Quantitative Proteomic Analysis Uncovers the Mediation of Endoplasmic Reticulum Stress-Induced Autophagy in DHAV-1-Infected DEF Cells
Abstract
:1. Introduction
2. Results
2.1. DHAV-1 Infection
2.2. Tandem Mass Tag (TMT)-Based Proteomic Analysis
2.3. Functional Classification and Subcellular Location Analysis of DEPs
2.4. Enrichment Analysis of DEPs in GO, KEGG, and Protein Domain
2.5. Protein Interaction Network Analysis between DEPs and Ribosome Proteins
2.6. Validation of TMT/MS Data Using Alternative Methods
2.7. Induction of ER Stress-Induced Autophagy by DHAV-1 Infection
3. Discussion
4. Materials and Methods
4.1. Cells, Viruses, and Antibodies
4.2. Indirect Immunofluorescence Assay
4.3. Quantitative of DHAV-1
4.4. Sample Preparation and TMT Labeling
4.5. HPLC Fractionation and LC-MS/MS Analysis
4.6. Database Processing
4.7. Bioinformatics Analysis
4.8. PRM Analysis
4.9. Transmission Electron Microscopy
4.10. Western Blotting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
4-PBA | 4-phenylbutyrate |
ADAM17 | ADAM metallopeptidase domain 17 |
AGC | Automatic gain control |
AGC | Automatic gain control |
ATF3 | Activating transcription factor 3 |
BCA | Bicinchoninic acid |
DAPK2 | Death-associated protein kinase 2 |
DDA | Data-dependent acquisition |
DEF | Duck embryo fibroblast |
DEPs | Differentially expressed proteins |
DHAV-1 | Duck hepatitis A virus type 1 |
DMEM | Dulbecco’s modified eagle medium |
DTT | Dithiothreitol |
DVH | Duck virus hepatitis |
ECL | Enhanced chemiluminescence |
ER | Endoplasmic reticulum |
FA | Formic acid |
FBLN2 | Fibulin 2 |
FBS | Fetal bovine serum |
FDR | False discovery rates |
FITC | Fluorescein isothiocyanate |
GO | Gene Ontology |
GRP78 | Glucose-regulated protein 78 |
HCD | Higher energy collisional dissociation |
Hpi | Hours post-infection |
HPC | High pressure liquid chromatography |
Hsps | Heat shock proteins |
IAA | Iodoacetamide |
IFIH1 | Interferon-induced helicase |
IFIT5 | Interferon-induced protein with tetratricopeptide repeats 5 |
ISG15 | Interferon-stimulated gene 15 |
ITGB2 | Integrin beta 2 |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LC3-I | Microtubule-associated protein 1 light chain 3-I |
LC3-II | Microtubule-associated protein 1 light chain 3-II |
LCP1 | Lymphocyte cytosolic protein 1 |
mAb | Monoclonal antibody |
MDA5 | Melanoma differentiation associated gene 5 |
MOI | Multiplicity of infection |
MOV10 | Mov10 RISC complex RNA helicase |
MS/MS | Tandem mass spectrometry |
Mx1 | Myxovirus resistance gene 1 |
MYL1 | Myosin light chain 1 |
NCE | Normalized collisional energy |
NSI | National system of innovation |
p62/SQSTM1 | Sequestosome 1 |
PARP9 | Poly(ADP-ribose) polymerase 9 |
PBS | Phosphate-buffered saline |
PERK | Double stranded RNA activated protein kinase (PKR)-like endoplasmic reticulum kinase |
PPI | Protein-protein interactions |
PRM | Parallel reaction monitoring |
PVDF | Poly-vinylidene difluoride |
RAPA | Rapamycin |
RIG-1 | Retinoic acid-inducible gene 1 |
RSAD2 | Radical S-adenosyl methionine domain containing 2 |
SDS-PAGE | Sodium dodecyl sulfate-polyacrylamide gel electrophoresis |
TBST | Tris-buffered saline with 0.1% Tween 20 |
TEAB | Triethylammonium bicarbonate |
