Recent Advances in Protein Kinase Activity Analysis Based on Nanomaterials
Abstract
:1. Introduction
2. Phosphoprotein/phosphopeptide Enrichment or Phosphate Recognition by Nanomaterials
2.1. Metal Oxides and Metal Oxides Composites
2.2. Magnetic Nanomaterials
2.3. Mesoporous Nanomaterials and Porous Metal-Organic Frameworks (MOFs)
2.4. Rare Earth-Based Nanomaterials
3. Nanomaterials Utilized in Different Biosensor Technologies for Protein Kinase Activity Analysis
3.1. Electrochemical Technique-Based Biosensor for Protein Kinase Activity Analysis
3.1.1. Electrochemical Biosensor for Protein Kinase Activity Analysis
3.1.2. ECL Biosensor for Protein Kinase Activity Analysis
3.1.3. Photoelectrochemical (PEC) Biosensor for Protein Kinase Activity Analysis
3.2. Fluorescent Biosensor for Protein Kinase Activity Analysis
3.3. Colorimetric Biosensor for Protein Kinase Activity Analysis
3.4. MS-Based Biosensor for Protein Kinase Activity Analysis
3.5. Other Biosensor Techniques for Protein Kinase Activity Analysis
4. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Schönichen, A.; Webb, B.A.; Jacobson, M.P.; Barber, D.L. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys. 2013, 42, 289–314. [Google Scholar] [CrossRef] [PubMed]
- Hunter, T. Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell 1995, 80, 225–236. [Google Scholar] [CrossRef]
- Cook, A.; Lowe, E.D.; Chrysina, E.D.; Skamnaki, V.T.; Oikonomakos, N.G.; Johnson, L.N. Structural studies on phospho-CDK2/cyclin A bound to nitrate, a transition state analogue: Implications for the protein kinase mechanism. Biochemistry 2002, 41, 7301–7311. [Google Scholar] [CrossRef] [PubMed]
- Rauch, J.; Volinsky, N.; Romano, D.; Kolch, W. The secret life of kinases: Functions beyond catalysis. Cell Commun. Signal. 2011, 9, 23–50. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, M.; Mobashir, M.; Hoda, N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem. 2016, 107, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Klaudia, B.; Marley, P.D.; Sobey, C.G. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol. Sci. 2006, 27, 97–104. [Google Scholar]
- Chico, L.K.; Van Eldik, L.J.; Watterson, D.M. Targeting protein kinases in central nervous system disorders. Nat. Rev. Drug Discov. 2009, 8, 892–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Aranda, M.; Redondo, M. Protein kinase targets in breast cancer. Int. J. Mol. Sci. 2017, 18, 2543. [Google Scholar] [CrossRef]
- Fabbro, D.; Cowanjacob, S.W.; Moebitz, H. Ten things you should know about protein kinases: IUPHAR Review 14. Br. J. Pharmacol. 2015, 172, 2675–2700. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Salminen, A.; Yang, X.; Luo, Y.; Wu, Q.E.; White, M.; Greenhaw, J.; Ren, L.J.; Bryant, M.; Salminen, W. Effects of 31 FDA approved small-molecule kinase inhibitors on isolated rat liver mitochondria. Arch. Toxicol. 2017, 91, 2921–2938. [Google Scholar] [CrossRef]
- Noble, M.E.; Endicott, J.A.; Johnson, L.N. Protein kinase inhibitors: Insights into drug design from structure. Science 2004, 303, 1800–1805. [Google Scholar] [CrossRef]
- Dancey, J.; Sausville, E.A. Issues and progress with protein kinase inhibitors for cancer treatment. Nat. Rev. Drug Discov. 2003, 2, 296–313. [Google Scholar] [CrossRef] [PubMed]
