Dissipation of Three Fungicides and Their Effects on Anthocyanins and Color of Monastrell Red Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fungicide Dissipation
2.2. Enological Parameters
2.3. Phenolic Characterization
2.4. Color Changes
2.5. Antioxidant Activity
2.6. Relationship between Anthocyanins and Color for Differentiation among the Wines
3. Materials and Methods
3.1. Chemicals and Standards
3.2. Wine Samples
3.3. Fungicide Residue Analysis
3.4. Wine Characterization
3.4.1. Enological Parameters
3.4.2. Color Determination
3.4.3. Phenolic Composition and Distribution
3.4.4. Antioxidant Activity
3.5. Multivariate Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FRAC (Fungicide Resistance Action Committee). FRAC Code List© 2018: Fungicides Sorted by Mode of Action (Including FRAC Code Numbering) 2018. Available online: http://www.phi-base.org/images/fracCodeList.pdf (accessed on 31 July 2018).
- Whitmyre, G.K.; Ross, J.H.; Lunchick, C.; Volger, B.; Singer, S. Biphasic dissipation kinetics for dislodgeable foliar residues in estimating postapplication occupational exposures to endosulfan. Arch. Environ. Con. Tox. 2004, 46, 17–23. [Google Scholar] [CrossRef]
- González-Rodríguez, R.M.; Cancho-Grande, B.; Simal-Gándara, J. Efficacy of new commercial formulations to control downy mildew and dissipation of their active fungicides in wine after good agricultural practices. J. Sci. Food Agric. 2009, 89, 2625–2635. [Google Scholar]
- González-Rodríguez, R.M.; Cancho-Grande, B.; Torrado-Agrasar, A.; Simal-Gándara, J.; Mazaira-Pérez, J. Evolution of tebuconazole residues through the winemaking process of Mencía grapes. Food Chem. 2009, 117, 529–537. [Google Scholar] [CrossRef]
- González-Rodríguez, R.M.; Cancho-Grande, B.; Simal-Gándara, J. Decay of fungicide residues during vinification of white grapes harvested after the application of some new active substances against downy mildew. Food Chem. 2011, 125, 549–560. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A. Pesticide residues in grapes, wine, and their processing products. J. Agric. Food Chem. 2000, 48, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Cabras, P.; Angioni, A.; Garau, V.L.; Pirisi, F.M.; Cabitza, F.; Pala, M.; Farris, G.A. Fenhexamid residues in grapes and wine. Food Addit. Contam. 2001, 18, 625–629. [Google Scholar] [CrossRef]
- Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Multiresidue method for fourteen fungicides in white grapes by liquid–liquid and solid-phase extraction followed by liquid chromatography–diode array detection. J. Chromatogr. A 2003, 992, 121–131. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Garau, V.L.; Pirisi, F.M.; Espinoza, J.; Mendoza, A.; Brandolini, V. Fate of Azoxystrobin, Fluazinam, Kresoxim-methyl, Mepanipyrim, and Tetraconazole from Vine to Wine. J. Agric. Food Chem. 1998, 46, 3249–3251. [Google Scholar] [CrossRef]
- Oliva, J.; Payá, P.; Cámara, M.A.; Barba, A. Removal of pesticides from white wine by the use of fining agents and filtration. Commun. Agric. Appl. Biol. Sci. 2007, 72, 171–180. [Google Scholar]
- Oliva, J.; Payá, P.; Cámara, M.A.; Barba, A. Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: Effects of clarification and filtration processes. J. Environ. Sci. Health B 2007, 42, 775–781. [Google Scholar] [CrossRef]
- Mazza, G.; Francis, F.J. Anthocyanins in Grapes and Grape Products. Crit. Rev. Food Sci. 1995, 35, 341–371. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef]
- Cheynier, V. Grape polyphenol and their reactions in wine. Poliphenol. Actual. 2001, 21, 3–10. [Google Scholar]
- Waterhouse, A.L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Mulero, J.; Martínez, G.; Oliva, J.; Cermeño, S.; Cayuela, J.M.; Zafrilla, P.; Martínez-Cachá, A.; Barba, A. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides. Food Chem. 2015, 180, 25–31. [Google Scholar] [CrossRef]
- Briz-Cid, N.; Figueiredo-González, M.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Effect of two anti-fungal treatments (metrafenone and boscalid plus kresoxim-methyl) applied to vines on the color and phenol profile of different red wines. Molecules 2014, 19, 8093–8111. [Google Scholar] [CrossRef]
- Briz-Cid, N.; Castro-Sobrino, L.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Fungicide residues affect the sensory properties and flavonoid composition of red wine. J. Food Compos. Anal. 2018, 66, 185–192. [Google Scholar] [CrossRef]
- Briz-Cid, N.; Figueiredo-Gonzalez, M.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. The measure and control of effects of botryticides on phenolic profile and color quality of red wines. Food Control 2015, 50, 942–948. [Google Scholar] [CrossRef]
- Castro-Sobrino, L.; Briz-Cid, N.; Figueiredo-González, M.; Sieiro-Sampedro, T.; González-Barreiro, C.; Cancho-Grande, B.; Rial Otero, R.; Simal-Gándara, J. Impact of fungicides mepanipyrim and tetraconazole on phenolic profile and colour of Mencía red wines. Food Control 2019, 98, 412–423. [Google Scholar] [CrossRef]
- Regulatory Council of DO Jumilla (2018). Official page of Designation of Origin Jumilla. Available online: https://vinosdejumilla.org/ (accessed on 31 July 2018).