TEM | Transmission electron microscopy |
TMT | Tandem Mass Tag |
TNC | Tenascin C |
TRIM25 | Tripartite motif containing 25 |
UPLC | Ultraperformance liquid chromatography |
UPR | Unfolded protein response |
ZFP | Zinc finger proteins |
References
- Kim, M.C.; Kwon, Y.K.; Joh, S.J.; Lindberg, A.M.; Kwon, J.H.; Kim, J.H.; Kim, S.J. Molecular analysis of duck hepatitis virus type 1 reveals a novel lineage close to the genus Parechovirus in the family Picornaviridae. J. Gen. Virol. 2006, 87 Pt 11, 3307–3316. [Google Scholar] [CrossRef]
- Gao, J.; Chen, J.; Si, X.; Xie, Z.; Zhu, Y.; Zhang, X.; Wang, S.; Jiang, S. Genetic variation of the VP1 gene of the virulent duck hepatitis A virus type 1 (DHAV-1) isolates in Shandong province of China. Virol. Sin. 2012, 27, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.H.; Tsai, H.J. Molecular characterization of a new serotype of duck hepatitis virus. Virus Res. 2007, 126, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Kwon, Y.K.; Joh, S.J.; Kim, S.J.; Tolf, C.; Kim, J.H.; Sung, H.W.; Lindberg, A.M.; Kwon, J.H. Recent Korean isolates of duck hepatitis virus reveal the presence of a new geno- and serotype when compared to duck hepatitis virus type 1 type strains. Arch. Virol. 2007, 152, 2059–2072. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, R.; Chen, L.; Yang, L.; Li, J.; Dou, P.; Wang, H.; Xie, Z.; Wang, Y.; Jiang, S. Complete genome sequence of a duck hepatitis a virus type 3 identified in eastern China. J. Virol. 2012, 86, 13848. [Google Scholar] [CrossRef] [Green Version]
- Yugo, D.M.; Hauck, R.; Shivaprasad, H.L.; Meng, X.J. Hepatitis Virus Infections in Poultry. Avian Dis. 2016, 60, 576–588. [Google Scholar] [CrossRef]
- Song, C.; Yu, S.; Duan, Y.; Hu, Y.; Qiu, X.; Tan, L.; Sun, Y.; Wang, M.; Cheng, A.; Ding, C. Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. Arch. Virol. 2014, 159, 905–914. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Zhang, J.; Yang, Y.; Li, P.; Lan, J.; Xie, Z.; Jiang, S. Novel duck hepatitis A virus type 1 isolates from adult ducks showing egg drop syndrome. Vet. Microbiol. 2018, 221, 33–37. [Google Scholar] [CrossRef]
- Levine, P.; Fabricant, J. A hitherto-undescribed virus disease of ducks in North America. Cornell Vet. 1950, 40, 71–86. [Google Scholar]
- Ou, X.; Mao, S.; Cao, J.; Cheng, A.; Wang, M.; Zhu, D.; Chen, S.; Jia, R.; Liu, M.; Sun, K.; et al. Comparative analysis of virus-host interactions caused by a virulent and an attenuated duck hepatitis A virus genotype 1. PLoS ONE 2017, 12, e0178993. [Google Scholar] [CrossRef]
- Mao, S.; Wang, M.; Ou, X.; Sun, D.; Cheng, A.; Zhu, D.; Chen, S.; Jia, R.; Liu, M.; Sun, K.; et al. Virologic and Immunologic Characteristics in Mature Ducks with Acute Duck Hepatitis A Virus 1 Infection. Front. Immunol. 2017, 8, 1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Liao, Y.; Gao, W.; Yu, S.; Sun, Y.; Qiu, X.; Tan, L.; Cheng, A.; Wang, M.; Ma, Z.; et al. Virulent and attenuated strains of duck hepatitis A virus elicit discordant innate immune responses in vivo. J. Gen. Virol. 2014, 95 Pt 12, 2716–2726. [Google Scholar] [CrossRef]
- Lipatova, Z.; Segev, N. A Role for Macro-ER-Phagy in ER Quality Control. PLoS Genet. 2015, 11, e1005390. [Google Scholar] [CrossRef] [PubMed]
