Investigating the Role of BATF3 in Grass Carp (Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis
Abstract
:1. Introduction
2. Results
2.1. Analysis of CiBATF3
2.2. The mRNA Expression Levels of CiBATF3 in Tested Tissues
2.3. Analysis of CiBATF3, IRF8 and IL-10 Genes After GCRV Infection In Vivo
2.4. Time-Course Analysis of CiBATF3 Expression in CIK Cells After LPS Exposure or Poly(I:C) Challenge
2.5. siRNA-Mediated CiBATF3 Silencing Could Affect the Expression of its Downstream Molecules In Vitro and In Vivo
2.6. Cell Transfection and Luciferase Activity Analysis
2.7. Subcellular Localization of CiBATF3 in CIK Cells and HEK293 Cells
2.8. The CiBATF3-GFP Nuclear Translocation Induced by Poly(I:C) Stimulation
2.9. Interaction between CiBATF3 and IL-10
3. Discussion
4. Materials and methods
4.1. Cells, Plasmid and Fish
4.2. GCRV Infection and Sampling
4.3. Cloning the Full-Length CiBATF3 cDNA
4.4. Sequence Analysis
4.5. Tissue Distribution of CiBATF3
4.6. Responses of CiBATF3, IRF8 and IL-10 Genes to GCRV Infection In Vivo
4.7. The mRNA Expression Profiles of CiBATF3 Gene in CIK Cells Following Poly(I:C) Challenge, LPS Stimulation
4.8. CiBATF3 Gene Silencing Using siRNA In Vitro and In Vivo
4.9. Dual-Luciferase Activity Assays
4.10. Subcellular Localization of CiBATF3 in CIK Cells and HEK293 Cells
4.11. Verification of the Protein Interaction between CiBATF3 and IL-10
4.12. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BATF3 | basic leucine zipper transcription factor ATF-like (BATF)-3 |
STAT3 | signal transducer and activator of transcription 3 |
DB | DNA binding domain |
AP-1 | activator protein 1 |
DC | dendritic cell |
IFN | interferon |
IL | interleukin |
IRF | interferon regulated factor |
CIK | Ctenopharyngodon idella kidney |
LPS | lipopolysaccharide |
FOS | FBJ osteosarcoma oncogene |
LZ | leucine zipper |
c-myc | cellular myelocytomatosis oncogene |
PAMP | pathogen-associated molecular pattern |
Poly(I:C) | polyinosinic:polycytidylic acid |
bZIP | basic leucine zipper |
CD | cluster of differentiation |
GATA3 | GATA binding protein 3 |
IL-4 | interleukin 4 |
IL-10 | interleukin 10 |
IRF8 | interferon regulatory factor 8 |
IL-12 p35 | interleukin 12a |
IL-12 p40 | interleukin 12b |
JUN | AP-1 transcription factor subunit |
dsRNA | double-stranded RNA |
PGN | peptidoglycan |
References
- Dorsey, M.J.; Tae, H.J.; Sollenberger, K.G.; Mascarenhas, N.T.; Johansen, L.M.; Taparowsky, E.J. B-ATF: A novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene 1995, 11, 2255–2265. [Google Scholar] [PubMed]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef] [PubMed]
- Landschulz, W.H.; Johnson, P.F.; McKnight, S.L. The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 1988, 240, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.; Tjian, R. Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos-cJun heterodimers. Science 1989, 243, 1689–1694. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, E.K.; Rutkowski, R.; Stafford, W.F., 3rd; Kim, P.S. Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 1989, 245, 646–648. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Mitchell, P.; Tjian, R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 1987, 49, 741–752. [Google Scholar] [CrossRef]
- Murphy, T.L.; Tussiwand, R.; Murphy, K.M. Specificity through cooperation: BATF–IRF interactions control immune-regulatory networks. Nat. Rev. Immunol. 2013, 13, 499. [Google Scholar] [CrossRef]
- Merad, M.; Manz, M.G. Dendritic cell homeostasis. Blood 2009, 113, 3418–3427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilliams, M.; Ginhoux, F.; Jakubzick, C.; Naik, S.H.; Onai, N.; Schraml, B.U.; Segura, E.; Tussiwand, R.; Yona, S. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat. Rev. Immunol. 2014, 14, 571–578. [Google Scholar] [CrossRef]