- Calza, P.; Medana, C.; Baiocchi, C.; Branca, P.; Pelizzetti, E. Characterisation by high-performance liquid chromatography–multiple mass spectrometry of intermediate compounds formed from mepanipyrim photoinduced degradation. J. Chromatogr. A 2004, 104, 115–125. [Google Scholar] [CrossRef]
- Anfossi, L.; Sales, P.; Vanni, A. Degradation of anilinopyrimidine fungicides photoinduced by iron(III)–polycarboxylate complexes. Pest Manag. Sci. 2006, 62, 872–879. [Google Scholar] [CrossRef]
- López-Fernández, O.; Pose-Juan, E.; Yáñez, R.; Rial-Otero, R.; Simal-Gándara, J. Modelling the isothermal degradation kinetics of metrafenone and mepanipyrim in a grape juice analog. Food Res. Int. 2018, 108, 339–346. [Google Scholar] [CrossRef]
- EFSA. Conclusion regarding the peer review of the pesticide risk assessment of the active substance Tetraconazole. EFSA Sci. Rep. 2008, 152, 1–86. [Google Scholar]
- EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance iprovalicarb. EFSA J. 2015, 13, 4060. [Google Scholar]
- EFSA. Peer review of the pesticide risk assessment of the active substance mepanipyrim. EFSA J. 2017, 15, 4852. [Google Scholar]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Phisiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology Volume 1. The Microbiology of Wine and Vinifications, 2nd ed.; John Wiley and Sons Ltd.: West Sussex, UK, 2006. [Google Scholar]
- Liu, S.Q.; Pilone, G.J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Rivas-Gonzalo, J.C.; Gutierrez, Y.; Hebrero, E.; Santos-Buelga, C. Comparisons of methods for the determination of anthocyanins in red wines. Am. J. Enol. Viticult. 1992, 43, 210–214. [Google Scholar]
- Lafon-Lafourcade, S.; Ribéreau-Gayon, P. Developments in the microbiology of wine production. In Progress in Industrial Microbiology; Bushell, M.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 19, pp. 1–45. [Google Scholar]
- Drysdale, G.S.; Fleet, G.H. The effect of acetic acid bacteria upon the growth and metabolism of yeasts during the fermentation of grape juice. J. Appl. Bacteriol. 1989, 67, 471–481. [Google Scholar] [CrossRef]
- Bakker, J. HPLC of anthocyanins in port wines; determination of aging rates. Vitis 1986, 25, 203–214. [Google Scholar]
- Timberlake, C.F.; Bridle, P. Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Viticult. 1976, 27, 97–105. [Google Scholar]
- Zamora, F. Elaboración y Crianza del vino Tinto: Aspectos Cientificos y Técnicos; Ediciones Mundi-Prensa: Madrid, Spain, 2003. [Google Scholar]
- Boido, E.; Alcalde-Eón, C.; Carrau, F.; Dellacassa, E.; Rivas-Gonzalo, J.C. Aging effect on the pigment composition and color of Vitis vinifera L. cv. Tannat wines. Contribution of the main pigment families to wine color. J. Agric. Food Chem. 2006, 54, 6692–6704. [Google Scholar] [CrossRef]
- Monagas, M.; Martin-Alvárez, P.J.; Gómez-Cordovés, C.; Bartolomé, B. Time course of the colour of young red wines from Vitis vinifera L. during ageing in bottle. Int. J. Food Sci. Technol. 2006, 41, 892–899. [Google Scholar] [CrossRef]
- Martínez, J.A.; Melgosa, M.; Pérez, M.M.; Hita, E.; Negueruela, A.I. Note. Visual and instrumental color evaluation in red wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar] [CrossRef]
- Oliva, J.; Garde-Cerdán, T.; Martínez-Gil, A.M.; Salinas, M.R.; Barba, A. Fungicide effects on ammonium and amino acids of Monastrell grapes. Food Chem. 2011, 129, 1676–1680. [Google Scholar] [CrossRef]
- Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. Official Journal of the European Union, L70, 1–16. Available online: https://eur-lex.europa.eu/eli/reg/2005/396/oj (accessed on 20 March 2019).
