract Infections
2.2. Hypochlorhydria and the Gut Microbiome
2.3. Hypochlorhydria and Respiratory Tract Infections
Risk of Pneumonia in Different Group of Patients
2.4. Hypochlorhydira and Liver Cirrhosis
Risk of Microbiological Complications in Patients with Liver Cirrhosis
2.5. Hypochlorhydria and Infections in the Liver and Biliary System
2.6. Hypochlorhydria and CNS Infections
Transmissible Spongiform Encephalopathies—Prion Diseases
3. Conclusions
Funding
Conflicts of Interest
Abbreviations
HCl | hydrochloric acid |
H2RB | histamine-2 receptor blocker |
PPI | proton pump inhibitor |
GERD | gastro-esophageal reflux disease |
ECL | enterochromaffin-like |
RR | relative risk |
OR | odds ratio |
CDI | Clostridium difficile infection |
rCDI | recurrent Clostridium difficile infection |
ICU | intensive care unit |
HR | hazard ratio |
SBP | spontaneous bacterial peritonitis |
HE | hepatic encephalopathy |
References
- Sarker, S.A.; Gyr, K. Non-immunological defence mechanisms of the gut. Gut 1992, 33, 987–993. [Google Scholar] [CrossRef]
- Bartle, H.J.; Harkins, M.J. The gastric secretion: Its bactericidal value to man. Am. J. Med. Sci. 1925, 169, 373–388. [Google Scholar] [CrossRef]
- Garrod, L.P. A study on the bactericidal power of hydrochloric acid and of gastric juice. St. Bartholomew Hosp. Rep. 1939, 72, 145–167. [Google Scholar]
- Hurst, A.F. The clinical importance of achlohydria. Br. Med. J. 1934, 2, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Giannella, R.A.; Broitman, S.A.; Zamcheck, N. Gastric acid barrier to ingestedmicroorganisms in man: Studies in vivo and in vitro. Gut 1972, 13, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, C.H.; Spirig, C.; Krech, T.; Merki, H. Bactericidal factors in gastric juice. Eur. J. Gastroenterol. Hepatol. 1992, 4, 885–891. [Google Scholar]
- Johnsen, A.H. Phylogeny of the cholecystokinin/gastrin family. Front. Neoruendocrinol. 1998, 19, 73–99. [Google Scholar] [CrossRef] [PubMed]
- Koelz, H.R. Gastric acid in vertebrates. Scand. J. Gastroenterol. 1992, 27 (Suppl. 193), 2–6. [Google Scholar] [CrossRef]
- Thorndyke, M.; Dockray, G.J. Identification and localization of material with gastrin-like immunoreactivity in the neural ganglion of a prochordate, Ciona intestinalis. Regul. Pept. 1986, 16, 269–279. [Google Scholar] [CrossRef]
- Conlon, J.M.; Schwartz, T.W.; Rehfeld, J.F. Sulphated CCK-8-like peptides in the neural ganglion of the prochordate Ciona intestinalis. Regul. Pept. 1988, 20, 241–250. [Google Scholar] [CrossRef]
- Lloyd, K.C.K.; Walsh, J.H. Regulation of Gastric Acid Secretion In Vivo; Walsh, J.H., Ed.; Raven Press: New York, NY, USA, 1993; pp. 221–243. [Google Scholar]
- Lloyd, K.C.K.; Debas, H.T. Peripheral regulation of gastric acid secretion. In Physiology of the Gastrointestinal Tract, 3rd ed.; Johnsen, L.R., Ed.; Raven Press Ltd.: New York, NY, USA, 1994; Volume 2, pp. 1185–1226. [Google Scholar]
- Walsh, J.W.; Richardson, C.T.; Fordtran, J.S. Ph dependence of acid secretion and gastrin release in normal and ulcer subjects. J. Clin. Investig. 1975, 55, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Waldum, H.L.; Sandvik, A.K. Histamine and the stomach. Scand. J. Gastroenterol. 1989, 24, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Sandvik, A.K.; Waldum, H.L. CCK-B (gastrin) receptor regulates gastric histamine release and acid secretion. Am. J. Physiol. 1991, 260, G925–G928. [Google Scholar] [CrossRef] [PubMed]
- Bakke, I.; Qvigstad, G.; Sandvik, A.K.; Waldum, H.L. The CCK-2 receptor is located on the ECL cell, but not on the parietal cell. Scand. J. Gastroenterol. 2001, 36, 1128–1133. [Google Scholar] [CrossRef]
- Cederberg, C.; Rohss, K.; Lundborg, P.; Olbe, L. Effect of once daily intravenous and oral omeprazole on 24-h intragastric acidity in healthy subjects. Scand. J. Gastroenterol. 1993, 28, 179–184. [Google Scholar] [CrossRef]
- Waldum, H.L. Gastrin- physiological and pathophysiological role: Clinical consequences. Dig. Dis. 1995, 13, 25–38. [Google Scholar] [CrossRef]
- Fossmark, R.; Brenna, E.; Waldum, H.L. pH 4.0. Scand. J. Gastroenterol. 2007, 42, 297–298. [Google Scholar] [CrossRef]
- The Dutch Foundation for Pharmaceutical Statistics (SFK). Data and Facts on 2013. 2014. Available online: https://www.sfk.nl/english/foundation-for-pharmaceutical-statistics (accessed on 29 November 2019).
- Drugs.com. Top 100 Sales in the United States in 2013. 2013. Available online: https://www.drugs.com/ (accessed on 29 November 2019).