- Bernales, S.; Schuck, S.; Walter, P. ER-phagy: Selective autophagy of the endoplasmic reticulum. Autophagy 2007, 3, 285–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jheng, J.R.; Ho, J.Y.; Horng, J.T. ER stress, autophagy, and RNA viruses. Front. Microbiol. 2014, 5, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deretic, V.; Levine, B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 2009, 5, 527–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, B.; Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 2007, 7, 767–777. [Google Scholar] [CrossRef]
- Deretic, V. Multiple regulatory and effector roles of autophagy in immunity. Curr. Opin. Immunol. 2009, 21, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Ait-Goughoulte, M.; Kanda, T.; Meyer, K.; Ryerse, J.S.; Ray, R.B.; Ray, R. Hepatitis C virus genotype 1a growth and induction of autophagy. J. Virol. 2008, 82, 2241–2249. [Google Scholar] [CrossRef] [Green Version]
- Orvedahl, A.; Levine, B. Viral evasion of autophagy. Autophagy 2008, 4, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Sir, D.; Chen, W.L.; Choi, J.; Wakita, T.; Yen, T.S.; Ou, J.H. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 2008, 48, 1054–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Zeng, Q.; Wang, M.; Ou, X.; Ma, Y.; Cheng, A.; Zhao, X.X.; Liu, M.; Zhu, D.; Chen, S.; et al. Transcriptomic Characterization of a Chicken Embryo Model Infected with Duck Hepatitis A Virus Type 1. Front. Immunol. 2018, 9, 1845. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.D.; Zhang, W.P.; Zhang, Q.R.; Gu, C.Q.; Hu, X.Y.; Cheng, G.F. Apoptosis induction in duck tissues during duck hepatitis A virus type 1 infection. Poult. Sci. 2014, 93, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zheng, S.; Yang, J.S.; Chen, Y.; Cheng, Z. Comprehensive profiling of protein lysine acetylation in Escherichia coli. J. Proteome Res. 2013, 12, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Brewis, I.A.; Brennan, P. Proteomics technologies for the global identification and quantification of proteins. Adv. Protein Chem. Struct. Biol. 2010, 80, 1–44. [Google Scholar] [PubMed]
- Wu, W.W.; Wang, G.; Baek, S.J.; Shen, R.F. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J. Proteome Res. 2006, 5, 651–658. [Google Scholar] [CrossRef]
- Liu, F.; Zheng, H.; Tong, W.; Li, G.X.; Tian, Q.; Liang, C.; Li, L.W.; Zheng, X.C.; Tong, G.Z. Identification and Analysis of Novel Viral and Host Dysregulated MicroRNAs in Variant Pseudorabies Virus-Infected PK15 Cells. PLoS ONE 2016, 11, e0151546. [Google Scholar] [CrossRef]
- Das, P.P.; Lin, Q.; Wong, S.M. Comparative proteomics of Tobacco mosaic virus-infected Nicotiana tabacum plants identified major host proteins involved in photosystems and plant defence. J. Proteom. 2019, 194, 191. [Google Scholar] [CrossRef]
- Yang, S.; Pei, Y.; Zhao, A. iTRAQ-based Proteomic Analysis of Porcine Kidney Epithelial PK15 cells Infected with Pseudorabies virus. Sci. Rep. 2017, 7, 45922. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, K.; Pan, Y.; Wang, J.; Song, X.; Ge, W.; Yuan, M.; Lei, T.; Wang, L.; Zhang, L.; et al. Genomic, expressional, protein-protein interactional analysis of Trihelix transcription factor genes in Setaria italia and inference of their evolutionary trajectory. BMC Genom. 2018, 19, 665. [Google Scholar] [CrossRef] [Green Version]
