The First Transcriptome Assembly of Yenyuan Stream Salamander (Batrachuperus yenyuanensis) Provides Novel Insights into Its Molecular Evolution
Abstract
:1. Introduction
2. Results
2.1. Sampling and Transcriptome Assembly of the Yenyuan Stream Salamander
2.2. Gene Families of the Yenyuan Stream Salamander
2.3. Evolutionary Status of the Yenyuan Stream Salamander
3. Discussion
4. Materials and Methods
4.1. Total RNA Extraction and Sequencing
4.2. De Novo Transcriptome Assembly and Annotation
4.3. Gene Family Comparisons
4.4. Phylogenetic Construction and Estimation of Species Divergence Time
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, C. Amphibians of Western China. Fieldiana, Zoology Memoires Val.2; Chicago Natura History Museum: Chicago, IL, USA, 1950; pp. 1–397. [Google Scholar]
- Fei, L.; Hu, S.; Ye, C.; Huang, Y. Fauna Sinica, Amphibia Vol. 1; Science Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Fu, J.; Wang, Y.; Zeng, X.; Liu, Z.; Zheng, Y. Genetic Diversity of Eastern Batrachuperus (Caudata: Hynobiidae). Copeia 2001, 2001, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Zeng, X. How Many Species Are in the Genus Batrachuperus? A Phylogeographical Analysis of the Stream Salamanders (Family Hynobiidae) from Southwestern China. Mol. Ecol. 2008, 17, 1469–1488. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Zheng, Y.; Murphy, R.W.; Zeng, X. Coalescence Patterns of Endemic Tibetan Species of Stream Salamanders (Hynobiidae: Batrachuperus). Mol. Ecol. 2012, 21, 3308–3324. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhang, Y.; Liu, Q.; Min, Y.; Gou, J.; Li, J. Hematological Parameter Values for a Population of Batrachuperus yenyuanensis from West China. S. Am. J. Herpetol. 2017, 12, 218–223. [Google Scholar] [CrossRef]
- Nowoshilow, S.; Schloissnig, S.; Fei, J.F.; Dahl, A.; Pang, A.W.; Pippel, M.; Winkler, S.; Hastie, A.R.; Young, G.; Roscito, J.G. The Axolotl Genome and the Evolution of Key Tissue Formation Regulators. Nature 2018, 554, 50. [Google Scholar] [CrossRef]
- Zhao, B.; Tumaneng, K.; Guan, K.L. The Hippo Pathway in Organ Size Control, Tissue Regeneration and Stem Cell Self-Renewal. Nat. Cell Biol. 2011, 13, 877–883. [Google Scholar] [CrossRef]
- Amemiya, C.T.; Alfoldi, J.; Lee, A.P.; Fan, S.; Philippe, H.; MacCallum, I.; Braasch, I.; Manousaki, T.; Schneider, I.; Rohner, N. The African Coelacanth Genome Provides Insights into Tetrapod Evolution. Nature 2013, 496, 311. [Google Scholar] [CrossRef]
- Hu, Q.; Tian, H.; Li, W.; Meng, Y.; Wang, Q.; Xiao, H. Identification of Critical Sex-Biased Genes in Andrias Davidianus by De Novo Transcriptome. Mol. Genet. Genom. 2018, 294, 1–13. [Google Scholar] [CrossRef]
- Dwaraka, V.B.; Smith, J.J.; Woodcock, M.R.; Voss, S.R. Comparative Transcriptomics of Limb Regeneration: Identification of Conserved Expression Changes among Three Species of Ambystoma. Genomics 2018. [Google Scholar] [CrossRef]
- Looso, M.; Preussner, J.; Sousounis, K.; Bruckskotten, M.; Michel, C.S.; Lignelli, E.; Reinhardt, R.; Hoffner, S.; Kruger, M.; Tsonis, P.A. A De Novo Assembly of the Newt Transcriptome Combined with Proteomic Validation Identifies New Protein Families Expressed During Tissue Regeneration. Genome Biol. 2013, 14, R16. [Google Scholar] [CrossRef]
