Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides
Abstract
:1. Introduction
2. Results
2.1. Synthesis of GPPG
2.2. Self-Assembly of GPG and GPPG
2.3. Rheology of Nanofiber Dispersions
3. Discussion
4. Materials and Methods
4.1. Plasmid Construction
4.2. Polypeptide Expression and Purification
4.3. Sample Preparation
4.4. Characterization of Nanofiber Structures
4.5. Rheological Measurements
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ELP | Elastin-Like Polypeptide |
ECM | Extracellular Matrix |
CD | Circular Dichroism |
AFM | Atomic Force Microscopy |
TEM | Transmission Electron Microscopy |
SDS-PAGE | Sodium dodecylsulfate polyacrylamide gel electrophoresis |
MALDI-TOF-MS | Matrix-assisted laser desorption/ionization time of flight mass spectrometry |
CNF | Cellulose Nanofibers |
References
- Hellmund, K.S.; Koksch, B. Self-assembling peptides as extracellular matrix mimics to influence stem cell’s fate. Front Chem 2019, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.N.; Hartgerink, J.D. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc. Chem. Res. 2017, 50, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.; Goktas, M.; Tekinay, A.B.; Guler, M.O.; Hauser, C.A.E.; Mitraki, A. Self-assembled proteins and peptides as scaffolds for tissue regeneration. Adv. Healthc. Mater. 2015, 4, 2557–2586. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.; Leonor, I.B.; Mano, J.F.; Reis, R.L.; Kaplan, D.L. Natural and genetically engineered proteins for tissue engineering. Prog. Polym. Sci. 2012, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Le, D.H.T.; Sugawara-Narutaki, A. Elastin-like polypeptides as building motifs toward designing functional nanobiomaterials. Mol. Syst. Des. Eng. 2019, 4, 545–565. [Google Scholar] [CrossRef]
- Rodríguez-Cabello, J.C.; Arias, F.J.; Rodrigo, M.A.; Girotti, A. Elastin-like polypeptides in drug delivery. Adv. Drug Deliv. Rev. 2016, 97, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Yeo, G.C.; Aghaei-Ghareh-Bolagh, B.; Brackenreg, E.P.; Hiob, M.A.; Lee, P.; Weiss, A.S. Fabricated elastin. Adv. Healthc. Mater. 2015, 4, 2530–2556. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.R.; Conticello, V.P. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv. Drug Deliv. Rev. 2002, 54, 1057–1073. [Google Scholar] [CrossRef]
- Quintanilla-Sierra, L.; García-Arévalo, C.; Rodriguez-Cabello, J.C. Self-assembly in elastin-like recombinamers: A mechanism to mimic natural complexity. Mater. Today Bio 2019, 2, 100007. [Google Scholar] [CrossRef]
- Rodríguez-Cabello, J.C.; de Torre, I.G.; Ibañez-Fonseca, A.; Alonso, M. Bioactive scaffolds based on elastin-like materials for wound healing. Adv. Drug Deliv. Rev. 2018, 129, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Mithieux, S.M.; Weiss, A.S. Elastin. Adv. Protein Chem. 2005, 70, 437–461. [Google Scholar] [PubMed]
- Daamen, W.F.; Veerkamp, J.H.; van Hest, J.C.M.; van Kuppevelt, T.H. Elastin as a biomaterial for tissue engineering. Biomaterials 2007, 28, 4378–4398. [Google Scholar] [CrossRef] [PubMed]
- Urry, D.W. Molecular machines: How motion and other functions of living organisms can result from reversible chemical changes. Angew. Chem. Int. Ed. Engl. 1993, 32, 819–841. [Google Scholar] [CrossRef]
- McDaniel, J.R.; Radford, D.C.; Chilkoti, A. A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules 2013, 14, 2866–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, E.E.; Yan, D.; Kosiba, A.A.; Zhou, Y.; Shi, H.F. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr. Purif. 2019, 153, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Arias, F.J.; Santos, M.; Ibanez-Fonseca, A.; Pina, M.J.; Serrano, S. Elastin-Like recombinamers as smart drug delivery systems. Curr. Drug Targets 2018, 19, 360–379. [Google Scholar] [CrossRef] [Green Version]