- Commission Regulation (EU) No 34/2013 of 16 January 2013 Amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for 2-Phenylphenol, ametoctradin, Aureobasidium pullulans Strains DSM 14940 and DSM 14941, Cyproconazole, Difenoconazole, Dithiocarbamates, Folpet, Propamocarb, Spinosad, Spirodiclofen, Tebufenpyrad and Tetraconazole in or on Certain Products. Official Journal of the European Union, L 25, 1–48. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:025:0001:0048:en:PDF (accessed on 20 March 2019).
- Commission Regulation (EU) No 777/2013 of 12 August 2013 Amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Clodinafop, Clomazone, Diuron, Ethalfluralin, Ioxynil, Iprovalicarb, Maleic Hydrazide, Mepanipyrim, Metconazole, Prosulfocarb and Tepraloxydim in or on Certain Products. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:221:0001:0048:en:PDF (accessed on 20 March 2019).
- Commission Regulation (EU) No 2016/486 of 29 March 2016 Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Cyazofamid, Cycloxydim, Difluoroacetic acid, Fenoxycarb, Flumetralin, Fluopicolide, Flupyradifurone, Fluxapyroxad, Kresoxim-Methyl, Mandestrobin, Mepanipyrim, Metalaxyl-M, Pendimethalin and Tefluthrin in or on Certain Products. Official Journal of the European Union, L 90, 1–66. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.090.01.0001.01.ENG (accessed on 20 March 2019).
- Martínez, G.; Morales, A.; Maestro, A.; Cermeño, S.; Oliva, J.; Barba, A. Determination of nine fungicides in grape and wine using QuEChERS extraction and LC/MS/MS analysis. J. AOAC Int. 2015, 98, 1745–1751. [Google Scholar] [CrossRef]
- Payá, P.; Anastassiades, M.; Mack, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007, 389, 1697–1714. [Google Scholar] [CrossRef]
- Cermeño, S.; Martínez, G.; Oliva, J.; Cámara, M.A.; Barba, A. Influence of the presence of ethanol on in vitro bioavailability of fungicide residues. Food Chem. Toxicol. 2016, 93, 1–4. [Google Scholar] [CrossRef]
- González-Rodríguez, J.; Pérez-Juan, P.; Luque de Castro, M.D. Method for the simultaneous determination of total polyphenol and anthocyan indexes in red wines using a flow injection approach. Talanta 2002, 56, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Glories, Y. La couleur des vins rouges. 1re. Partie: Les equilibres des anthocyanes et des tanins. Connaissance de la Vigne et du Vin 1984, 18, 195–217. [Google Scholar]
- OIV (International Organisation of Vine and Wine). Compendium of International Methods of Wine and Must Analysis; OIV-18; OIV: Paris, France, 2016. [Google Scholar]
