Delayed Dopamine Dysfunction and Motor Deficits in Female Parkinson Model Mice
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. NAc and Striatal Brain Slice Preparation
4.3. Fast Scan Cyclic Voltammetry and Dopamine Measurements in Brain Slices
4.4. Rotarod Test
4.5. Locomotor Activity and Rearing Test
4.6. Western Blot
4.7. [18F]FE-PE2I PET Scan Imaging for Dopamine Transporter Function
4.8. Statistics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
DA | Dopamine |
DAergic | Dopaminergic |
DAT | Dopamine transporter |
DNA | Deoxyribonucleic acid |
E2 | 17 beta-estradiol |
FSCV | Fast scan cyclic voltammetry |
HRP | Horseradish peroxidase |
IL-6 | Interleukin 6 |
I/O | Input/output |
MP | MitoPark |
MPTP | 1-meth 1-4-phenyl-1236 tetrahydropyridine |
MRI | Magnetic resonance imaging |
NAc | Nucleus accumbens |
OVX | Ovariectomy |
PD | Parkinson’s Disease |
PET | Positron emission tomography |
SNc | Substantia nigra |
SUR | Specific uptake ratio |
SUV | standardized uptake value |
TBST | Tris buffered saline with Tween20 |
TFAM | Mitochondrial transcription factor A |
TH | Tyrosine hydroxylase |
VOI | Volume of interest |
VTA | Ventral tegmental nucleus |
WT | Wild type |
References
- Hornykiewicz, O. Chemical neuroanatomy of the basal ganglia--normal and in parkinson’s disease. J. Chem. Neuroanat. 2001, 22, 3–12. [Google Scholar] [CrossRef]
- Thenganatt, M.A.; Jankovic, J. Parkinson disease subtypes. JAMA Neurol. 2014, 71, 499–504. [Google Scholar] [CrossRef] [PubMed]
- De Lau, L.M.L.; Breteler, M.M.B. Epidemiology of parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef]
- Greenamyre, J.T.; Hastings, T.G.J.S. Parkinson’s--divergent causes, convergent mechanisms. Science 2004, 304, 1120–1122. [Google Scholar] [CrossRef]
- Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef] [Green Version]
- Dawson, T.M.; Dawson, V.L. Molecular pathways of neurodegeneration in parkinson’s disease. Science 2003, 302, 819–822. [Google Scholar] [CrossRef]
- Ellis, C.E.; Murphy, E.J.; Mitchell, D.C.; Golovko, M.Y.; Scaglia, F.; Barceló-Coblijn, G.C.; Nussbaum, R.L. Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol. Cell. Biol. 2005, 25, 10190–10201. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Ohta, S.; Tanaka, M.; Takamiya, S.; Suzuki, K.; Sato, T.; Oya, H.; Ozawa, T.; Kagawa, Y. Deficiencies in complex i subunits of the respiratory chain in parkinson’s disease. Biochem. Biophys. Res. Commun. 1989, 163, 1450–1455. [Google Scholar] [CrossRef]
- Shen, J.; Cookson, M.R. Mitochondria and dopamine: New insights into recessive parkinsonism. Neuron 2004, 43, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Ved, R.; Saha, S.; Westlund, B.; Perier, C.; Burnam, L.; Sluder, A.; Hoener, M.; Rodrigues, C.M.P.; Alfonso, A.; Steer, C. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-synuclein, parkin, and dj-1 in caenorhabditis elegans. J. Biol. Chem. 2005, 280, 42655–42668. [Google Scholar] [CrossRef] [Green Version]
- Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic systemic pesticide exposure reproduces features of parkinson’s disease. Nat. Neurosci. 2000, 3, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983, 219, 979–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuno, Y.; Sone, N.; Saitoh, T. Effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J. Neurochem. 1987, 48, 1787–1793. [Google Scholar] [CrossRef] [PubMed]
- Sherer, T.B.; Betarbet, R.; Testa, C.M.; Seo, B.B.; Richardson, J.R.; Kim, J.H.; Miller, G.W.; Yagi, T.; Matsuno-Yagi, A.; Greenamyre, J.T. Mechanism of toxicity in rotenone models of parkinson’s disease. J. Neurosci. 2003, 23, 10756–10764. [Google Scholar] [CrossRef]
- Smeyne, R.J.; Jackson-Lewis, V. The MPTP model of parkinson’s disease. Mol. Brain Res. 2005, 134, 57–66. [Google Scholar] [CrossRef]
- Bender, A.; Krishnan, K.J.; Morris, C.M.; Taylor, G.A.; Reeve, A.K.; Perry, R.H.; Jaros, E.; Hersheson, J.S.; Betts, J.; Klopstock, T. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and parkinson disease. Nat. Genet. 2006, 38, 515–517. [Google Scholar] [CrossRef]