- Li, R.F.; Hayward, S.D. Potential of protein kinase inhibitors for treating herpesvirus-associated disease. Trends Microbiol. 2013, 21, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.S. Kinase inhibitors for the treatment of inflammatory and autoimmune disorders. Purinergic Signal. 2009, 5, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, Q. The role of nanomaterials in electroanalytical biosensors: A mini review. J. Electroanal. Chem.l. 2016, 781, 401–409. [Google Scholar] [CrossRef]
- Gan, X.R.; Zhao, H.M. A Review: Nanomaterials aplied in graphene-based electrochemical biosensors. Sens. Mater. 2015, 27, 191–215. [Google Scholar]
- Liu, X.; Li, Y.; Xu, X.H.; Li, P.; Nie, Z.; Huang, Y.; Yao, S.Z. Nanomaterial-based tools for protein kinase bioanalysis. TrAC Trends Anal. Chem. 2014, 58, 40–53. [Google Scholar] [CrossRef]
- Meyer, N.O.; O’Donoghue, A.J.; Schulzegahmen, U.; Ravalin, M.; Moss, S.M.; Winter, M.B.; Knudsen, G.M.; Craik, C.S. Multiplex substrate profiling by Mass Spectrometry for kinases reveals quantitative substrate motifs. Anal. Chem. 2017, 89, 4550–4558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Lv, N.; Bi, W.Z.; Zhang, J.L.; Ni, J.Z. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS Appl. Mater. Interfaces 2015, 7, 8377–8392. [Google Scholar] [CrossRef]
- Hofer, R.; Textor, M.; Spencer, N.D. Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. Langmuir 2001, 17, 4014–4020. [Google Scholar] [CrossRef]
- Lin, H.Z.; Yuan, K.P.; Deng, C.H. Preparation of a TiO2-NH2 modified MALDI plate for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. Talanta 2017, 175, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Hye Kyong, K.; Kristina, H. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem. 2006, 78, 1743–1749. [Google Scholar]
- Bllaci, L.; Torsetnes, S.B.; Wierzbicka, C.; Shinde, S.; Sellergren, B.; Rogowska-Wrzesinska, A.; Jensen, O.N. Phosphotyrosine biased enrichment of tryptic peptides from cancer cells by combining pY-MIP and TiO2 affinity resins. Anal. Chem. 2017, 89, 11332–11340. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahn, M.S.; Hahn, Y.B. ZnO nanorods array based field-effect transistor biosensor for phosphate detection. J. Colloid Interface Sci. 2017, 498, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, L.S.; Zhou, Y.L.; Yin, H.S.; Ai, S.Y. Enhanced photoelectrochemical method for sensitive detection of protein kinase A activity using TiO2/g-C3N4, PAMAM dendrimer, and alkaline phosphatase. Anal. Chem. 2017, 89, 2369–2376. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.J.; Qian, K.; Qiao, L.; Wang, Y.H.; Kong, J.L.; Yang, P.Y.; Liu, B.H.; Yu, C.Z. TiO2-modified macroporous silica foams for advanced enrichment of multi-phosphorylated peptides. Chem. Eur. J. 2010, 15, 2504–2508. [Google Scholar] [CrossRef] [PubMed]
- Li, L.P.; Zheng, T.; Xu, L.N.; Li, Z.; Sun, L.D.; Nie, Z.X.; Bai, Y.; Liu, H.W. SnO2-ZnSn(OH)6: A novel binary affinity probe for global phosphopeptide detection. Chem. Commun. 2013, 49, 1762–1764. [Google Scholar] [CrossRef]
- Batalha, Í.L.; Roque, A.C. Phosphopeptide enrichment using various magnetic nanocomposites: An overview. Phospho-Proteomics 2016, 1355, 193–209. [Google Scholar]
- Lin, H.Y.; Chen, W.Y.; Chen, Y.C. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Anal. Bioanal. Chem. 2009, 394, 2129–2136. [Google Scholar] [CrossRef]
- Yang, D.S.; Ding, X.Y.; Min, H.P.; Li, B.; Su, M.X.; Niu, M.M.; Di, B.; Yan, F. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. J. Chromatogr. A 2017, 1505, 56–62. [Google Scholar] [CrossRef]