- Boulton, R.B. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Viticult. 2001, 52, 67–87. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
Step | Iprovalicarb | Mepanipyrim | Tetraconazole | |||
---|---|---|---|---|---|---|
10 mg·kg−1 (5MRL) | 4 mg·kg−1 (2MRL) | 10 mg·kg−1 (5MRL) | 4 mg·kg−1 (2MRL) | 2.5 mg·kg−1 (5MRL) | 1 mg·kg−1 (2MRL) | |
Must-wine after pressing (5.3 L) | 6.44 ± 0.21 | 3.19 ± 0.08 | 1.79 ± 0.04 | 0.68 ± 0.03 | 0.92 ± 0.18 | 0.37 ± 0.03 |
Grape pomace (2.2 kg) | 12.12 ± 2.39 | 5.56 ± 0.08 | 12.41 ± 1.40 | 5.04 ± 0.28 | 5.90 ± 0.45 | 2.63 ± 0.46 |
Wine (3.5 L) | 6.23 ± 0.31 | 2.86 ± 0.43 | 0.87 ± 0.05 | 0.33 ± 0.01 | 0.46 ± 0.04 | 0.20 ± 0.01 |
Lees (0.5 kg) | 9.26 ± 1.56 | 3.17 ± 0.03 | 3.22 ± 0.08 | 1.34 ± 0.06 | 1.59 ± 0.14 | 0.78 ± 0.09 |
Clarified wine (3.5 L) | 5.99 ± 0.13 | 2.60 ± 0.05 | 0.68 ± 0.04 | 0.25 ± 0.02 | 0.47 ± 0.04 | 0.21 ± 0.03 |
ADI (%) | 85.6 | 37.1 | 12.1 | 4.5 | 25.2 | 11.3 |
Mass transfer factor | 0.60 | 0.65 | 0.07 | 0.06 | 0.19 | 0.21 |
Fungicide dissipation (%) | 71.6 | 73.8 | 97.3 | 97.0 | 90.8 | 91.8 |
CONTROL | IPROVALICARB 2MRL | IPROVALICARB 5MRL | MEPANIPYRIM 2MRL | MEPANIPYRIM 5MRL | TETRACONAZOLE 2MRL | TETRACONAZOLE 5MRL | |
---|---|---|---|---|---|---|---|
Enological parameters | |||||||
Alcoholic degree (% vol) | 13.73 a ± 0.63 | 13.95 ab ± 0.07 | 13.83 a ± 0.05 | 14.03 ab ± 0.03 | 14.04 ab ± 0.03 | 14.27 b ± 0.07 | 14.34 b ± 0.04 |
Acidity (g/L tartaric acid) | 6.17 a ± 0.22 | 6.48 b ± 0.06 | 6.85 c ± 0.05 | 6.61 b ± 0.08 | 6.53 b ± 0.07 | 6.15 a ± 0.03 | 6.18 a ± 0.05 |
Volatile acidity (g/L acetic acid) | 0.42 a ± 0.05 | 1.66 d ± 0.03 | 3.62 e ± 0.06 | 1.67 d ± 0.04 | 3.63 e ± 0.14 | 0.66 b ± 0.02 | 1.10 c ± 0.01 |
pH | 3.43 a ± 0.02 | 3.46 b ± 0.01 | 3.49 c ± 0.01 | 3.45 b ± 0.01 | 3.46 b ± 0.01 | 3.42 a ± 0.01 | 3.45 b ± 0.01 |
Malic acid (g/L) | 1.96 d ± 0.16 | 0.00 a ± 0.00 | 0.00 a ± 0.00 | 0.08 a ± 0.09 | 0.00 a ± 0.00 | 1.57 c ± 0.06 | 0.85 b ± 0.10 |
Lactic acid (g/L) | 0.34 a ± 0.04 | 3.03 d ± 0.10 | 6.98 e ± 0.18 | 2.93 d ± 0.15 | 6.91 e ± 0.23 | 0.79 b ± 0.03 | 1.90 c ± 0.08 |
Glucose/fructose ratio | 0.18 a ± 0.16 | 0.00 b ± 0.00 | 0.00 b ± 0.00 | 0.00 b ± 0.00 | 0.00 b ± 0.00 | 0.01 b ± 0.01 | 0.00 b ± 0.00 |
Dry extract (g/L) | 24.05 a ± 0.58 | 27.45 c ± 0.35 | 32.70 d ± 0.54 | 27.07 bc ± 0.55 | 33.52 e ± 0.29 | 24.55 a ± 0.37 | 26.30 b ± 0.21 |
Total Phenol Index (TPI) | 44.29 a ± 0.57 | 45.48 ab ± 0.80 | 47.36 cd ± 0.48 | 45.73 b ± 0.97 | 48.33 d ± 0.24 | 44.37 a ± 0.66 | 46.41 bc ± 0.94 |