- Zink, D.A.; Pohlman, M.; Barnes, M.; Cannon, M.E. Long-term use of acid suppression started inappropriately during hospitalization. Aliment. Pharmacol. Ther. 2005, 21, 1203–1209. [Google Scholar] [CrossRef]
- Eid, S.M.; Boueiz, A.; Paranji, S.; Mativo, C.; Landis, R.; Abougergi, M.S. Patterns and predictors of proton pump inhibitor overuse among academic and non-academic hospitalists. Intern. Med. 2010, 49, 2561–2568. [Google Scholar] [CrossRef]
- Ahrens, D.; Behrens, G.; Himmel, W.; Kochen, M.M.; Chenot, J.F. Appropriateness of proton pump inhibitor recommendations at hospital discharge and continuation in primary care. Int. J. Clin. Pract. 2012, 66, 767–773. [Google Scholar] [CrossRef]
- Nardino, R.J.; Vender, R.J.; Herbert, P.N. Overuse of acid-suppressive therapy in hospitalized patients. Am. J. Gastroenterol. 2000, 95, 3118–3122. [Google Scholar] [CrossRef] [PubMed]
- Batuwitage, B.T.; Kingham, J.G.C.; Morgan, N.E.; Bartlett, R.L. Inappropriate prescribing of proton pump inhibitors in primary care. Postgrad. Med. J. 2007, 83, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.C. Infective gastroenteritis and its relationship to reduced gastric acidity. Scand. J. Gastroenterol. 1985, 111, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.C. Hypochlorhydria and vulnerability to intestinal infection. Eur. J. Gastroenterol. Hepatol. 1994, 6, 693–695. [Google Scholar] [CrossRef]
- Larner, A.J.; Hamilton, M.I.R. Review article: Infective complications to therapeutic gastric acid inhibition. Aliment. Pharmacol. Ther. 1994, 8, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Howden, C.W.; Hunt, R.H. Relationship between gastric secretion and infection. Gut 1987, 28, 96–107. [Google Scholar] [CrossRef]
- Bavishi, C.; Dupont, H.L. Systematic review: The use of proton pump inhibitors and increased susceptibility to enteric infection. Aliment. Pharmacol. Ther. 2011, 34, 1269–1281. [Google Scholar] [CrossRef]
- Fisher, L.; Fisher, A. Acid-Suppressive Therapy and Risk of Infections: Pros and Cons. Clin. Drug Investig. 2017, 37, 587–624. [Google Scholar] [CrossRef]
- Jaynes, M.; Kumar, A.B. The risks of long-term use of proton pump inhibitors: A critical review. Ther. Adv. Drug Saf. 2018, 10, 2042098618809927. [Google Scholar] [CrossRef]
- Martinsen, T.C.; Bergh, K.; Waldum, H.L. Gastric juice: A barrier against infectious diseases. Basic Clin. Pharmacol. Toxicol. 2005, 96, 94–102. [Google Scholar] [CrossRef]
- Khosola, S.N.; Jain, N.; Khosola, A. Gastric acid secretion in typhoid fever. Postgrad. Med. J. 1993, 69, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Berglund, H.; Chang, H.C. Transitory character of achlorhydria during fever, demonstrated by histamine test. Proc. R. Soc. Exp. Biol. Med. 1929, 26, 422–423. [Google Scholar] [CrossRef]
- Kruger, A.L. Gastric acidity in pulmonary tuberculosis. Am. J. Dig. Dis. 1943, 10, 111–114. [Google Scholar] [CrossRef]
- Pimparkar, B.D.; Sharma, P.; Satoskar, R.S.; Raghavan, P.; Kinare, S.G. Anaemia and gastrointestinal function in ancylostomiasis. Postgard. J. Med. 1982, 28, 51–63. [Google Scholar]
- Meerhoff, J.C.; Schreiber, D.S.; Trier, J.S.; Blacklow, N.R. Abnormal gastric motor function in viral gastroenteritis. Ann. Intern. Med. 1980, 92, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Barker, I.K.; Titchen, T.A. Gastric dysfunction in sheep infected with Trichostrongylus Colubroformis, a nematode inhabiting in the small intestine. Int. J. Parasitol. 1982, 12, 345–356. [Google Scholar] [CrossRef]
- Wyllie, J.H.; Limbosh, J.M.; Nyphus, L.M. Inhibition of gastric acid secretion by bacterial lypopolysaccharide. Nature 1967, 215, 879. [Google Scholar]
- Chang, H.C. Gastric acidity in fever and infectious diseases. J. Clin. Investig. 1933, 12, 155–169. [Google Scholar] [CrossRef]
- Bandes, J.; Hollander, F.; Bierman, W. The effect of physically induced pyrexia on gastric acidity. Gastroenterology 1948, 10, 697–707. [Google Scholar]
- Gracey, M.; Cullity, G.J.; Suharjono; Sunoto. The stomach in malnutrition. Arch. Dis. Child. 1977, 52, 325–327. [Google Scholar] [CrossRef] [Green Version]
- Waldum, H.L.; Brenna, E.; Sandvik, A.K. Long-term safety of proton pump inhibitors: Risk of gastric neoplasia and infections. Expert Opin. Drug Saf. 2002, 1, 29–38. [Google Scholar] [PubMed]
- Sabin, A.B. Pathogenesis of poliomyelitis. Reappraisal in the light of new data. Science 1956, 123, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Weiss, C.; Clark, H.F. Rapid inactivation of rotaviruses by exposure to acid buffer and acidic gastic juice. J. Gen. Virol. 1985, 66, 2725–2730. [Google Scholar] [CrossRef] [PubMed]
- Hayase, Y.; Tobita, K.; Sato, H. Detection of type B influenza virus genes from biopsied gastric mucosa. J. Gastroenterol. 2002, 37, 101–105. [Google Scholar] [CrossRef]
- Trieger, D.R.; Goepel, J.R.; Slater, D.N.; Underwood, J.C.E. Systemic candidiasis complicating acute hepatic failure in patients treated with cimetidine. Lancet 1981, 2, 837–838. [Google Scholar] [CrossRef]
- Nwokolo, C.U.; Loft, D.E.; Holder, R.; Langman, M.J.S. Increased incidence of bacterial diarrhoea in patients taking acid antisecretory drugs. Eur. J. Gastroenterol. Hepatol. 1994, 6, 697–699. [Google Scholar] [CrossRef]
- Garcia Rodriguez, L.A.; Ruigomez, A.; Panes, J. Use of acid-suppressing drugs and the risk of bacterial gastroenteritis. Clin. Gastroenterol. Hepatol. 2007, 5, 1418–1423. [Google Scholar] [CrossRef]
- Cobelens, F.G.; Leentvaar-Kuijpers, A.; Kleijnen, J.; Coutinho, R.A. Incidence and risk factors of diarrhoea in Dutch travellers: Consequences for priorities in pre-travel health advice. Trop. Med. Int. Health 1998, 3, 896–903. [Google Scholar]
- DuPont, H.L.; Ericsson, C.D.; Farthing, M.J.; Gorbach, S.; Pickering, L.K.; Rombo, L.; Steffen, R.; Weinke, T. Expert review of the evidence base for prevention of travelers’ diarrhea. J. Travel Med. 2009, 16, 149–160. [Google Scholar] [CrossRef]
- Rodriguez, L.A.G.; Ruigomez, A. Gastric acid, acid-supressing drugs, and bacterial gastroenteritis: How much of a risk? Epidemiology 1997, 8, 571–574. [Google Scholar]