- Han, M.; Li, Z. Mesoporous metal oxide nanoparticles for selective enrichment of phosphopeptides from complex sample matrix. Anal. Methods 2016, 8, 7747–7754. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Zhan, Q.L.; Pu, C.L.; Sheng, Q.Y.; Zhao, H.L.; Lan, M.B. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles. Talanta 2018, 187, 223–230. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, Z.C.; Chen, Y.J.; Peng, L.; Yu, H.B.; Gao, X.D.; Zhang, R.S.; Zhang, L.Y.; Zhang, W.B. Soft-template synthesis of hydrophilic metallic Zirconia nanoparticles-incorporated ordered mesoporous Carbon composites and its application in phosphopeptides enrichment. RSC Adv. 2016, 6, 30014–30020. [Google Scholar] [CrossRef]
- Dolgopolova, E.A.; Rice, A.M.; Martin, C.R.; Shustova, N.B. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710–4728. [Google Scholar] [CrossRef]
- Kajiro, H.; Kondo, A.; Kaneko, K.; Kanoh, H. Flexible two-dimensional square-grid coordination polymers: Structures and functions. Int. J. Mol. Sci. 2011, 42, 3803–3845. [Google Scholar] [CrossRef]
- Xie, Y.Q.; Deng, C.H. Highly efficient enrichment of phosphopeptides by a magnetic lanthanide metal-organic framework. Talanta 2016, 159, 1–6. [Google Scholar] [CrossRef]
- Qi, X.Y.; Chang, C.L.; Xu, X.Y.; Zhang, Y.D.; Bai, Y.; Liu, H.W. Magnetization of 3-dimentional homochiral metal-organic frameworks for efficient and highly selective capture of phosphopeptides. J. Chromatogr. A 2016, 1468, 49–54. [Google Scholar] [CrossRef]
- Zhou, J.Q.; Liang, Y.L.; He, X.W.; Chen, L.X.; Zhang, Y.K. Dual-functionalized magnetic metal-organic framework for highly specific enrichment of phosphopeptides. ACS Sustain. Chem. Eng. 2017, 5, 11413–11421. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Wang, F.; Deng, P.Y.; Wang, Y.; Cai, K.; Chen, Y.H.; Wang, Z.H.; Liu, Y. Sensitive electrogenerated chemiluminescence biosensors for protein kinase activity analysis based on bimetallic catalysis signal amplification and recognition of Au and Pt loaded metal-organic frameworks nanocomposites. Biosens. Bioelectron. 2018, 109, 132–138. [Google Scholar] [CrossRef]
- Deng, C.H.; Zhang, X.M.; Zhao, M. Facile synthesis of hydrophilic magnetic graphene @metal-organic framework for highly selective enrichment of phosphopeptides. RSC Adv. 2015, 5, 35361–35364. [Google Scholar]
- Xie, Y.Q.; Deng, C.H. Designed synthesis of a “One for Two” hydrophilic magnetic amino-functionalized metal-organic framework for highly efficient enrichment of glycopeptides and phosphopeptides. Sci. Rep. 2017, 7, 1162. [Google Scholar] [CrossRef] [PubMed]
- Sumaoka, J.; Akiba, H.; Komiyama, M. Selective sensing of tyrosine phosphorylation in peptides using Terbium(III) complexes. Int. J. Anal. Chem. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hussain, D.; Musharraf, S.G.; Najam-Ul-Haq, M. Development of diamond-lanthanide metal oxide affinity composites for the selective capture of endogenous serum phosphopeptides. Anal. Bioanal. Chem. 2016, 408, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Q.; Cheng, H.; He, D.G.; He, X.X.; Wang, K.M.; Liu, Q.Q.; Zhao, S.Q.; Yang, X.D. A label-free homogeneous electrochemical sensing platform for protein kinase assay based on carboxypeptidase Y-assisted peptide cleavage and vertically ordered mesoporous silica films. Anal. Chem. 2017, 89, 9062–9068. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cheng, C.; Chang, Y.; Ma, H.; Hao, Y.; Han, G.C. Two sensitive electrochemical strategies for the detection of protein kinase activity based on the 4-mercaptophenylboronic acid-induced in situ assembly of silver nanoparticles. Sens. Actuators B 2017, 248, 178–186. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Yin, H.S.; Li, X.; Li, Z.; Ai, S.Y.; Lin, H. Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase. Biosens. Bioelectron. 2016, 86, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Q.; He, X.X.; Wang, K.M.; He, D.G.; Wang, Y.H.; Mao, Y.F.; Shi, H.; Li, W. A highly sensitive electrochemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quadruplex–hemin and gold nanoparticles. Biosens. Bioelectron. 2015, 70, 54–60. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X.M.; Xing, D. Highly sensitive protein kinase activity assay based on electrochemiluminescence nanoprobes. Biosens. Bioelectron. 2012, 31, 299–304. [Google Scholar] [CrossRef]
- Zhao, H.F.; Liang, R.P.; Wang, J.W.; Qiu, J.D. A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity. Chem. Commun. 2015, 51, 12669–12672. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yan, Z.Y.; Sun, N.; Liu, Y. Multiple signal amplification electrogenerated chemiluminescence biosensors for sensitive protein kinase activity analysis and inhibition. Biosens. Bioelectron. 2015, 68, 771–776. [Google Scholar] [CrossRef]
- Zhao, W.W.; Tian, C.Y.; Xu, J.J.; Chen, H.Y. The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: Towards novel plasmonic photoelectrochemical biosensing. Chem. Commun. 2011, 48, 895–897. [Google Scholar] [CrossRef]
- Zhao, W.W.; Wang, J.; Zhu, Y.C.; Xu, J.J.; Chen, H.Y. Quantum dots: Electrochemiluminescent and photoelectrochemical bioanalysis. Acta Phys.-Chim. Sin. 2017, 87, 9520–9531. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.P.; Liu, X.Q.; Huo, X.H.; Tang, Y.F.; Xu, J.; Ju, H.X. TiO2-BiVO4 heterostructure to enhance photoelectrochemical efficiency for sensitive aptasensing. ACS Appl. Mater. Interfaces. 2017, 9, 27185–27192. [Google Scholar] [CrossRef] [PubMed]
- Pesci, F.M.; Sokolikova, M.; Grotta, C.; Sherrell, P.C.; Reale, F.; Sharda, K.; Ni, N.; Palczynski, P.; Mattevi, C. MoS2/WS2 heterojunction for photoelectrochemical water oxidation. ACS Catal. 2017, 7, 4990–4998. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Wang, Z.H.; Zhuang, M.; Yang, L. Dye-sensitized and localized surface plasmon resonance enhanced visible-light photoelectrochemical biosensors for highly sensitive analysis of protein kinase activity. Anal. Chem. 2015, 88, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.M.; Li, Z.B.; Zhu, A.H.; Feng, Z.Z.; Tian, J.; Xue, P. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification. Biosens. Bioelectron. 2016, 83, 39–44. [Google Scholar] [CrossRef]
- Liang, R.P.; Qiu, W.B.; Zhao, H.F.; Xiang, C.Y.; Qiu, J.D. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing. Anal. Chim. Acta 2016, 904, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.S.; Sun, B.; Dong, L.F.; Li, B.C.; Zhou, Y.L.; Ai, S.Y. A signal "on" photoelectrochemical biosensor for assay of protein kinase activity and its inhibitor based on graphite-like carbon nitride, Phos-tag and alkaline phosphatase. Biosens. Bioelectron. 2015, 64, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Yan, Z.Y.; Wang, F.; Cai, J.B.; Guo, L.; Su, J.K.; Liu, Y. Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks. Biosens. Bioelectron. 2017, 97, 107–114. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Wang, M.; Yang, Z.Q.; Yin, H.S.; Ai, S.Y. A Phos-tag-based photoelectrochemical biosensor for assay of protein kinase activity and inhibitors. Sens Actuators B 2015, 206, 728–734. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.L.; Xu, Y.; Xu, H.J.; Wang, M.H.; Yin, H.S.; Ai, S.Y. A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride. Anal. Chim. Acta 2016, 934, 36–43. [Google Scholar] [CrossRef]