- Nakamura, K.; Islam, M.R.; Takayanagi, M.; Yasumuro, H.; Inami, W.; Kunahong, A.; Casco-Robles, R.M.; Toyama, F.; Chiba, C. A Transcriptome for the Study of Early Processes of Retinal Regeneration in the Adult Newt, Cynops pyrrhogaster. PLoS ONE 2014, 9, e109831. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.M.A.; Woodcock, R.M.; Smith, J.J.; Voss, R.S.; Delgado, J.P. Using Transcriptomics to Enable a Plethodontid Salamander (Bolitoglossa Ramosi) for Limb Regeneration Research. BMC Genom. 2018, 19, 704. [Google Scholar]
- Matsunami, M.; Suzuki, M.; Haramoto, Y.; Fukui, A.; Inoue, T.; Yamaguchi, K.; Uchiyama, I.; Mori, K.; Tashiro, K.; Ito, Y. A Comprehensive Reference Transcriptome Resource for the Iberian Ribbed Newt Pleurodeles waltl, an Emerging Model for Developmental and Regeneration Biology. bioRxiv 2018, 423699. [Google Scholar] [CrossRef]
- Alvarado, A.S. Regeneration in the Metazoans: Why Does It Happen? Bioessays 2000, 22, 578–590. [Google Scholar] [CrossRef]
- Hayashi, S.; Tamura, K.; Yokoyama, H. Yap1, Transcription Regulator in the Hippo Signaling Pathway, Is Required for Xenopus Limb Bud Regeneration. Dev. Biol. 2014, 388, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Jarjour, A.A.; Boyd, A.; Dow, L.E.; Holloway, R.K.; Goebbels, S.; Humbert, P.O.; Williams, A. The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System. PLoS Biol. 2015, 13, e1002107. [Google Scholar] [CrossRef] [PubMed]
- Pyron, R.A. A Likelihood Method for Assessing Molecular Divergence Time Estimates and the Placement of Fossil Calibrations. Syst. Biol. 2009, 59, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Pyron, R.A. Divergence Time Estimation Using Fossils as Terminal Taxa and the Origins of Lissamphibia. Syst. Biol. 2011, 60, 466–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roquet, C.; Lavergne, S.; Thuiller, W. One Tree to Link Them All: A Phylogenetic Dataset for the European Tetrapoda. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Ruane, S.; Pyron, R.; Burbrink, F. Phylogenetic Relationships of the Cretaceous Frog Beelzebufo from Madagascar and the Placement of Fossil Constraints Based on Temporal and Phylogenetic Evidence. J. Evol. Biol. 2011, 24, 274–285. [Google Scholar] [CrossRef]
- Shen, X.X.; Liang, D.; Zhang, P. The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested Pcr. PLoS ONE 2012, 7, e39256. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, H.; Chen, Y.Q.; Liu, Y.F.; Qu, L.H. Mitogenomic Perspectives on the Origin and Phylogeny of Living Amphibians. Syst. Biol. 2005, 54, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M. De Novo Transcript Sequence Reconstruction from RNA-Seq Using the Trinity Platform for Reference Generation and Analysis. Nat. Protoc. 2013, 8, 1494. [Google Scholar] [CrossRef]
- Pertea, G.; Huang, X.; Liang, F.; Antonescu, V.; Sultana, R.; Karamycheva, S.; Lee, Y.; White, J.; Cheung, F.; Parvizi, B. Tigr Gene Indices Clustering Tools (Tgicl): A Software System for Fast Clustering of Large Est Datasets. Bioinformatics 2003, 19, 651–652. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. Rsem: Accurate Transcript Quantification from Rna-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2017, 35, 543–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruitt, K.D.; Tatusova, T.; Maglott, D.R. Ncbi Reference Sequences (Refseq): A Curated Non-Redundant Sequence Database of Genomes, Transcripts and Proteins. Nucleic Acids Res. 2006, 35, D61–D65. [Google Scholar] [CrossRef] [PubMed]