- Kraytsberg, Y.; Kudryavtseva, E.; McKee, A.C.; Geula, C.; Kowall, N.W.; Khrapko, K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 2006, 38, 518–520. [Google Scholar] [CrossRef]
- Baldereschi, M.; Di Carlo, A.; Rocca, W.A.; Vanni, P.; Maggi, S.; Perissinotto, E.; Grigoletto, F.; Amaducci, L.; Inzitari, D. Parkinson’s disease and parkinsonism in a longitudinal study: Two-fold higher incidence in men. Neurology 2000, 55, 1358–1363. [Google Scholar] [CrossRef]
- Solla, P.; Cannas, A.; Marrosu, M.G.; Marrosu, F. Dopaminergic-induced paraphilias associated with impulse control and related disorders in patients with parkinson disease. J. Neurol. 2012, 259, 2752–2754. [Google Scholar] [CrossRef]
- Cabezas, R.; Ávila, M.; Gonzalez, J.; El-Bachá, R.S.; Báez, E.; García-Segura, L.M.; Jurado Coronel, J.C.; Capani, F.; Cardona-Gomez, G.P.; Barreto, G.E. Astrocytic modulation of blood brain barrier: Perspectives on parkinson’s disease. Front. Cell. Neurosci. 2014, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Colombo, D.; Abbruzzese, G.; Antonini, A.; Barone, P.; Bellia, G.; Franconi, F.; Simoni, L.; Attar, M.; Zagni, E.; Haggiag, S. The “gender factor” in wearing-off among patients with parkinson’s disease: A post hoc analysis of deep study. Sci. World J. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, G.E.; McArthur, S. Independent influences of sex steroids of systemic and central origin in a rat model of parkinson’s disease: A contribution to sex-specific neuroprotection by estrogens. Horm. Behav. 2010, 57, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Gillies, G.E.; McArthur, S. Estrogen actions in the brain and the basis for differential action in men and women: A case for sex-specific medicines. Pharmacol. Rev. 2010, 62, 155–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekstrand, M.I.; Terzioglu, M.; Galter, D.; Zhu, S.; Hofstetter, C.; Lindqvist, E.; Thams, S.; Bergstrand, A.; Hansson, F.S.; Trifunovic, A. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc. Natl. Acad. Sci. USA 2007, 104, 1325–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galter, D.; Pernold, K.; Yoshitake, T.; Lindqvist, E.; Hoffer, B.; Kehr, J.; Larsson, N.G.; Olson, L. Mitopark mice mirror the slow progression of key symptoms and l-dopa response in parkinson’s disease. Genes Brain Behav. 2010, 9, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, C.H.; Hoffman, A.F.; Hoffer, B.J.; Chefer, V.I.; Shippenberg, T.S.; Bäckman, C.M.; Larsson, N.-G.; Olson, L.; Gellhaar, S.; Galter, D. Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of parkinson’s disease. FASEB J. 2011, 25, 1333–1344. [Google Scholar] [CrossRef] [Green Version]
- Sterky, F.H.; Lee, S.; Wibom, R.; Olson, L.; Larsson, N.-G. Impaired mitochondrial transport and parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 12937–12942. [Google Scholar] [CrossRef] [Green Version]
- Nakaso, K.; Horikoshi, Y.; Takahashi, T.; Hanaki, T.; Nakasone, M.; Kitagawa, Y.; Koike, T.; Matsura, T. Estrogen receptor-mediated effect of δ-tocotrienol prevents neurotoxicity and motor deficit in the MPTP mouse model of parkinson’s disease. Neurosci. Lett. 2016, 610, 117–122. [Google Scholar] [CrossRef]
- Kelada, S.N.; Costa-Mallen, P.; Costa, L.G.; Smith-Weller, T.; Franklin, G.M.; Swanson, P.D.; Longstreth Jr, W.T.; Checkoway, H. Gender difference in the interaction of smoking and monoamine oxidase b intron 13 genotype in parkinson’s disease. Neurotoxicology 2002, 23, 515–519. [Google Scholar] [CrossRef]