- Neal, K.; Logan, R. Potential gastrointestinal effects of long-term acid suppression with proton pump inhibitors. Aliment. Pharmacol. Ther. 2001, 15, 1085–1086. [Google Scholar] [CrossRef] [PubMed]
- Moayyedi, P.; Eikelboom, J.W.; Bosch, J.; Connolly, S.J.; Dyal, L.; Shestakovska, O.; Leong, D.; Anand, S.S.; Stork, S.; Branch, K.R.H.; et al. Safety of Proton Pump Inhibitors Based on a Large, Multi-year, Randomized Trial of Patients Receiving Rivaroxaban or Aspirin. Gastroenterology 2019, 157, 682–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canani, R.B.; Cirillo, P.; Roggero, P.; Romano, C.; Malamisura, B.; Terrin, G.; Passariello, A.; Manguso, F.; Morelli, L.; Guarino, A. Therapy with gastric acidity inhibitors increases the risk of acute gastroenteritis and community-acquired pneumonia in children. Pediatrics 2006, 117, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Hornick, R.B.; Music, S.I.; Wenzel, R.; Cash, R.; Libonati, J.P.; Snyder, M.J.; Woodward, T.E. The Broad Street pump revisited: Response of volunteers to ingested cholera vibrios. Bull. N.Y. Acad. Med. 1971, 47, 1181–1191. [Google Scholar] [PubMed]
- Ruddell, W.S.; Axon, A.T.; Findlay, J.M.; Bartholomew, B.A.; Hill, J.M. Effect of cimetidine on gastric bacterial flora. Lancet 1980, 1, 672–674. [Google Scholar] [CrossRef]
- Wickramasinghe, L.S.P.; Basu, S.K. Salmonellosis during treatment with ranitidine. Br. Med. J. 1984, 289, 1272. [Google Scholar]
- Wingate, D.L. Acid reduction and recurrent enteritis. Lancet 1990, 335, 222. [Google Scholar] [CrossRef]
- Neal, K.R.; Briji, S.O.; Slack, R.C.B.; Hawkey, C.J.; Logan, R.F.A. Recent treatment with H2-antagonists and antibiotics and gastric surgery as risk factors for Salmonella infection. Br. Med. J. 1994, 308, 176. [Google Scholar] [CrossRef] [Green Version]
- Koch, R. Die Cholera. Dtsch. Med. Wochenschr. 1885, 11, 1–61. [Google Scholar]
- Cash, R.A.; Music, S.I.; Libonati, J.P.; Snyder, M.J.; Wenzel, R.P.; Hornick, R.B. Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum. J. Infect. Dis. 1974, 129, 45–52. [Google Scholar] [CrossRef]
- Nalin, D.R.; Levine, R.J.; Levine, M.M.; Hoover, D.; Bergquist, E.; McLaughlin, J.; Libonati, J.; Alam, J.; Hornick, R.B. Cholera, non-vibrio cholera, and stomach acid. Lancet 1978, 2, 856–859. [Google Scholar] [CrossRef]
- DuPont, H.L.; Formal, S.B.; Hornick, R.B.; Snyder, M.J.; Libonati, J.P.; Sheahan, D.G.; LaBrec, E.H.; Kalas, J.P. Pathogenesis of Escherichia coli diarrhea. N. Engl. J. Med. 1971, 285, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Lee, I.S.; Frey, J.; Slonczewski, J.L.; Foster, J.W. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 1995, 177, 4097–4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, F.M. Salmonellosis in orally infected specific pathogenfree C57B1 mice. Infect. Immun. 1972, 5, 191–198. [Google Scholar]
- Rotimi, V.O.; Egwari, L.; Akande, B. Acidity and intestinal bacteria: An in-vitro assessment of the bactericidal activity of hydrochloric acid on intestinal pathogens. Afr. J. Med. Med. Sci. 1990, 19, 275–280. [Google Scholar] [PubMed]
- Waterman, S.R.; Small, P.L. Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. Appl. Environ. Microbiol. 1998, 64, 3882–3886. [Google Scholar] [PubMed]
- Tennant, S.M.; Hartland, E.L.; Phumoonna, T.; Lyras, D.; Rood, J.I.; Robins-Browne, R.M.; van Driel, I.R. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect. Immun. 2008, 76, 639–645. [Google Scholar] [CrossRef] [Green Version]
- De Koning-Ward, T.F.; Robins-Browne, R.M. Contribution of urease to acid tolerance in Yersinia enterocolitica. Infect. Immun. 1995, 63, 3790–3795. [Google Scholar]
- Young, G.M.; Amid, D.; Miller, V.L. A bifunctional ureaseenhances survival of pathogenic Yersinia enterocolitica and Morganella morganii at low pH. J. Bacteriol. 1996, 178, 6487–6495. [Google Scholar] [CrossRef] [Green Version]
- Gorden, J.; Small, P.L. Acid resistance in enteric bacteria. Infect. Immun. 1993, 61, 364–367. [Google Scholar]
- Sun, F.J.; Kaur, S.; Ziemer, D.; Banerjee, S.; Samuelson, L.C.; De Lisle, R.C. Decreased gastric bacterial killing and up-regulation of protective genes in small intestine in gastrin-deficient mouse. Dig. Dis. Sci. 2003, 48, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Barmpalia-Davis, I.M.; Geornaras, I.; Kendall, P.A.; Sofos, J.N. Differences in survival among 13 Listeria monocytogenes strains in a dynamic model of the stomach and small intestine. Appl. Environ. Microbiol. 2008, 74, 5563–5567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czuprynski, C.J.; Faith, N.G. Sodium bicarbonate enhances the severity of infection in neutropenic mice orally inoculated with Listeria monocytogenes EGD. Clin. Diagn. Lab. Immunol. 2002, 9, 477–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlech, W.F., 3rd.; Chase, D.P.; Badley, A. A model of food-borne Listeria monocytogenes infection in the Sprague-Dawley rat using gastric inoculation: Development and effect of gastric acidity on infective dose. Int. J. Food Microbiol. 1993, 18, 15–24. [Google Scholar] [CrossRef]
- Kunz, L.J.; Waddell, W.R. Association of Salmonella enteritis with operations on the stomach. N. Engl. J. Med. 1956, 255, 555–559. [Google Scholar]
- Nordbring, F. Contraction of salmonella gastroenteritis following previous operation of the stomach. Acta Med. Scand. 1962, 171, 783–790. [Google Scholar] [CrossRef]
- Close, A.S.; Smith, M.B.; Koch, M.L.; Ellison, E.H. An analysis of ten cases of Salmonella infection on a general surgical service. Arch. Surg. 1960, 80, 972–976. [Google Scholar] [CrossRef]
- Sokol, E.M. Salmonella derby infections after gastrointestinal surgery. J. Mt. Sinai Hosp. N.Y. 1965, 32, 36–41. [Google Scholar]
- Giannella, R.A.; Broitman, S.A.; Zamcheck, N. Salmonella enteritis. I. Role of reduced gastric secretion in pathogenesis. Am. J. Dig. Dis. 1971, 16, 1000–1006. [Google Scholar] [CrossRef]
- Buchin, P.J.; Andriole, V.T.; Spiro, H.M. Salmonella infections and hypochlorhydria. J. Clin. Gastroenterol. 1980, 2, 133–138. [Google Scholar] [CrossRef]