- Glassman, M.J.; Olsen, B.D. Arrested phase separation of elastin-like polypeptide solutions yields stiff, thermoresponsive gels. Biomacromolecules 2015, 16, 3762–3773. [Google Scholar] [CrossRef]
- Lee, T.A.T.; Cooper, A.; Apkarian, R.P.; Conticello, V.P. Thermo-reversible self-assembly of nanoparticles derived from elastin-mimetic polypeptides. Adv. Mater. 2000, 12, 1105–1110. [Google Scholar] [CrossRef]
- Hassouneh, W.; Zhulina, E.B.; Chilkoti, A.; Rubinstein, M. Elastin-like polypeptide diblock copolymers self-assemble into weak micelles. Macromolecules 2015, 48, 4183–4195. [Google Scholar] [CrossRef] [Green Version]
- Sallach, R.E.; Wei, M.; Biswas, N.; Conticello, V.P.; Lecommandoux, S.; Dluhy, R.A.; Chaikof, E.L. Micelle density regulated by a reversible switch of protein secondary structure. J. Am. Chem. Soc. 2006, 128, 12014–12019. [Google Scholar] [CrossRef]
- Martín, L.; Castro, E.; Ribeiro, A.; Alonso, M.; Rodríguez-Cabello, J.C. Temperature-triggered self-assembly of elastin-like block co-recombinamers: The controlled formation of micelles and vesicles in an aqueous medium. Biomacromolecules 2012, 13, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Misbah, M.H.; Quintanilla, L.; Alonso, M.; Rodríguez-Cabello, J.C. Evolution of amphiphilic elastin-like co-recombinamer morphologies from micelles to a lyotropic hydrogel. Polymer 2015, 81, 37–44. [Google Scholar] [CrossRef]
- Nagapudi, K.; Brinkman, W.T.; Thomas, B.S.; Park, J.O.; Srinivasarao, M.; Wright, E.; Conticello, V.P.; Chaikof, E.L. Viscoelastic and mechanical behavior of recombinant protein elastomers. Biomaterials 2005, 26, 4695–4706. [Google Scholar] [CrossRef] [PubMed]
- Cirulis, J.T.; Keeley, F.W.; James, D.F. Viscoelastic properties and gelation of an elastin-like polypeptide. J. Rheol. 2009, 53, 1215–1228. [Google Scholar] [CrossRef]
- Huang, W.; Rollett, A.; Kaplan, D.L. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin. Drug Deliv. 2015, 12, 779–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandu, R.; von Cresce, A.; Briber, R.; Dowell, P.; Cappello, J.; Ghandehari, H. Silk–elastinlike protein polymer hydrogels: Influence of monomer sequence on physicochemical properties. Polymer 2009, 50, 366–374. [Google Scholar] [CrossRef]
- Fernández-Colino, A.; Arias, F.J.; Alonso, M.; Rodríguez-Cabello, C.J. Self-organized ECM-mimetic model based on an amphiphilic multiblock silk-elastin-like corecombinamer with a concomitant dual physical gelation process. Biomacromolecules 2014, 15, 3781–3793. [Google Scholar] [CrossRef]
- Le, D.H.T.; Hanamura, R.; Pham, D.-H.; Kato, M.; Tirrell, D.A.; Okubo, T.; Sugawara-Narutaki, A. Self-assembly of elastin–mimetic double hydrophobic polypeptides. Biomacromolecules 2013, 14, 1028–1034. [Google Scholar] [CrossRef] [Green Version]
- Le, D.H.T.; Tsutsui, Y.; Sugawara-Narutaki, A.; Yukawa, H.; Baba, Y.; Ohtsuki, C. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility. J. Biomed. Mater. Res. A 2017, 105, 2475–2484. [Google Scholar] [CrossRef]
- Le, D.H.T.; Kawakami, R.; Teraoka, Y.; Okubo, T.; Sugawara-Narutaki, A. Crosslinking-assisted stabilization of beaded nanofibers from elastin-like double hydrophobic polypeptides. Chem. Lett. 2015, 44, 530–532. [Google Scholar] [CrossRef]