- Ray, P.; Ghosh, S.K.; Zhang, D.-H.; Ray, A. Repression of interleukin-6 gene expression by 17β-estradiol: Inhibition of the DNA-binding activity of the transcription factors nf-il6 and nf-κb by the estrogen receptor. FEBS Lett. 1997, 409, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Vegeto, E.; Bonincontro, C.; Pollio, G.; Sala, A.; Viappiani, S.; Nardi, F.; Brusadelli, A.; Viviani, B.; Ciana, P.; Maggi, A. Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J. Neurosci. 2001, 21, 1809–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhard, A.; Pavese, N.; Hotton, G.; Turkheimer, F.; Es, M.; Hammers, A.; Eggert, K.; Oertel, W.; Banati, R.B.; Brooks, D.J. In vivo imaging of microglial activation with [11c](r)-pk11195 pet in idiopathic parkinson’s disease. Neurobiol. Dis. 2006, 21, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Pallares, J.; Parga, J.A.; Munoz, A.; Rey, P.; Guerra, M.J.; Labandeira-Garcia, J.L. Mechanism of 6-hydroxydopamine neurotoxicity: The role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J. Neurochem. 2007, 103, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Miyamoto, T.; Miyamoto, M.; Kaji, Y.; Takekawa, H.; Hirata, K. Circadian variation of core body temperature in parkinson disease patients with depression: A potential biological marker for depression in parkinson disease. Neuropsychobiology 2007, 56, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Tripanichkul, W.; Sripanichkulchai, K.; Finkelstein, D.I. Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine intoxication. Brain Res. 2006, 1084, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, D.; Hamberg, K.; Hariz, M.; Forsgren, L.; Hariz, G.M. Gender differences in parkinson’s disease: A clinical perspective. Acta Neurol. Scand. 2017, 136, 570–584. [Google Scholar] [CrossRef]
- Miller, I.N.; Cronin-Golomb, A. Gender differences in parkinson’s disease: Clinical characteristics and cognition. Mov. Disord. 2010, 25, 2695–2703. [Google Scholar] [CrossRef] [Green Version]
- Gillies, G.E.; Pienaar, I.S.; Vohra, S.; Qamhawi, Z. Sex differences in parkinson’s disease. Front. Neuroendocrinol. 2014, 35, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Perez, A.I.; Borrajo, A.; Valenzuela, R.; Lanciego, J.L.; Labandeira-Garcia, J.L. Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol. Aging 2015, 36, 1194–1208. [Google Scholar] [CrossRef]
- Anderson, L.I.; Leipheimer, R.E.; Dluzen, D.E. Effects of neonatal and prepubertal hormonal manipulations upon estrogen neuroprotection of the nigrostriatal dopaminergic system within female and male mice. Neuroscience 2005, 130, 369–382. [Google Scholar] [CrossRef]
- Callier, S.; Le Saux, M.; Lhiaubet, A.M.; Paolo, T.D.; Rostène, W.; Pelaprat, D. Evaluation of the protective effect of oestradiol against toxicity induced by 6-hydroxydopamine and 1-methyl-4-phenylpyridinium ion (mpp+) towards dopaminergic mesencephalic neurones in primary culture. J. Neurochem. 2002, 80, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; Kipp, M.; Beyer, C. Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J. Neuroendocrinol. 2007, 19, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Simpkins, J.W.; Yang, S.-H.; Sarkar, S.N.; Pearce, V. Estrogen actions on mitochondria—physiological and pathological implications. Mol. Cell. Endocrinol. 2008, 290, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 566–578. [Google Scholar] [CrossRef]
- Quinlan, C.L.; Perevoshchikova, I.V.; Hey-Mogensen, M.; Orr, A.L.; Brand, M.D. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013, 1, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Lejri, I.; Grimm, A.; Eckert, A. Mitochondria, estrogen and female brain aging. Front. Aging Neurosci. 2018, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Mo, S.J.; Axelsson, J.; Jonasson, L.; Larsson, A.; Ögren, M.J.; Ögren, M.; Varrone, A.; Eriksson, L.; Bäckström, D.; Af Bjerkén, S.; et al. Dopamine transporter imaging with [18 f] fe-pe2i pet and [123 i] fp-cit spect—A clinical comparison. EJNMMI Res. 2018, 8, 100. [Google Scholar]