- Consortium, U. Uniprot: The Universal Protein Knowledgebase. Nucleic Acids Res. 2016, 45, D158–D169. [Google Scholar]
- Kanehisa, M.; Goto, S. Kegg: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N. The Cog Database: An Updated Version Includes Eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.J.; Kuraku, S.; Holt, C.; Saukaspengler, T.; Jiang, N.; Campbell, M.S.; Yandell, M.D.; Manousaki, T.; Meyer, A.; Bloom, O.E. Sequencing of the Sea Lamprey (Petromyzon marinus) Genome Provides Insights into Vertebrate Evolution. Nat. Genet. 2013, 45, 1–2. [Google Scholar] [CrossRef]
- Venkatesh, B.; Lee, A.P.; Ravi, V.; Maurya, A.K.; Lian, M.M.; Swann, J.B.; Ohta, Y.; Flajnik, M.F.; Sutoh, Y.; Kasahara, M. Elephant Shark Genome Provides Unique Insights into Gnathostome Evolution. Nature 2014, 505, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Read, T.D.; Petit, R.A.; Joseph, S.J.; Alam, M.T.; Weil, M.R.; Ahmad, M.; Bhimani, R.; Vuong, J.S.; Haase, C.P.; Webb, D.H. Draft Sequencing and Assembly of the Genome of the World’s Largest Fish, the Whale Shark: Rhincodon typus Smith 1828. BMC Genom. 2017, 18, 532. [Google Scholar]
- Braasch, I.; Gehrke, A.R.; Smith, J.J.; Kawasaki, K.; Manousaki, T.; Pasquier, J.; Amores, A.; Desvignes, T.; Batzel, P.; Catchen, J.; et al. The Spotted Gar Genome Illuminates Vertebrate Evolution and Facilitates Human-Teleost Comparisons. Nat. Genet. 2016, 48, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Bian, C.; Hu, Y.; Ravi, V.; Kuznetsova, I.S.; Shen, X.; Mu, X.; Sun, Y.; You, X.; Li, J.; Li, X. The Asian Arowana (Scleropages formosus) Genome Provides New Insights into the Evolution of an Early Lineage of Teleosts. Sci. Rep. UK 2016, 6, 24501. [Google Scholar] [CrossRef]
- Collins, J.E.; White, S.; Searle, S.M.; Stemple, D.L. Incorporating Rna-Seq Data into the Zebrafish Ensembl Genebuild. Genome Res. 2012, 22, 2067–2078. [Google Scholar] [CrossRef]
- Kasahara, M.; Naruse, K.; Sasaki, S.; Nakatani, Y.; Qu, W.; Ahsan, B.; Yamada, T.; Nagayasu, Y.; Doi, K.; Kasai, Y. The Medaka Draft Genome and Insights into Vertebrate Genome Evolution. Nature 2007, 447, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, S.; Brenner, S. Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes. Science 2002, 297, 1301–1310. [Google Scholar] [CrossRef]
- Sun, Y.B.; Xiong, Z.J.; Xiang, X.Y.; Liu, S.P.; Zhou, W.W.; Tu, X.L.; Zhong, L.; Wang, L.; Wu, D.D.; Zhang, B.L. Whole-Genome Sequence of the Tibetan Frog Nanorana parkeri and the Comparative Evolution of Tetrapod Genomes. Proc. Natl. Acad. Sci. USA 2015, 112, E1257–E1262. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.A.; Warren, R.L.; Vandervalk, B.P.; Kucuk, E.; Khan, H.; Gibb, E.A.; Pandoh, P.; Kirk, H.; Zhao, Y.; Jones, M. The North American Bullfrog Draft Genome Provides Insight into Hormonal Regulation of Long Noncoding Rna. Nat. Commun. 2017, 8, 1433. [Google Scholar] [CrossRef] [PubMed]
- Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, A.; Kondo, M. Genome Evolution in the Allotetraploid Frog Xenopus laevis. Nature 2016, 538, 336. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, U.; Harland, R.M.; Gilchrist, M.J.; Hendrix, D.; Jurka, J.; Kapitonov, V.; Ovcharenko, I.; Putnam, N.H.; Shu, S.; Taher, L. The Genome of the Western Clawed Frog Xenopus tropicalis. Science 2010, 328, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pascual-Anaya, J.; Zadissa, A.; Li, W.; Niimura, Y.; Huang, Z.; Li, C.; White, S.; Xiong, Z.; Fang, D. The Draft Genomes of Soft-Shell Turtle and Green Sea Turtle Yield Insights into the Development and Evolution of the Turtle-Specific Body Plan. Nat. Genet. 2014, 46, 701–706. [Google Scholar] [CrossRef]