- Di Carli, M.; Benvenuto, E.; Donini, M. Recent insights into plant-virus interactions through proteomic analysis. J. Proteome Res. 2012, 11, 4765–4780. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R.; Balfagon, D.; Arbona, V.; Gomez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Clemente, R.M.; Vives, V.; Zandalinas, S.I.; Lopez-Climent, M.F.; Munoz, V.; Gomez-Cadenas, A. Biotechnological approaches to study plant responses to stress. BioMed Res. Int. 2013, 2013, 654120. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Ou, X.; Zhu, D.; Ma, G.; Cheng, A.; Wang, M.; Chen, S.; Jia, R.; Liu, M.; Sun, K.; et al. The 2A2 protein of Duck hepatitis A virus type 1 induces apoptosis in primary cell culture. Virus Genes 2016, 52, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, A.G.; Deighton, R.F.; Le Bihan, T.; McCulloch, M.C.; Searcy, J.L.; Kerr, L.E.; McCulloch, J. Adaptive changes in the neuronal proteome: Mitochondrial energy production, endoplasmic reticulum stress, and ribosomal dysfunction in the cellular response to metabolic stress. J. Cerebr. Blood Flow Metab. 2013, 33, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ni, M.; Lee, B.; Barron, E.; Hinton, D.R.; Lee, A.S. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008, 15, 1460–1471. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Wek, S.A.; McGrath, B.C.; Lu, D.; Hai, T.; Harding, H.P.; Wang, X.; Ron, D.; Cavener, D.R.; Wek, R.C. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol. Cell. Biol. 2004, 24, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
- Haslbeck, M.; Vierling, E. A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 2015, 427, 1537–1548. [Google Scholar] [CrossRef] [Green Version]
- Arrigo, A.P. The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv. Exp. Med. Biol. 2007, 594, 14–26. [Google Scholar]
- Boulon, S.; Westman, B.J.; Hutten, S.; Boisvert, F.M.; Lamond, A.I. The nucleolus under stress. Mol. Cell 2010, 40, 216–227. [Google Scholar] [CrossRef]
- Bai, P. Biology of Poly (ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. Mol. Cell 2015, 58, 947–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Guo, Z.; Zhao, R.; Sun, W.; Xie, M. Proteomic Analysis of Liver Proteins in a Rat Model of Chronic Restraint Stress-Induced Depression. BioMed Res. Int. 2017, 2017, 7508316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, R.J.; Du, J.; Welak, S.; Guan, T.; Eis, A.; Shi, Y.; Konduri, G.G. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. AM. J. Physiol.-Lung Cell. Mol. Physiol. 2012, 302, L651–L663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ber, Y.; Shiloh, R.; Gilad, Y.; Degani, N.; Bialik, S.; Kimchi, A. DAPK2 is a novel regulator of mTORC1 activity and autophagy. Cell Death Differ. 2015, 22, 465–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouroku, Y.; Fujita, E.; Tanida, I.; Ueno, T.; Isoai, A.; Kumagai, H.; Ogawa, S.; Kaufman, R.J.; Kominami, E.; Momoi, T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007, 14, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Wang, Z.; Tao, L.; Wang, Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 2010, 6, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.P.; Kirkegaard, K. Potential subversion of autophagosomal pathway by picornaviruses. Autophagy 2008, 4, 286–289. [Google Scholar] [CrossRef] [Green Version]