- Gray, J.A.; Trueman, A.M. Severe salmonella gastroenteritis associated with pochlorhydria. Scott. Med. J. 1971, 16, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Doorduyn, Y.; Van Den Brandhof, W.E.; Van Duynhoven, Y.T.; Wannet, W.J.; Van Pelt, W. Risk factors for Salmonella Enteritidis and Typhimurium (DT104 and non-DT104) infections in The Netherlands: Predominant roles for raw eggs in Enteritidis and sandboxes in Typhimurium infections. Epidemiol. Infect. 2006, 134, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.A.; Gilman, R.H.; Rabbani, G.H.; Salazar, G.; Ali, A. Gastric acid secretion and enteric infection in Bangladesh. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 681–685. [Google Scholar] [CrossRef] [Green Version]
- Sack, G.H.; Hennessey, R.N.; Mitra, R.C. Gastric acidity in cholera. Clin. Res. 1970, 18, 682. [Google Scholar]
- Swaddiwudhipong, W.; Kunasol, P. Anoutbreak of nosocomial cholera in a 755-bed hospital. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 279–281. [Google Scholar] [CrossRef]
- Black, R.E.; Levine, M.M.; Clements, M.L.; Hughes, T.P.; Blaser, M.J. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 1988, 157, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Neal, K.R.; Scott, H.M.; Slack, R.C.B.; Logan, R.F.A. Omeprazole as a risk factor for campylobacter gastroenteritis: Case control study. Br. Med. J. 1996, 312, 414–415. [Google Scholar] [CrossRef] [Green Version]
- Doorduyn, Y.; Van Pelt, W.; Siezen, C.L.; Van Der Horst, F.; Van Duynhoven, Y.T.; Hoebee, B.; Janssen, R. Novel insight in the association between salmonellosis or campylobacteriosis and chronic illness, and the role of host genetics in susceptibility to these diseases. Epidemiol. Infect. 2008, 136, 1225–1234. [Google Scholar] [CrossRef]
- Neal, K.R.; Slack, R.C. Diabetes mellitus, anti-secretory drugs and other risk factors for campylobacter gastro-enteritis in adults: A case-control study. Epidemiol. Infect. 1997, 119, 307–311. [Google Scholar] [CrossRef]
- Doorduyn, Y.; Van Den Brandhof, W.E.; Van Duynhoven, Y.T.; Breukink, B.J.; Wagenaar, J.A.; Van Pelt, W. Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: A case-control study. Epidemiol. Infect. 2010, 138, 1391–1404. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.L. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J. Food Prot. 2003, 66, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, A.R.; Szabo, S.M.; Lozano-Ortega, G.; Lloyd-Smith, E.; Leung, V.; Lawrence, R.; Romney, M.G. Incidence and Costs of Clostridium difficile Infections in Canada. Open Forum Infect. Dis. 2015, 2, ofv076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, F.; Chen, C.X.; Wang, M.; Liao, H.R.; Wang, M.X.; Hua, S.Z.; Huang, B.; Xiong, Y.; Zhang, J.Y.; Xu, Y.L. Updated meta-analysis of controlled observational studies: Proton-pump inhibitors and risk of Clostridium difficile infection. J. Hosp. Infect. 2018, 98, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jump, R.L.; Pultz, M.J.; Donskey, C.J. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: A potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrob. Agents Chemother. 2007, 51, 2883–2887. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.H.; Sheagren, J.N.; Freter, R. Population dynamics of ingested Clostridium difficile in the gastrointestinal tract of the Syrian hamster. J. Infect. Dis. 1985, 151, 355–361. [Google Scholar] [CrossRef]
- Nerandzic, M.M.; Pultz, M.J.; Donskey, C.J. Examination of potential mechanisms to explain the association between proton pump inhibitors and Clostridium difficile infection. Antimicrob. Agents Chemother. 2009, 53, 4133–4137. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, R.; Dale, B.; Undy, B.; Gaunt, N. Proton pump inhibitors as a risk factor for Clostridium difficile diarrhoea. J. Hosp. Infect. 2003, 54, 243–245. [Google Scholar] [CrossRef]
- Cadle, R.M.; Mansouri, M.D.; Logan, N.; Kudva, D.R.; Musher, D.M. Association of proton-pump inhibitors with outcomes in Clostridium difficile colitis. Am. J. Health Syst. Pharm. 2007, 64, 2359–2363. [Google Scholar] [CrossRef] [Green Version]
- Linsky, A.; Gupta, K.; Lawler, E.V.; Fonda, J.R.; Hermos, J.A. Proton pump inhibitors and risk for recurrent Clostridium difficile infection. Arch. Intern. Med. 2010, 170, 772–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.W.; Lee, K.L.; Jeong, J.B.; Kim, B.G.; Shin, S.; Kim, J.S.; Jung, H.C.; Song, I.S. Proton pump inhibitors as a risk factor for recurrence of Clostridium-difficile-associated diarrhea. World J. Gastroenterol. 2010, 16, 3573–3577. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Arthur, A.K.; Anibueze, C.I.; Singh, S.; Cavallazzi, R.; Loke, Y.K. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: Meta-analysis. Am. J. Gastroenterol. 2012, 107, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- DuPont, H.L.; Levine, M.M.; Hornick, R.B.; Formal, S.B. Inoculum size in shigellosis and implications for expected mode of transmission. J. Infect. Dis. 1989, 159, 1126–1128. [Google Scholar] [CrossRef] [PubMed]
- Peterson, W.L.; Mackowiak, P.A.; Barnett, C.C.; Marling-Cason, M.; Haley, M.L. The human gastric bactericidal barrier: Mechanisms of action, relative antibacterial activity, and dietary influences. J. Infect. Dis. 1989, 159, 979–983. [Google Scholar] [CrossRef]
- Cobb, C.A.; Curtis, G.D.; Bansi, D.S.; Slade, E.; Mehal, W.; Mitchell, R.G.; Chapman, R.W. Increased prevalence of Listeria monocytogenes in the faeces of patients receiving long-term H2-antagonists. Eur. J. Gastroenterol. Hepatol. 1996, 8, 1071–1074. [Google Scholar] [CrossRef]
- Ho, J.L.; Shands, K.N.; Friedland, G.; Eckind, P.; Fraser, D.W. An outbreak of type 4b Listeria monocytogenes infection involving patients from eight Boston hospitals. Arch. Intern. Med. 1986, 146, 520–524. [Google Scholar] [CrossRef]
- Friesema, I.H.; Kuiling, S.; van der Ende, A.; Heck, M.E.; Spanjaard, L.; van Pelt, W. Risk factors for sporadic listeriosis in the Netherlands, 2008 to 2013. Euro Surveill. 2015, 20, 21199. [Google Scholar] [CrossRef] [Green Version]