- Morris, M.C. Fluorescent biosensors—Probing protein kinase function in cancer and drug discovery. Biochim. Biophys. Acta Proteins Proteom. 2013, 1834, 1387–1395. [Google Scholar] [CrossRef]
- Wang, L.J.; Yang, Y.; Zhang, C.Y. Phosphorylation-directed assembly of a single quantum dot based nanosensor for protein kinase assay. Anal. Chem. 2015, 87, 4696–4703. [Google Scholar] [CrossRef]
- Lim, B.; Park, J.I.; Lee, K.J.; Lee, J.W.; Kim, T.W.; Kim, Y.P. Zn(II)-coordinated quantum dot-FRET nanosensors for the detection of protein kinase activity. Sensors 2015, 15, 17977–17989. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.K.; Shi, F.P.; Liu, Z.P.; Su, X.G. Aptamer based fluorescence biosensor for protein kinase activity detection and inhibitor screening. Sens. Actuators B 2017, 252, 209–214. [Google Scholar] [CrossRef]
- Zhang, L.; Song, W.; Liang, R.P.; Qiu, J.D. Simultaneous determination of protein kinase A and casein kinase II by dual-color peptide biomineralized metal nanoclusters. Anal. Chem. 2016, 88, 11460–11467. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, H.K.; Qin, J.; Liu, X.Q.; Zhao, S.L.; Chen, Z.F.; Liang, H. A graphene oxide-based multiplexed fluorescence assay for the detection of protein kinase activity in cell lysates and the evaluation of protein kinase inhibition. Sens. Actuators B 2017, 238, 908–916. [Google Scholar] [CrossRef]
- Wang, M.K.; Lin, Z.; Liu, Q.; Shan, J.; Hua, L.; Su, X.G. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection. Anal. Chim. Acta 2018, 1012, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2017, 10, 18–33. [Google Scholar] [CrossRef]
- Meaghan, E.G.; Michael, J.K. Optical explosives detection: From color changes to fluorescence turn-on. Chem. Soc. Rev. 2009, 38, 2543–2555. [Google Scholar]
- Sun, S.J.; Shen, H.X.; Liu, C.H.; Li, Z.P. Phosphorylation-regulated crosslinking of gold nanoparticles: A new strategy for colorimetric detection of protein kinase activity. Analyst 2015, 140, 5685–5691. [Google Scholar] [CrossRef]
- Sugiyama, N.; Ishihama, Y. Large-scale profiling of protein kinases for cellular signaling studies by mass spectrometry and other techniques. J. Pharm. Biomed. Anal. 2016, 130, 264–272. [Google Scholar] [CrossRef]
- Xiao, Y.S.; Wang, Y.S. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry. Mass Spectrom. Rev. 2016, 35, 601–619. [Google Scholar] [CrossRef]
- Young-Pil, K.; Eunkeu, O.; Young-Hee, O.; Dae Won, M.; Tae Geol, L.; Hak-Sung, K. Protein kinase assay on peptide-conjugated gold nanoparticles by using secondary-ion mass spectrometric imaging. Angew. Chem. 2010, 119, 6940–6943. [Google Scholar]
- Monica, P.; Monica, B.; Cosmin, F.; Simion, A. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection. Nanotechnology 2012, 23, 055501. [Google Scholar]
- Xiao, G.N.; Li, Y.X.; Shi, W.Z.; Shen, L.; Chen, Q.; Huang, L. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper. Appl. Surf. Sci. 2017, 404, 334–341. [Google Scholar] [CrossRef]
- Wang, C.W.; Wang, J.F.; Li, P.; Rong, Z.; Jia, X.F.; Ma, Q.L.; Xiao, R.; Wang, S.Q. Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates. Nanoscale 2016, 8, 19816–19828. [Google Scholar] [CrossRef]
- He, S.; Kyaw, Y.M.E.; Tan, E.K.M.; Bekale, L.; Kang, M.W.C.; Kim, S.S.-Y.; Tan, I.; Lam, K.P.; Kah, J.C.Y. Quantitative and label-free detection of protein kinase A activity based on surface-enhanced raman spectroscopy with gold nanostars. Anal. Chem. 2018, 90, 6071–6080. [Google Scholar] [CrossRef]