Colorimetric indexes | |||||||
% yellow | 32.48 a ± 0.25 | 32.92 b ± 0.31 | 34.25 c ± 0.06 | 33.26 b ± 0.23 | 34.20 c ± 0.19 | 32.94 b ± 0.15 | 33.15 b ± 0.16 |
% red | 54.13 d ± 0.24 | 53.73 c ± 0.28 | 53.23 a ± 0.13 | 53.65 bc ± 0.19 | 53.32 ab ± 0.08 | 53.90 cd ± 0.23 | 54.02 cd ± 0.27 |
% blue | 13.39 c ± 0.39 | 13.35 c ± 0.48 | 12.52 a ± 0.11 | 13.10 bc ± 0.08 | 12.47 a ± 0.12 | 13.16 bc ± 0.16 | 12.83 ab ± 0.26 |
Tonality | 60.00 a ± 0.46 | 61.27 bc ± 0.57 | 64.34 d ± 0.24 | 61.99 c ± 0.63 | 64.14 d ± 0.44 | 61.10 b ± 0.50 | 61.36 bc ± 0.50 |
Color intensity | 12.09 ab ± 0.22 | 12.90 cd ± 0.46 | 12.98 cd ± 0.37 | 12.80 c ± 0.64 | 13.46 d ± 0.23 | 11.87 a ± 0.18 | 12.54 bc ± 0.20 |
CIELab space | |||||||
a* | 50.46 b ± 0.17 | 50.24 b ± 0.38 | 49.22 a ± 0.62 | 50.19 ab ± 0.98 | 49.98 ab ± 0.27 | 49.91 ab ± 0.42 | 50.84 b ± 0.64 |
b* | 5.33 a ± 0.36 | 9.18 bc ± 0.59 | 16.34 d ± 0.82 | 9.73 c ± 0.78 | 17.21 d ± 0.18 | 5.72 a ± 0.29 | 8.47 b ± 0.90 |
L* | 45.97 ab ± 0.79 | 44.53 a ± 1.08 | 45.78 ab ± 0.78 | 45.03 a ± 1.59 | 44.77 a ± 0.67 | 46.90 b ± 0.52 | 45.65 ab ± 0.33 |
Cab* | 50.68 ab ± 0.22 | 51.07 abc ± 0.43 | 51.87 cd ± 0.84 | 51.13 abc ± 1.10 | 52.86 d ± 0.23 | 50.24 a ± 0.40 | 51.55 bc ± 0.70 |
hab | 6.03 a ± 0.40 | 10.35 bc ± 0.62 | 18.36 d ± 0.67 | 10.96 c ± 0.68 | 19.00 d ± 0.24 | 6.54 a ± 0.35 | 9.45 b ± 0.96 |
∆Eab* | 4.12 | 11.08 | 4.50 | 11.95 | 1.15 | 3.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briz-Cid, N.; Rial-Otero, R.; Cámara, M.A.; Oliva, J.; Simal-Gandara, J. Dissipation of Three Fungicides and Their Effects on Anthocyanins and Color of Monastrell Red Wines. Int. J. Mol. Sci. 2019, 20, 1447. https://doi.org/10.3390/ijms20061447
Briz-Cid N, Rial-Otero R, Cámara MA, Oliva J, Simal-Gandara J. Dissipation of Three Fungicides and Their Effects on Anthocyanins and Color of Monastrell Red Wines. International Journal of Molecular Sciences. 2019; 20(6):1447. https://doi.org/10.3390/ijms20061447
Chicago/Turabian StyleBriz-Cid, Noelia, Raquel Rial-Otero, Miguel A. Cámara, José Oliva, and Jesus Simal-Gandara. 2019. "Dissipation of Three Fungicides and Their Effects on Anthocyanins and Color of Monastrell Red Wines" International Journal of Molecular Sciences 20, no. 6: 1447. https://doi.org/10.3390/ijms20061447
APA StyleBriz-Cid, N., Rial-Otero, R., Cámara, M. A., Oliva, J., & Simal-Gandara, J. (2019). Dissipation of Three Fungicides and Their Effects on Anthocyanins and Color of Monastrell Red Wines. International Journal of Molecular Sciences, 20(6), 1447. https://doi.org/10.3390/ijms20061447