- Preussel, K.; Milde-Busch, A.; Schmich, P.; Wetzstein, M.; Stark, K.; Werber, D. Risk factors for sporadic non-pregnancy associated listeriosis in Germany immunocompromised patients and frequently consumed ready-to-eat products. PLoS ONE 2015, 10, e0142986. [Google Scholar] [CrossRef]
- Dalton, C.B.; Merritt, T.D.; Unicomb, L.E.; Kirk, M.D.; Stafford, R.J.; Lalor, K. A national case-control study of risk factors for listeriosis in Australia. Oz Food Net Working Group. Epidemiol. Infect. 2011, 139, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Mook, P.; Jenkins, J.; O’Brien, S.J.; Gillespie, I.A. Existing medications among non-pregnancy-related listeriosis patients in England, 2007–2009. Epidemiol. Infect. 2013, 141, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvistholm Jensen, A.; Simonsen, J.; Ethelberg, S. Use of Proton Pump Inhibitors and the Risk of Listeriosis: A Nationwide Registry-based Case-Control Study. Clin. Infect. Dis. 2017, 64, 845–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, R. Antacids—A risk factor in travellers brucellosis? Scand. J. Infect. Dis. 1977, 9, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, P.; Paradisi, F. Can cimetidine facilitate infections by oral route? Lancet 1982, 2, 45. [Google Scholar] [CrossRef]
- Arnow, P.M.; Smaron, M.; Ormiste, V. Brucellosis in a group of travellers to Spain. JAMA 1984, 27, 505–507. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, M.P. Strongyloides stercoralis in northern India. Indian J. Med. Microbiol. 1993, 10, 85–90. [Google Scholar]
- Ainley, C.C.; Clarke, D.G.; Timothy, A.R.; Thompson, R.P.H. Strongyloides stercoralis hyperinfection associated with cimetidine in an immunosuppressed patient: Diagnosis by endoscopic biopsy. Gut 1986, 27, 337–338. [Google Scholar] [CrossRef] [Green Version]
- Cadranel, J.F.; Eugene, C. Another example of Strongyloides stercoralis infection associated with cimetidine in an immunosuppressed patient. Gut 1986, 27, 1229. [Google Scholar] [CrossRef] [Green Version]
- Reynaert, H. Proton-pump inhibition and gastric giardiasis: A causal or casual association? J. Gastroenterol. 1995, 30, 775–778. [Google Scholar] [CrossRef]
- Owen, D.G. Attempts at oral infection of rats and mice with trophozoites of Entamoeba histolytica. Trans. R. Soc. Trop. Med. Hyg. 1984, 78, 160–164. [Google Scholar] [CrossRef]
- Sheele, J.M. Proton Pump Inhibitor Use Is Associated with a Reduced Risk of Infection with Intestinal Protozoa. Wilderness Environ. Med. 2017, 28, 339–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Villanueva, J.; Romo-Mancillas, A.; Hernández-Campos, A.; Yépez-Mulia, L.; Hernández-Luis, F.; Castillo, R. Antiprotozoal activityofproton-pumpinhibitors. Bioorg Med. Chem. Lett. 2011, 21, 7351–7354. [Google Scholar] [CrossRef] [PubMed]
- Sears, S.D.; O’Hare, J. Invitro susceptibility of Trichomonas vaginalis to 50 antimicrobial agents. Antimicrob. Agents Chemother. 1988, 32, 144–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cedillo-Rivera, R.; Muñoz, O. In-vitro susceptibility of Giardia lamblia to albendazole, mebendazole and other chemotherapeutic agents. J. Med. Microbiol. 1992, 37, 221–224. [Google Scholar] [CrossRef]
- Chavez, B.; Cedillo-Rivera, R.; Martinez-Palomo, A. Giardia lamblia: Ultrastructural study of the invitroeffect of benzimidazoles. J. Protozool. 1992, 39, 510–515. [Google Scholar] [CrossRef]
- Hendel, L.; Svejgaard, E.; Walsoe, I.; Kieffer, M.; Stenderup, A. Esophagal candidosis in progressive systemic sclerosis: Occurrence, significance, and treatment with fluconazole. Scand. J. Gastroenterol. 1988, 23, 1182–1186. [Google Scholar] [CrossRef]
- Larner, A.J.; Lendrum, R. Oesophageal candidiasis after omeprazole therapy. Gut 1992, 33, 860–861. [Google Scholar] [CrossRef]
- Mosimann, F. Esophageal candidiasis, omeprazole therapy, and organ transplantation—A word of caution. Transplantation 1993, 56, 492–493. [Google Scholar] [CrossRef]
- Martinez, A.C.; Tobal, F.G.; Ruiz-Irastorza, G.; Lopez, A.G.; Navia, F.A.; Sangrador, C.O.; Arribas, M.I.M. Risk factors for esophageal candidiasis. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 96–100. [Google Scholar]
- Kim, K.Y.; Jang, J.Y.; Kim, J.W.; Shim, J.J.; Lee, C.K.; Dong, S.H.; Kim, H.J.; Kim, B.H.; Chang, Y.W. Acid suppression therapy as a risk factor for Candida esophagitis. Dig. Dis. Sci. 2013, 58, 1282–1286. [Google Scholar] [CrossRef]
- Takahashi, Y.; Nagata, N.; Shimbo, T.; Nishijima, T.; Watanabe, K.; Aoki, T.; Sekine, K.; Okubo, H.; Watanabe, K.; Sakurai, T. Long-term trends in esophageal candidiasis prevalence and associated risk factors with or without HIV infection: Lessons from an endoscopic study of 80,219 patients. PLoS ONE 2015, 10, e0133589. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.R.; Smith, H.F.; Pease, F.B. Bacterology of the stomach immediately following vagotomy: The growth of candida albicans. Ann. Surg. 1974, 179, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Borg, I.; Heijkenskjold, F.; Nilehn, B.; Wehlin, L. Massive growth of yeasts in resected stomach. Gut 1966, 7, 244–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boero, M.; Pera, A.; Andriulli, A.; Ponti, V.; Canepa, G.; Palmas, F.; Duglio, A.; Molinaro, G.C.; Toselli, M.; Riccardino, N. Candida overgrowth in gastric juice of peptic ulcer subjects on short- and long-term treatment with H2-receptor antagonists. Digestion 1983, 28, 158–163. [Google Scholar] [CrossRef]
- Goenka, M.K.; Kochhar, R.; Chakrabarti, A.; Kumar, A.; Gupta, O.; Talwar, P.; Mehta, S.K. Candida overgrowth after treatment of duodenal ulcer. A comparison of cimetidine, famotidine, and omaprazole. J. Clin. Gastroenterol. 1996, 23, 7–10. [Google Scholar] [CrossRef]
- Zwolinska-Wcislo, M.; Budak, A.; Bogdal, J.; Trojanowska, D.; Stachura, J. Effect of fungal colonization of gastric mucosa on the course of gastric ulcers healing. Med. Sci. Monit. 2001, 7, 266–275. [Google Scholar]
- Singh, S.; Singh, N.; Kochhar, R.; Talwar, P.; Metha, S.K. Cimetidine therapy and duodenal candidiasis. Role in healing prosess. Indian J. Gastroenterol. 1992, 11, 21–22. [Google Scholar]
- Cipollini, F.; Alitilia, F. Candidiasis of the small intestine. Gastroenterology 1981, 81, 825–826. [Google Scholar] [CrossRef]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef] [Green Version]