- Chen, Y.H.; Hsieh, T.H.; Kuo, T.T.; Kao, J.H.; Ma, K.H.; Huang, E.Y.K.; Chou, Y.C.; Olson, L.; Hoffer, B.J. Release parameters during progressive degeneration of dopamine neurons in a mouse model reveal earlier impairment of spontaneous than forced behaviors. J. Neurochem. 2019, 150, 56–73. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Harvey, B.K.; Hoffman, A.F.; Wang, Y.; Chiang, Y.-H.; Lupica, C.R. MPTP-induced deficits in striatal synaptic plasticity are prevented by glial cell line-derived neurotrophic factor expressed via an adeno-associated viral vector. FASEB J. 2008, 22, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Good, C.H.; Wang, H.; Chen, Y.-H.; Mejias-Aponte, C.A.; Hoffman, A.F.; Lupica, C.R. Dopamine d4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms. J. Neurosci. 2013, 33, 16853–16864. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H.; Huang, E.Y.-K.; Kuo, T.-T.; Hoffer, B.J.; Miller, J.; Chou, Y.-C.; Chiang, Y.-H. Dopamine release in the nucleus accumbens is altered following traumatic brain injury. Neuroscience 2017, 348, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-Y.; Reddy, S.P.; Kleeberger, S.R. Nrf2 defends the lung from oxidative stress. Antioxid. Redox Signal. 2006, 8, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, K.T.; Zimmerman, J.B.; Wightman, R.M. Principles of voltammetry and microelectrode surface states. J. Neurosci. Methods 1993, 48, 225–240. [Google Scholar] [CrossRef]
- Wightman, R.M.; Zimmerman, J.B. Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain Res. Rev. 1990, 15, 135–144. [Google Scholar] [CrossRef]
- Sabeti, J.; Gerhardt, G.A.; Zahniser, N.R. Acute cocaine differentially alters accumbens and striatal dopamine clearance in low and high cocaine locomotor responders: Behavioral and electrochemical recordings in freely moving rats. J. Pharmacol. Exp. Ther. 2002, 302, 1201–1211. [Google Scholar] [CrossRef] [Green Version]
Age (Week) | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 18 | 20 | Total Animals | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | FSCV (Figure 1, Figure 4a–d, and Figure 5) | ||||||||||||
WT | Male | 3 | 3 | 3 | 9 | ||||||||
Female | 3 | 3 | 3 | 9 | |||||||||
Female + OVX | 0 | ||||||||||||
MP | Male | 3 | 3 | 3 | 3 | 5 | 3 | 3 | 3 | 3 | 3 | 3 | 35 |
Female | 3 | 3 | 3 | 3 | 5 | 3 | 3 | 3 | 3 | 3 | 3 | 35 | |
Female + OVX | 0 | ||||||||||||
WB (Figure 2) | |||||||||||||
WT | Male | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |||||
Female | 3 | 3 | 3 | 3 | 3 | 3 | 18 | ||||||
Female + OVX | 0 | ||||||||||||
MP | Male | 3 | 3 | 3 | 3 | 3 | 3 | 18 | |||||
Female | 3 | 3 | 3 | 3 | 3 | 3 | 18 | ||||||
Female + OVX | 0 | ||||||||||||
Non-spontaneous activity (Figure 3 and Figure 6) | |||||||||||||
WT | Male | 8 | 8 | ||||||||||
Female | 8 | 8 | |||||||||||
Female + OVX | 8 | 8 | |||||||||||
MP | Male | 11 | 11 | ||||||||||
Female | 8 | 8 | |||||||||||
Female + OVX | 7 | 7 | |||||||||||
Spontaneous activity (Figure 3 and Figure 6) | |||||||||||||
WT | Male | 8 | 8 | ||||||||||
Female | 5 | 5 | |||||||||||
Female + OVX | 8 | 8 | |||||||||||
MP | Male | 8 | 8 | ||||||||||
Female | 8 | 8 | |||||||||||
Female + OVX | 7 | 7 | |||||||||||
PET (Figure 4e,f) | |||||||||||||
WT | Male | 3 (adult, 6–11 W) | 2 (aging, > 12 W) | 3 | |||||||||
Female | 2 (adult, 6–11 W) | 2 (aging, > 12 W) | 3 | ||||||||||
Female + OVX | 0 | ||||||||||||
MP | Male | 5 | 8 | 2 | 7 | 1 | 3 | 2 | 15 | ||||
Female | 4 | 6 | 2 | 3 | 5 | 4 | 3 | 15 | |||||
Female + OVX | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Wang, V.; Huang, E.Y.-K.; Chou, Y.-C.; Kuo, T.-T.; Olson, L.; Hoffer, B.J. Delayed Dopamine Dysfunction and Motor Deficits in Female Parkinson Model Mice. Int. J. Mol. Sci. 2019, 20, 6251. https://doi.org/10.3390/ijms20246251
Chen Y-H, Wang V, Huang EY-K, Chou Y-C, Kuo T-T, Olson L, Hoffer BJ. Delayed Dopamine Dysfunction and Motor Deficits in Female Parkinson Model Mice. International Journal of Molecular Sciences. 2019; 20(24):6251. https://doi.org/10.3390/ijms20246251
Chicago/Turabian StyleChen, Yuan-Hao, Vicki Wang, Eagle Yi-Kung Huang, Yu-Ching Chou, Tung-Tai Kuo, Lars Olson, and Barry J. Hoffer. 2019. "Delayed Dopamine Dysfunction and Motor Deficits in Female Parkinson Model Mice" International Journal of Molecular Sciences 20, no. 24: 6251. https://doi.org/10.3390/ijms20246251
APA StyleChen, Y. -H., Wang, V., Huang, E. Y. -K., Chou, Y. -C., Kuo, T. -T., Olson, L., & Hoffer, B. J. (2019). Delayed Dopamine Dysfunction and Motor Deficits in Female Parkinson Model Mice. International Journal of Molecular Sciences, 20(24), 6251. https://doi.org/10.3390/ijms20246251