- Kemball, C.C.; Alirezaei, M.; Flynn, C.T.; Wood, M.R.; Harkins, S.; Kiosses, W.B.; Whitton, J.L. Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J. Virol. 2010, 84, 12110–12124. [Google Scholar] [CrossRef] [Green Version]
- Jacolot, S.; Ferec, C.; Mura, C. Iron responses in hepatic, intestinal and macrophage/monocyte cell lines under different culture conditions. Blood Cell. Mol. Dis. 2008, 41, 100–108. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, G.; Xin, Y.; Chen, J.; Lin, S.; Tian, Y.; Xie, Z.; Jiang, S. Identification of a conserved neutralizing linear B-cell epitope in the VP1 proteins of duck hepatitis A virus type 1 and 3. Vet. Microbiol. 2015, 180, 196–204. [Google Scholar] [CrossRef]
- Lin, S.L.; Cong, R.C.; Zhang, R.H.; Chen, J.H.; Xia, L.L.; Xie, Z.J.; Wang, Y.; Zhu, Y.L.; Jiang, S.J. Circulation and in vivo distribution of duck hepatitis A virus types 1 and 3 in infected ducklings. Arch. Virol. 2016, 161, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef] [PubMed]
- Barrell, D.; Dimmer, E.; Huntley, R.P.; Binns, D.; O’Donovan, C.; Apweiler, R. The GOA database in 2009—An integrated Gene Ontology Annotation resource. Nucleic Acids Res. 2009, 37, D396–D403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Total Spectra | Matched Spectra | Peptides | Unique Peptides | Identified Proteins | Quantifiable Proteins |
---|---|---|---|---|---|
273,692 | 47,151 (17.2%) | 29,975 | 28,990 | 5250 | 4573 |
Protein ID | Description | D/N Ratio | P-Value |
---|---|---|---|
Heat Shock Proteins | |||
R0K012 | Activator of 90 kDa heat shock protein ATPase-like protein 2 | 1.35 | 0.0086 |
U3IGK2 | DnaJ heat shock protein family (Hsp40) member C21 | 1.355 | 0.00424 |
U3IPI8 | Heat shock protein family B (small) member 8 | 1.773 | 0.0000227 |
U3IZQ3 | Heat shock protein family B (small) member 7 | 2.034 | 0.000119 |
Ribosome Related Proteins | |||
U3IZF8 | Ribosomal protein L11 | 0.691 | 0.000158 |
U3IPM7 | Ribosomal protein L38 | 0.732 | 0.000925 |
U3J6F1 | Ribosomal protein L35a | 0.751 | 0.000819 |
R0L8K3 | 60S ribosomal protein L35 | 0.643 | 0.000863 |
U3JA05 | Ribosomal protein L31 | 0.74 | 0.0000179 |
U3IU44 | 60S ribosomal protein L36 | 0.516 | 0.000141 |
U3IA42 | Mitochondrial ribosomal protein L27 | 0.765 | 0.0119 |
U3IK48 | Ribosomal protein S5 | 0.658 | 0.000638 |
U3J834 | Ribosomal protein S19 | 0.757 | 0.000105 |
Zinc Finger Proteins | |||
U3IIQ5 | Zinc finger E-box binding homeobox 1 | 1.345 | 0.0414 |
U3IUP4 | NFX1-type zinc finger-containing protein 1 | 2.675 | 0.0000234 |
Response to Stimulus | |||
U3IWA4 | Apolipoprotein B | 1.388 | 0.00256 |
U3ITV8 | Interferon induced with helicase C domain 1 | 1.986 | 0.0000433 |
U3I515 | eukaryotic translation initiation factor 2 alpha kinase 2 | 3.417 | 0.00000138 |
U3IQI3 | F-box protein 18 | 2.468 | 0.0000779 |
S4SM19 | ATP-dependent RNA helicase | 2.806 | 0.0000825 |