- Buffie, C.G.; Bucci, V.; Stein, R.R.; McKenney, P.T.; Ling, L.; Gobourne, A.; No, D.; Liu, H.; Kinnebrew, M.; Viale, A. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015, 517, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Britton, R.A.; Young, V.B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 2014, 146, 1547–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imhann, F.; Bonder., M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Life Lines cohort study. Science 2016, 352, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.A.; Goodrich, J.K.; Maxan, M.E.; Freedberg, D.E.; Abrams, J.A.; Poole, A.C.; Sutter, J.L.; Welter, D.; Ley, R.E.; Bell, J.T.; et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 2016, 65, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Reveles, K.R.; Ryan, C.N.; Chan, L.; Cosimi, R.A.; Haynes, W.L. Proton pump inhibitor use associated with changes in gut microbiota composition. Gut 2018, 67, 1369–1370. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, M.J.; Macfarlane, G.T. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J. Med. Microbiol. 2002, 51, 448–454. [Google Scholar] [CrossRef]
- Valdés-Varela, L.; Hernández-Barranco, A.M.; Ruas-Madiedo, P.; Gueimonde, M. Effect of bifidobacterium upon clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front. Microbiol. 2016, 7, 738. [Google Scholar] [CrossRef]
- Gu, S.; Chen, Y.; Zhang, X.; Lu, H.; Lv, T.; Shen, P.; Lv, L.; Zheng, B.; Jiang, X.; Li, L. Identification of key taxa that favor intestinal colonization of Clostridium difficile in an adult Chinese population. Microbes Infect. 2016, 18, 30–38. [Google Scholar] [CrossRef]
- Laheij, R.J.; Sturkenboom, M.C.; Hassing, R.J.; Dieleman, J.; Stricker, B.H.; Jansen, J.B. Risk of community-acquired pneumonia and use of gastric acid-suppressive drugs. JAMA 2004, 292, 1955–1960. [Google Scholar] [CrossRef]
- Wang, C.H.; Li, C.H.; Hsieh, R.; Fan, C.Y.; Hsu, T.C.; Chang, W.C.; Hsu, W.T.; Lin, Y.Y.; Lee, C.C. Proton pump inhibitors therapy and the risk of pneumonia: A systematic review and meta-analysis of randomized controlled trials and observational studies. Expert Opin. Drug Saf. 2019, 18, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.A.; Lam, J.O.; Paik, J.J.; Ugarte-Gil, C.; Drummond, M.B.; Crowell, T.A. Risk of community-acquired pneumonia with outpatient proton-pump inhibitor therapy: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0128004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, C.S.; Jeon, C.Y.; Lim, J.W.; Cho, E.G.; Park, S.M.; Lee, K.S. Use of acid-suppressive drugs and risk of pneumonia: A systematic review and meta-analysis. CMAJ 2011, 183, 310–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, J.; Nerenberg, K.; Loeb, M. Meta-analysis: Proton pump inhibitor use and the risk of community-acquired pneumonia. Aliment. Pharmacol. Ther. 2010, 31, 1165–1177. [Google Scholar] [CrossRef]
- Horwitz, R.I.; Feinstein, A.R. The problem of “protopathic bias” in casecontrol studies. Am. J. Med. 1980, 68, 255–258. [Google Scholar] [CrossRef]
- Simms, H.H.; DeMaria, E.; McDonald, L.; Peterson, D.; Robinson, A.; Burchard, K.W. Role of gastric colonization in the development of pneumonia in critically ill trauma patients: Results of a prospective randomized trial. J. Trauma 1991, 31, 531–536. [Google Scholar] [CrossRef]
- Inglis, T.J.; Sherratt, M.J.; Sproat, L.J.; Gibson, J.S.; Hawkey, P.M. Gastroduodenal dysfunction and bacterial colonisation of the ventilated lung. Lancet 1993, 341, 911–913. [Google Scholar] [CrossRef]
- Patel, T.A.; Abraham, P.; Ashar, V.J.; Bhatia, S.J.; Anklesaria, P.S. Gastric bacterial overgrowth accompanies profound acid suppression. Indian J. Gastroenterol. 1995, 14, 134–136. [Google Scholar]
- Waldum, H.L.; Mårvik, R.; Grønbech, J.E.; Sandvik, A.K.; Aase, S. Oxyntic lesions may be provoked in the rat both by the process of acid secretion and also by gastric acidity. Aliment. Pharmacol. Ther. 2000, 14, 135–141. [Google Scholar] [CrossRef]
- Krag, M.; Perner, A.; Wetterslev, J.; Wise, M.P.; Hylander Moller, M. Stress ulcer prophylaxis versus placebo or no prophylaxis in critically ill patients: A systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med. 2014, 40, 11–22. [Google Scholar] [CrossRef]
- Cook, D.; Guyatt, G. Prophylaxis against upper gastrointestinal bleeding in hospitalized patients. N. Engl. J. Med. 2018, 378, 2506–2516. [Google Scholar] [CrossRef]
- Barletta, J.F.; Lat, I.; Micek, S.T.; Cohen, H.; Olsen, K.M.; Haas, C.E. Off-label use of gastrointestinal medications in the intensive care unit. J. Intensive Care Med. 2015, 30, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Krag, M.; Perner, A.; Moller, M.H. Stress ulcer prophylaxis in the intensive care unit. Curr. Opin. Crit. Care 2016, 22, 186–190. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.; Reynolds, P.M.; Allen, R.R. Histamine-2 receptor antagonists vs proton pump inhibitors on gastrointestinaltract hemorrhage and infectious complications in the intensive care unit. JAMA Intern. Med. 2014, 174, 564–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlot, M.; Ahlehoff, O.; Norgaard, M.L.; Jørgensen, C.H.; Sørensen, R.; Abildstrøm, S.Z.; Hansen, P.R.; Madsen, J.K.; Køber, L.; Torp-Pedersen, C.; et al. Proton-pump inhibitors are associated with increased cardiovascular risk independent of clopidogrel use: A nationwide cohort study. Ann. Intern. Med. 2010, 153, 378–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbateskovic, M.; Marker, S.; Granholm, A.; Anthon, C.T.; Krag, M.; Jakobsen, J.C.; Perner, A.; Wetterslev, J.; Møller, M.H. Stress ulcer prophylaxis with proton pump inhibitors or histamin-2 receptor antagonists in adult intensive care patients: A systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2019, 45, 143–158. [Google Scholar] [CrossRef]
- Reynolds, P.M.; MacLaren, R. Re-evaluating the Utility of Stress Ulcer Prophylaxis in the Critically Ill Patient: A Clinical Scenario-Based Meta-Analysis. Pharmacotherapy 2019, 39, 408–420. [Google Scholar] [CrossRef]