- Warren, W.C.; Clayton, D.F.; Ellegren, H.; Arnold, A.P.; Hillier, L.W.; Künstner, A.; Searle, S.; White, S.; Vilella, A.J.; Fairley, S. The Genome of a Songbird. Nature 2010, 464, 757. [Google Scholar] [CrossRef]
- Consortium, I.C.G.S. Sequence and Comparative Analysis of the Chicken Genome Provide Unique Perspectives on Vertebrate Evolution. Nature 2004, 432, 695. [Google Scholar]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A. The Sequence of the Human Genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [Green Version]
- Zimin, A.V.; Delcher, A.L.; Florea, L.; Kelley, D.R.; Schatz, M.C.; Puiu, D.; Hanrahan, F.; Pertea, G.; Tassell, C.P.V.; Sonstegard, T.S. A Whole-Genome Assembly of the Domestic Cow, Bos taurus. Genome Biol. 2009, 10, R42. [Google Scholar] [CrossRef]
- Lobo, I. Basic Local Alignment Search Tool (Blast). J. Mol. Biol. 2008, 215, 403–410. [Google Scholar]
- Li, L.; Stoeckert, C.J., Jr.; Roos, D.S. Orthomcl: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef]
- Edgar, R.C. Muscle: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of Phyml 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. Paml 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- You, X.; Bian, C.; Zan, Q.; Xu, X.; Liu, X.; Chen, J.; Wang, J.; Qiu, Y.; Li, W.; Zhang, X. Mudskipper Genomes Provide Insights into the Terrestrial Adaptation of Amphibious Fishes. Nat. Commun. 2014, 5, 5594. [Google Scholar] [CrossRef] [PubMed]
- Benton, M.J.; Donoghue, P.C.; Asher, R.J.; Friedman, M.; Near, T.J.; Vinther, J. Constraints on the Timescale of Animal Evolutionary History. Palaeontol. Electron. 2015, 18, 1–106. [Google Scholar] [CrossRef]
- Setiamarga, D.H.; Miya, M.; Yamanoue, Y.; Mabuchi, K.; Satoh, T.P.; Inoue, J.G.; Nishida, M. Interrelationships of Atherinomorpha (Medakas, Flyingfishes, Killifishes, Silversides, and Their Relatives): The First Evidence Based on Whole Mitogenome Sequences. Mol. Phylogenet. Evol. 2008, 49, 598–605. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Lv, Y.; Huang, Y.; Liu, Q. The First Transcriptome Assembly of Yenyuan Stream Salamander (Batrachuperus yenyuanensis) Provides Novel Insights into Its Molecular Evolution. Int. J. Mol. Sci. 2019, 20, 1529. https://doi.org/10.3390/ijms20071529
Xiong J, Lv Y, Huang Y, Liu Q. The First Transcriptome Assembly of Yenyuan Stream Salamander (Batrachuperus yenyuanensis) Provides Novel Insights into Its Molecular Evolution. International Journal of Molecular Sciences. 2019; 20(7):1529. https://doi.org/10.3390/ijms20071529
Chicago/Turabian StyleXiong, Jianli, Yunyun Lv, Yong Huang, and Qiangqiang Liu. 2019. "The First Transcriptome Assembly of Yenyuan Stream Salamander (Batrachuperus yenyuanensis) Provides Novel Insights into Its Molecular Evolution" International Journal of Molecular Sciences 20, no. 7: 1529. https://doi.org/10.3390/ijms20071529
APA StyleXiong, J., Lv, Y., Huang, Y., & Liu, Q. (2019). The First Transcriptome Assembly of Yenyuan Stream Salamander (Batrachuperus yenyuanensis) Provides Novel Insights into Its Molecular Evolution. International Journal of Molecular Sciences, 20(7), 1529. https://doi.org/10.3390/ijms20071529