- Anh, T.T.H.; Xing, M.; Le, D.H.T.; Sugawara-Narutaki, A.; Fong, E. Elastin-based silver-binding proteins with antibacterial capabilities. Nanomedicine 2013, 8, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Le, D.H.T.; Okubo, T.; Sugawara-Narutaki, A. Beaded nanofibers assembled from double-hydrophobic elastin-like block polypeptides: Effects of trifluoroethanol. Biopolymers 2015, 103, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Tamburro, A.M.; Bochicchio, B.; Pepe, A. Dissection of human tropoelastin: Exon-by-exon chemical synthesis and related conformational studies. Biochemistry 2003, 42, 13347–13362. [Google Scholar] [CrossRef] [PubMed]
- Rabotyagova, O.S.; Cebe, P.; Kaplan, D.L. Protein-based block copolymers. Biomacromolecules 2011, 12, 269–289. [Google Scholar] [CrossRef] [Green Version]
- Mokhonov, V.V.; Vasilenko, E.A.; Gorshkova, E.N.; Astrakhantseva, I.V.; Novikov, D.V.; Novikov, V.V. SlyD-deficient Escherichia coli strains: A highway to contaminant-free protein extraction. Biochem. Biophys. Res. Commun. 2018, 499, 967–972. [Google Scholar] [CrossRef]
- Li, N.K.; Quiroz, F.G.; Hall, C.K.; Chilkoti, A.; Yingling, Y.G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 2014, 15, 3522–3530. [Google Scholar] [CrossRef]
- Roberts, S.; Dzuricky, M.; Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 2015, 589, 2477–2486. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-H.; Lodge, T.P.; Bates, F.S. Mechanism of molecular exchange in diblock copolymer micelles: Hypersensitivity to core chain length. Phys. Rev. Lett. 2010, 104, 047802. [Google Scholar] [CrossRef]
- Geng, L.; Mittal, N.; Zhan, C.; Ansari, F.; Sharma, P.R.; Peng, X.; Hsiao, B.S.; Söderberg, L.D. Understanding the mechanistic behavior of highly charged cellulose nanofibers in aqueous systems. Macromolecules 2018, 51, 1498–1506. [Google Scholar] [CrossRef] [Green Version]
- Mason, S.G. Fibre motions and flocculation. Tappi J. 1954, 37, 494–501. [Google Scholar]
- Kerekes, R.J.; Schell, C.J. Characterization of fibre flocculation regines by a crowding factor. J. Pulp Pap. Sci. 1992, 18, 32–38. [Google Scholar]
- Sharma, P.R.; Zheng, B.; Sharma, S.K.; Zhan, C.; Wang, R.; Bhatia, S.R.; Hsiao, B.S. High aspect ratio carboxycellulose nanofibers prepared by nitro-oxidation method and their nanopaper properties. ACS Appl. Nano Mater. 2018, 1, 3969–3980. [Google Scholar] [CrossRef]
- Zhang, H.; Park, J.; Jiang, Y.; Woodrow, K.A. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Acta Biomater. 2017, 55, 183–193. [Google Scholar] [CrossRef] [PubMed]
N | Φa | Db [nm] | L [nm] | |
---|---|---|---|---|
GPG | 16 | 3.4 × 10‒4 | 42 | 11 × 103 |
60 | 3.4 × 10‒4 | 42 | 22 × 103 | |
GPPG | 16 | 3.4 × 10‒4 | 55 | 15 × 103 |
60 | 3.4 × 10‒4 | 55 | 28 × 103 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugawara-Narutaki, A.; Yasunaga, S.; Sugioka, Y.; Le, D.H.T.; Kitamura, I.; Nakamura, J.; Ohtsuki, C. Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides. Int. J. Mol. Sci. 2019, 20, 6262. https://doi.org/10.3390/ijms20246262
Sugawara-Narutaki A, Yasunaga S, Sugioka Y, Le DHT, Kitamura I, Nakamura J, Ohtsuki C. Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides. International Journal of Molecular Sciences. 2019; 20(24):6262. https://doi.org/10.3390/ijms20246262
Chicago/Turabian StyleSugawara-Narutaki, Ayae, Sawako Yasunaga, Yusuke Sugioka, Duc H. T. Le, Issei Kitamura, Jin Nakamura, and Chikara Ohtsuki. 2019. "Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides" International Journal of Molecular Sciences 20, no. 24: 6262. https://doi.org/10.3390/ijms20246262
APA StyleSugawara-Narutaki, A., Yasunaga, S., Sugioka, Y., Le, D. H. T., Kitamura, I., Nakamura, J., & Ohtsuki, C. (2019). Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides. International Journal of Molecular Sciences, 20(24), 6262. https://doi.org/10.3390/ijms20246262