- Krag, M.; Marker, S.; Perner, A.; Wetterslev, J.; Wise, M.P.; Schefold, J.C.; Keus, F.; Guttormsen, A.B.; Bendel, S.; Borthwick, M.; et al. Pantoprazole in Patients at Risk for Gastrointestinal Bleeding in the ICU. N. Engl. J. Med. 2018, 379, 2199–2208. [Google Scholar] [CrossRef]
- Alhazzani, W.; Alshamsi, F.; Belley-Cote, E.; Heels-Ansdell, D.; Brignardello-Petersen, R.; Alquraini, M.; Perner, A.; Møller, M.H.; Krag, M.; Almenawer, S.; et al. Efficacy and safety of stress ulcer prophylaxis in critically ill patients: A network meta-analysis of randomized trials. Intensive Care Med. 2018, 44, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.W.; Teng, Y.H.; Yang, S.F.; Yeh, H.W.; Wang, Y.H.; Chou, M.C.; Yeh, C.B. Association of Proton Pump Inhibitors Usage with Risk of Pneumonia in Dementia Patients. J. Am. Geriatr. Soc. 2017, 65, 1441–1447. [Google Scholar] [CrossRef]
- Marchina, S.; Doros, G.; Modak, J.; Helenius, J.; Aycock, D.M.; Kumar, S. Acid-suppressive medications and risk of pneumonia in acute stroke patients: A systematic review and meta-analysis. J. Neurol. Sci. 2019, 400, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.L.; Muo, C.S.; Lin, W.C.; Hsieh, Y.W.; Kao, C.H. Association of Increased Risk of Pneumonia and Using Proton Pump Inhibitors in Patients with Type II Diabetes Mellitus. Dose Response 2019, 17, 1559325819843383. [Google Scholar] [CrossRef] [PubMed]
- Zirk-Sadowski, J.; Masoli, J.A.; Delgado, J.; Hamilton, W.; Strain, W.D.; Henley, W.; Melzer, D.; Ble, A. Proton-Pump Inhibitors and Long-Term Risk of Community-Acquired Pneumonia in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 1332–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, J.S.; Ratliff, S.M.; Heuman, D.M.; Lapane, K.L. Proton pump inhibitors are associated with a high rate of serious infections in veterans with decompensated cirrhosis. Aliment. Pharmacol. Ther. 2012, 36, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Hung, T.H.; Tseng, C.W.; Tsai, C.C.; Lee, H.F. Effect of proton pump inhibitors on mortality of cirrhotic patients with pneumonia. PLoS ONE 2019, 14, e0216041. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.T.; Lai, C.C.; Wang, Y.H.; Tseng, P.H.; Wang, K.; Wang, C.Y.; Chen, L. Risk of pneumonia in patients with gastroesophageal reflux disease: A population-based cohort study. PLoS ONE 2017, 12, e0183808. [Google Scholar] [CrossRef]
- Chavez-Tapia, N.C.; Tellez-Avila, F.I.; Garcia-Leiva, J.; Valdovinos, M.A. Use and overuse of proton pump inhibitors in cirrhotic patients. Med. Sci. Monit. 2008, 14, CR468–CR472. [Google Scholar]
- Dultz, G.; Piiper, A.; Zeuzem, S.; Kronenberger, B.; Waidmann, O. Proton pump inhibitor treatment is associated with the severityof liver disease and increased mortality in patients with cirrhosis. Aliment. Pharmacol. Ther. 2015, 41, 459–466. [Google Scholar] [CrossRef]
- Wiest, R.; Lawson, M.; Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 2014, 60, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Bauer, T.M.; Steinbrückner, B.; Brinkmann, F.E.; Ditzen, A.K.; Schwacha, H.; Aponte, J.J.; Pelz, K.; Kist, M.; Blum, H.E. Small intestinal bacterial overgrowth in patients with cirrhosis: Prevalence and relation with spontaneous bacterial peritonitis. Am. J. Gastroenterol. 2001, 96, 2962–2967. [Google Scholar] [CrossRef]
- Xu, H.B.; Wang, H.D.; Li, C.H.; Ye, S.; Dong, M.S.; Xia, Q.J.; Zhang, A.Q.; Pan, K.; Ge, X.L.; Dong, J.H. Proton pump inhibitor use and risk of spontaneous bacterial peritonitis in cirrhotic patients: A systematic review and meta-analysis. Genet. Mol. Res. 2015, 14, 7490–7501. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Pasupuleti, V.; Thota, P.; Pant, C.; Mapara, S.; Hassan, S.; Rolston, D.D.; Sferra, T.J.; Hernandez, A.V. Acid-suppressive therapy isassociated with spontaneous bacterial peritonitis in cirrhotic patients: Ameta-analysis. J. Gastroenterol. Hepatol. 2013, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Tang, Y.; Jiang, L.; Zheng, Y.; Xiong, W.; Lin, L. Proton pump inhibitor therapy and its association with spontaneous bacterial peritonitis incidence and mortality: A meta-analysis. Dig. Liver Dis. 2016, 48, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Trikudanathan, G.; Israel, J.; Cappa, J.; O’Sullivan, D.M. Association between proton pumpinhibitors and spontaneous bacterial peritonitis in cirrhotic patients—A sys-tematic review and meta-analysis. Int. J. Clin. Pract. 2011, 65, 674–678. [Google Scholar] [CrossRef]
- Janka, T.; Tornai, T.; Borbély, B.; Tornai, D.; Altorjay, I.; Papp, M.; Vitális, Z. Deleterious effect of proton pump inhibitors on the disease course of cirrhosis. Eur. J. Gastroenterol. Hepatol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Hung, T.H.; Tseng, C.W.; Lee, H.F.; Tsai, C.C.; Tsai, C.C. Effect of Proton Pump Inhibitors on Mortality in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis. Ann. Hepatol. 2018, 17, 933–939. [Google Scholar] [CrossRef]
- Mandorfer, M.; Bota, S.; Schwabl, P.; Bucsics, T.; Pfisterer, N.; Summereder, C.; Hagmann, M.; Blacky, A.; Ferlitsch, A.; Sieghart, W.; et al. Proton pump inhibitor intake neither predisposes to spontaneous bacterial peritonitis or other infections nor increases mortality in patients with cirrhosis and ascites. PLoS ONE 2014, 9, e110503. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, K.S.; Min, Y.W.; Lee, H.; Min, B.H.; Rhee, P.L.; Kim, J.J.; Koh, K.C.; Paik, S.W. Proton pump inhibitors do not increase the risk for recurrent spontaneous bacterial peritonitis in patients with cirrhosis. J. Gastroenterol. Hepatol. 2017, 32, 1064–1070. [Google Scholar] [CrossRef]