U3J4N1 | SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 | 1.828 | 0.0000226 |
U3IQ81 | Adenosine deaminase, RNA specific | 1.67 | 0.0000588 |
U3J485 | ATP binding cassette subfamily A member 1 | 1.414 | 0.001 |
U3IRD3 | Ankyrin repeat domain 1 | 1.567 | 0.00122 |
U3I3I3 | Beta-2-microglobulin | 2.718 | 0.0000783 |
U3IED8 | Radical S-adenosyl methionine domain containing 2 | 4.454 | 0.0000988 |
R0LWV1 | Activating transcription factor 3 | 1.737 | 0.000138 |
Immune-Related Proteins | |||
U3IXS5 | Tripartite motif containing 35 | 1.5 | 0.0000634 |
U3I1L8 | Tripartite motif containing 59 | 1.38 | 0.000201 |
U3J0V8 | Signal transducer and activator of transcription 1 | 2.985 | 0.0000419 |
U3IB66 | Tripartite motif containing 25 | 3.469 | 0.0000000192 |
U3I8M2 | Interferon induced protein 35 | 2.716 | 0.000245 |
U3ITV8 | Interferon induced with helicase C domain 1 | 1.986 | 0.0000433 |
U3I515 | eukaryotic translation initiation factor 2 alpha kinase 2 | 3.417 | 0.00000138 |
U3IRN3 | S100 calcium binding protein A12 | 2.687 | 0.0000754 |
U3IGN0 | N-myc and STAT interactor | 1.408 | 0.000302 |
U3J6Y2 | ISG15 ubiquitin-like modifier | 9.858 | 0.00000348 |
U3I1B1 | IFN-induced protein with tetratricopeptide repeats 5 | 8.506 | 0.00104 |
Autophagy-Associated Proteins | |||
U3I5T9 | V-type proton ATPase subunit | 0.493 | 0.0000955 |
U3IIS7 | Integrin beta | 0.583 | 0.00000173 |
U3IN31 | N-acetylglucosamine-6-sulfatase | 0.732 | 0.000137 |
U3IYU5 | Cathepsin S | 0.63 | 0.000337 |
U3I5T9 | V-type proton ATPase subunit D | 0.493 | 0.0000955 |
U3I832 | V-type proton ATPase subunit H | 0.769 | 0.00176 |
U3IST9 | V-type proton ATPase subunit C | 0.541 | 0.00000192 |
U3IMC2 | Sequestosome 1/SQSTM1 | 1.336 | 0.000459 |
U3I4S4 | Death associated protein kinase 2 | 1.374 | 0.000564 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.; Zhang, R.; Yu, H.; Wang, J.; Xue, W.; Chen, J.; Lin, S.; Wang, Y.; Xie, Z.; Jiang, S. Quantitative Proteomic Analysis Uncovers the Mediation of Endoplasmic Reticulum Stress-Induced Autophagy in DHAV-1-Infected DEF Cells. Int. J. Mol. Sci. 2019, 20, 6160. https://doi.org/10.3390/ijms20246160
Lan J, Zhang R, Yu H, Wang J, Xue W, Chen J, Lin S, Wang Y, Xie Z, Jiang S. Quantitative Proteomic Analysis Uncovers the Mediation of Endoplasmic Reticulum Stress-Induced Autophagy in DHAV-1-Infected DEF Cells. International Journal of Molecular Sciences. 2019; 20(24):6160. https://doi.org/10.3390/ijms20246160
Chicago/Turabian StyleLan, Jingjing, Ruihua Zhang, Honglei Yu, Jingyu Wang, Wenxiang Xue, Junhao Chen, Shaoli Lin, Yu Wang, Zhijing Xie, and Shijin Jiang. 2019. "Quantitative Proteomic Analysis Uncovers the Mediation of Endoplasmic Reticulum Stress-Induced Autophagy in DHAV-1-Infected DEF Cells" International Journal of Molecular Sciences 20, no. 24: 6160. https://doi.org/10.3390/ijms20246160
APA StyleLan, J., Zhang, R., Yu, H., Wang, J., Xue, W., Chen, J., Lin, S., Wang, Y., Xie, Z., & Jiang, S. (2019). Quantitative Proteomic Analysis Uncovers the Mediation of Endoplasmic Reticulum Stress-Induced Autophagy in DHAV-1-Infected DEF Cells. International Journal of Molecular Sciences, 20(24), 6160. https://doi.org/10.3390/ijms20246160