- Fang, F.; Hong, Z.; Ling, L.; Qin, W.Y.; Long, C.J.; Juan, Z.S.; Qing, Z.C. Determination of nucleic acids with a near infrared cyanine dye using resonance light scattering technique. Spectrochim. Acta 2006, 64, 698–702. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, S.; Ma, M.H.; Cai, Z.X. Determination of egg yolk immunoglobulin by resonance light scattering of affinity-labeled Au nanoparticles. Food Anal. Methods 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Lv, S.F.; Feng, C.; Chen, C.Y.; Chen, X.M.; Hang, G.; Cai, C.Q. A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta 2017, 165, 659–663. [Google Scholar] [CrossRef]
- Tao, L.X.; Yue, Q.L.; Hou, Y.N.; Wang, Y.P.; Chen, C.Y.; Li, C.Z. Resonance light scattering aptasensor for urinary 8-hydroxy-2′-deoxyguanosine based on magnetic nanoparticles: A preliminary study of oxidative stress association with air pollution. Microchim. Acta 2018, 185, 419. [Google Scholar] [CrossRef]
- Yan, S.G.; Deng, D.Y.; Song, H.J.; Su, Y.Y.; Lv, Y. Facile synthesis of CuS nanosheets probe for resonance light scattering and visual detecting L-cysteine. Sens. Actuators B 2017, 243, 873–881. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Liu, D.J.; Wang, Z.X. The peptide microarray-based resonance light scattering assay for sensitively detecting intracellular kinase activity. Methods Mol. Biol. 2016, 1352, 85–96. [Google Scholar]
- Shapiro, M.G.; Szablowski, J.O.; Langer, R.; Jasanoff, A. Protein nanoparticles engineered to sense kinase activity in MRI. J. Am. Chem. Soc. 2011, 131, 2484–2486. [Google Scholar] [CrossRef]
Nanoparticles | Roles | Phosphate Group Recognition | Targets | Detection Limit | Ref. |
---|---|---|---|---|---|
AuNPs | Enlarge electrode surface/Carriers/Signal amplification | Specific binding | Protein tyrosine kinase-7 | 372 fM | [56] |
AuNPs | Carriers/catalyst | Zr4+ coordination | PKA | 0.09 UmL−1 | [50] |
GQDs/Graphene Oxide (GO) | Donor and acceptor | Antibody-antigen interaction | CK2 | 0.023 UmL−1 | [57] |
Graphite-like C3N4/AuNPs | Carriers/photoactive materials | Phos-tag-biotin | PKA | 0.01502 UmL−1 | [58] |
MOFs | Carriers/surface defect recognition | Zr-O-P bonds | PKA | 0.0049 UmL−1 | [59] |
Bi2S3/AuNPs | Carriers/photoactive materials | Biotinylated Phos-tag | PKA | 0.017 UmL−1 | [60] |
phosphorylated-g-C3N4 | Photoactive materials/signal transduction | Zr4+ coordination | PKA | 0.077 UmL−1 | [61] |
Au and Pt nanoparticles loaded MOFs | Enlarge electrode surface/Catalyst/surface defect recognition | Zr-O-P bonds | PKA | 0.009 UmL−1 | [39] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Deng, P.; Liu, Y. Recent Advances in Protein Kinase Activity Analysis Based on Nanomaterials. Int. J. Mol. Sci. 2019, 20, 1440. https://doi.org/10.3390/ijms20061440
Yan Z, Deng P, Liu Y. Recent Advances in Protein Kinase Activity Analysis Based on Nanomaterials. International Journal of Molecular Sciences. 2019; 20(6):1440. https://doi.org/10.3390/ijms20061440
Chicago/Turabian StyleYan, Zhiyong, Pingye Deng, and Yang Liu. 2019. "Recent Advances in Protein Kinase Activity Analysis Based on Nanomaterials" International Journal of Molecular Sciences 20, no. 6: 1440. https://doi.org/10.3390/ijms20061440
APA StyleYan, Z., Deng, P., & Liu, Y. (2019). Recent Advances in Protein Kinase Activity Analysis Based on Nanomaterials. International Journal of Molecular Sciences, 20(6), 1440. https://doi.org/10.3390/ijms20061440