- Bajaj, J.S. The role of microbiota in hepatic encephalopathy. Gut Microbes 2014, 5, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, J.S.; Heuman, D.M.; Hylemon, P.B.; Sanyal, A.J.; White, M.B.; Monteith, P.; Noble, N.A.; Unser, A.B.; Daita, K.; Fisher, A.R.; et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 2014, 60, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Kao, D.; Roach, B.; Park, H.; Hotte, N.; Madsen, K.; Bain, V.; Tandon, P. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology 2016, 63, 339–340. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.N.; Zuo, Y.Q.; Hu, P. Association of Proton Pump Inhibitor Therapy with Hepatic Encephalopathy in Hepatitis B Virus-related Acute-on-Chronic Liver Failure. Hepat. Mon. 2014, 14, e16258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.F.; Chen, M.H.; Wang, Y.P.; Chu, C.J.; Huang, Y.H.; Lin, H.C.; Hou, M.C.; Lee, F.Y.; Su, T.P.; Lu, C.L. Proton Pump Inhibitors Increase Risk for Hepatic Encephalopathy in Patients with Cirrhosis in A Population Study. Gastroenterology 2017, 152, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Dam, G.; Vilstrup, H.; Watson, H.; Jepsen, P. Proton pump inhibitors as a risk factor for hepatic encephalopathy and spontaneous bacterial peritonitis in patients with cirrhosis with ascites. Hepatology 2016, 64, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Liu, C.J.; Chen, T.J.; Lin, Y.T.; Fung, C.P. Proton pump inhibitor use significantly increases the risk of cryptogenic liver abscess: A population-based study. Aliment. Pharmacol. Ther. 2015, 41, 1175–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, Y.W.; Kang, D.; Shin, J.Y.; Kang, M.; Park, J.K.; Lee, K.H.; Lee, J.K.; Lee, K.T.; Rhee, P.L.; Kim, J.J.; et al. Use of proton pump inhibitors and the risk of cholangitis: A nationwide cohort study. Aliment. Pharmacol. Ther. 2015, 50, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.C.; Lin, C.C.; Peng, C.Y.; Huang, W.H.; Su, W.P.; Lai, S.W.; Lai, H.C. Proton pump inhibitors increase the risk of cholecystitis: A population-based case-control study. Gut 2019, 68, 1337–1339. [Google Scholar] [CrossRef]
- Hung, W.T.; Teng, Y.H.; Yang, S.F.; Yeh, H.W.; Yeh, Y.T.; Wang, Y.H.; Chou, M.Y.; Chou, M.C.; Chan, C.H.; Yeh, C.B. Association between Proton Pump Inhibitor Use and CNS Infection Risk: A Retrospective Cohort Study. J. Clin. Med. 2018, 7, E252. [Google Scholar] [CrossRef] [Green Version]
- Shmakov, A.N.; Ghosh, S. Prion proteins and the gut: Une liaison dangereuse? Gut 2001, 48, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.A.; Prusiner, S.B. Immunology of prions. In Prions: Novel Infectious Pathogens Causing Scrapie and Creutzfeldt Jakobs Disease; Academic Press: New York, NY, USA, 1987; pp. 239–276. [Google Scholar]
- Prusiner, S.B. Biology and genetics of prions causing neurodegenerfation. Ann. Rev. Genet. 2013, 47, 601–623. [Google Scholar] [CrossRef] [Green Version]
- Polymenidou, M.; Cleveland, D.W. Prion-like spread of protein protein aggregates in neurodegeneration. J. Exp. Med. 2012, 209, 889–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda-Suzukake, M.; Nonaka, T.; Hosokawa, M.; Oikawa, T.; Arai, T.; Akiyama, H.; Mann, D.M.A.; Hasegawa, M. Prion-like spreading of pathological α-synuclein in brain. Brain 2013, 136, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.M. Inactivation of prions by physical and chemical means. J. Hosp. Infect. 1999, 43, S69–S76. [Google Scholar] [CrossRef]
- Martinsen, T.C.; Taylor, D.M.; Johnsen, R.; Waldum, H.L. Gastric acidity protects mice against prion infection? Scand. J. Gastroenterol. 2002, 37, 497–500. [Google Scholar] [CrossRef]
- Martinsen, T.C.; Benestad, S.L.; Moldal, T.; Waldum, H.L. Inhibitors of gastric acid secretion increase the risk of prion infection in mice. Scand. J. Gastroenterol. 2011, 46, 1418–1422. [Google Scholar] [CrossRef]
- Svensson, E.; Horváth-Puhó, E.; Thomsen, R.W.; Djurhuus, J.C.; Pedersen, L.; Borghammer, P.; Sørensen, H.T. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol. 2015, 78, 522–529. [Google Scholar] [CrossRef]
- Gomm, W.; von Holt, K.; Thomé, F.; Broich, K.; Maier, W.; Fink, A.; Doblhammer, G.; Haenisch, B. Association of Proton Pump Inhibitors with Risk of Dementia: A Pharmacoepidemiological Claims Data Analysis. JAMA Neurol. 2016, 73, 410–416. [Google Scholar] [CrossRef]
- Welu, J.; Metzger, J.; Bebensee, S.; Ahrendt, A.; Vasek, M. Proton Pump Inhibitor Use and Risk of Dementia in the Veteran Population. Fed. Pract. 2019, 36 (Suppl. 4), S27–S31. [Google Scholar]
- Goldstein, F.C.; Steenland, K.; Zhao, L.; Wharton, W.; Levey, A.I.; Hajjar, I. Proton pump inhibitors and risk of mild cognitive impairment and dementia. J. Am. Geriatr. Soc. 2017, 65, 1969–1974. [Google Scholar] [CrossRef] [Green Version]
- Taipale, H.; Tolppanen, A.M.; Tiihonen, M.; Tanskanen, A.; Tiihonen, J.; Hartikainen, S. No association between proton pump inhibitor use and risk of Alzheimer’s disease. Am. J. Gastroenterol. 2017, 112, 1801–1808. [Google Scholar] [CrossRef]
Bacterial Infections | Parasitic Infections | Fungal Infections |
---|---|---|
Non-typhoid salmonellosis | Strongyloides | Candida alibicans |
Cholera | Giardia | |
Campylobacter jejuni | Entamoeba histolytica | |
Diarrhoeagenic Escherichia coli | ||
Clostridium difficile | ||
Shigellosis | ||
Listeriosis | ||
Brucellosis |
Patient Group |
---|
Patients in ICU units |
Dementia |
Acute stroke |
Type II diabetes mellitus |
Older adults |
Cirrhosis |
GERD |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinsen, T.C.; Fossmark, R.; Waldum, H.L. The Phylogeny and Biological Function of Gastric Juice—Microbiological Consequences of Removing Gastric Acid. Int. J. Mol. Sci. 2019, 20, 6031. https://doi.org/10.3390/ijms20236031
Martinsen TC, Fossmark R, Waldum HL. The Phylogeny and Biological Function of Gastric Juice—Microbiological Consequences of Removing Gastric Acid. International Journal of Molecular Sciences. 2019; 20(23):6031. https://doi.org/10.3390/ijms20236031
Chicago/Turabian StyleMartinsen, Tom C., Reidar Fossmark, and Helge L. Waldum. 2019. "The Phylogeny and Biological Function of Gastric Juice—Microbiological Consequences of Removing Gastric Acid" International Journal of Molecular Sciences 20, no. 23: 6031. https://doi.org/10.3390/ijms20236031
APA StyleMartinsen, T. C., Fossmark, R., & Waldum, H. L. (2019). The Phylogeny and Biological Function of Gastric Juice—Microbiological Consequences of Removing Gastric Acid. International Journal of Molecular Sciences, 20(23), 6031. https://doi.org/10.3390/ijms20236031