- Worbs, T.; Hammerschmidt, S.I.; Forster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 2017, 17, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Durai, V.; Murphy, K.M. Functions of Murine Dendritic Cells. Immunity 2016, 45, 719–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randolph, G.J.; Ochando, J.; Partida-Sanchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 2008, 26, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Randolph, G.J.; Angeli, V.; Swartz, M.A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005, 5, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Schiavoni, G.; Mattei, F.; Sestili, P.; Borghi, P.; Venditti, M.; Morse, H.C.; Belardelli, F.; Gabriele, L. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8 alpha(+) dendritic cells. J. Exp. Med. 2002, 196, 1415–1425. [Google Scholar] [CrossRef]
- Hildner, K.; Edelson, B.T.; Purtha, W.E.; Diamond, M.; Matsushita, H.; Kohyama, M.; Calderon, B.; Schraml, B.U.; Unanue, E.R.; Diamond, M.S.; et al. Batf3 Deficiency Reveals a Critical Role for CD8 alpha(+) Dendritic Cells in Cytotoxic T Cell Immunity. Science 2008, 322, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Tailor, P.; Tamura, T.; Morse, H.C.; Ozato, K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 2008, 111, 1942–1945. [Google Scholar] [CrossRef] [PubMed]
- Tsujimura, H.; Tamura, T.; Gongora, C.; Aliberti, J.; Sousa, C.R.E.; Sher, A.; Ozato, K. ICSBP/IRF-8 retrovirus transduction rescues dendritic cell development in vitro. Blood 2003, 101, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, L.; Ozato, K. The role of the interferon regulatory factor (IRF) family in dendritic cell development and function. Cytokine Growth Factor Rev. 2007, 18, 503–510. [Google Scholar] [CrossRef]
- Kedl, R.M.; Lindsay, R.S.; Finlon, J.M.; Lucas, E.D.; Friedman, R.S.; Tamburini, B.A.J. Migratory dendritic cells acquire and present lymphatic endothelial cell-archived antigens during lymph node contraction. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Rojas, O.L.; Li, C.; Ward, L.A.; Philpott, D.J.; Gommerman, J.L. Intestinal Batf3-dependent dendritic cells are required for optimal antiviral T-cell responses in adult and neonatal mice. Mucosal Immunol. 2017, 10, 775. [Google Scholar] [CrossRef]
- Edelson, B.T.; Wumesh, K.C.; Juang, R.; Kohyama, M.; Benoit, L.A.; Klekotka, P.A.; Moon, C.; Albring, J.C.; Ise, W.; Michael, D.G.; et al. Peripheral CD103(+) dendritic cells form a unified subset developmentally related to CD8 alpha(+) conventional dendritic cells. J. Exp. Med. 2010, 207, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Tussiwand, R.; Lee, W.L.; Murphy, T.L.; Mashayekhi, M.; Wumesh, K.C.; Albring, J.C.; Satpathy, A.T.; Rotondo, J.A.; Edelson, B.T.; Kretzer, N.M.; et al. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 2012, 490, 502–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquier, J.; Cabau, C.; Nguyen, T.; Jouanno, E.; Severac, D.; Braasch, I.; Journot, L.; Pontarotti, P.; Klopp, C.; Postlethwait, J.H.; et al. Gene evolution and gene expression after whole genome duplication in fish: The PhyloFish database. BMC Genom. 2016, 17, 368. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.S.; Jantzen, S.G.; Schalburg, K.R.V.; Cooper, G.A.; Messmer, A.M.; Liao, N.Y.; Munro, S.; Moore, R.; Holt, R.A.; Jones, S.J. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. BMC Genom. 2010, 11, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, M.; Wu, Y.; Yoon, S.; Alnabulsi, A.; Liu, F.; Fernández-Álvarez, C.; Wang, T.; Holland, J.W.; Secombes, C.J.; et al. Immune-modulation of two BATF3 paralogues in rainbow trout Oncorhynchus mykiss. Mol. Immunol. 2018, 99, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.; He, L.; Zhu, D.; Chen, L.; Huang, R.; Liao, L.; Li, Y.; Zhu, Z.; Wang, Y. Identification, characterisation and preliminary functional analysis of IRAK-M in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019, 84, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; He, L.; Luo, L.; Li, Y.; Liao, L.; Huang, R.; Zhu, Z.; Wang, Y. Global and Complement Gene-Specific DNA Methylation in Grass Carp after Grass Carp Reovirus (GCRV) Infection. Int. J. Mol. Sci. 2018, 19, 1110. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.; He, L.; Li, Y.; Huang, R.; Liao, L.; Li, Y.; Zhu, Z.; Wang, Y. Molecular cloning and functional characterisation of NLRX1 in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 81, 276–283. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhang, Y.; Ning, Z.; Li, Y.; Zhao, Q.; Lu, H.; Huang, R.; Xia, X.; Feng, Q.; et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat. Genet. 2015, 47, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Li, G.X.; Zhao, Y.L.; Wang, J.; Liu, B.Z.; Sun, X.L.; Guo, S.; Feng, J.X. Transcriptome profiling of developing spleen tissue and discovery of immune-related genes in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 60, 400–410. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Huang, R.; Du, F.; Liao, L.; Zhu, Z.; Wang, Y. Transcriptome analysis of head kidney in grass carp and discovery of immune-related genes. BMC Vet. Res. 2012, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.L.; Liu, Y.; Zhong, S.; Wu, H.; Ruan, J.; Liu, M.; Zhou, Q.; Zhong, Q. Transcriptome analysis of grass carp provides insights into the immune-related genes and pathways in response to MC-LR induction. Aquaculture 2018, 488. [Google Scholar] [CrossRef]
- He, L.; Zhang, A.; Chu, P.; Li, Y.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. Deep Illumina sequencing reveals conserved and novel microRNAs in grass carp in response to grass carp reovirus infection. BMC Genom. 2017, 18, 195. [Google Scholar] [CrossRef]
- Muffato, M.; Louis, A.; Poisnel, C.E.; Roest Crollius, H. Genomicus: A database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics 2010, 26, 1119–1121. [Google Scholar] [CrossRef] [PubMed]
- Lollies, A.; Hartmann, S.; Schneider, M.; Bracht, T.; Weiss, A.L.; Arnolds, J.; Klein-Hitpass, L.; Sitek, B.; Hansmann, M.L.; Kuppers, R.; et al. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia 2018, 32, 92–101. [Google Scholar] [CrossRef]
- Grajales-Reyes, G.E.; Iwata, A.; Albring, J.; Wu, X.; Tussiwand, R.; Kc, W.; Kretzer, N.M.; Briseno, C.G.; Durai, V.; Bagadia, P.; et al. Batf3 maintains autoactivation of Irf8 for commitment of a CD8alpha(+) conventional DC clonogenic progenitor. Nat. Immunol. 2015, 16, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Schraml, B.U.; Hildner, K.; Ise, W.; Lee, W.L.; Smith, W.A.E.; Solomon, B.; Sahota, G.; Sim, J.; Mukasa, R.; Cemerski, S.; et al. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 2009, 460, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Ise, W.; Kohyama, M.; Schraml, B.U.; Zhang, T.T.; Schwer, B.; Basu, U.; Alt, F.W.; Tang, J.; Oltz, E.M.; Murphy, T.L.; et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat. Immunol. 2011, 12, 536–543. [Google Scholar] [CrossRef]
- Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997, 388, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Rock, F.L.; Hardiman, G.; Timans, J.C.; Kastelein, R.A.; Bazan, J.F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 1998, 95, 588–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, O.; Kawai, T.; Sanjo, H.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Takeda, K.; Akira, S. TLR6: A novel member of an expanding toll-like receptor family. Gene 1999, 231, 59–65. [Google Scholar] [CrossRef]
- Chuang, T.H.; Ulevitch, R.J. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur. Cytokine Netw. 2000, 11, 372–378. [Google Scholar]
- Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.K.; Zhang, G.L.; Hayden, M.S.; Greenblatt, M.B.; Bussey, C.; Flavell, R.A.; Ghosh, S. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004, 303, 1522–1526. [Google Scholar] [CrossRef] [PubMed]
- Poltorak, A.; He, X.L.; Smirnova, I.; Liu, M.Y.; Van Huffel, C.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 1998, 282, 2085–2088. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001, 413, 732–738. [Google Scholar] [CrossRef]
- Beg, A.A.; Baltimore, D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996, 274, 782–784. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Signaling to NF-kappaB. Genes Dev. 2004, 18, 2195–2224. [Google Scholar] [CrossRef]
- Liu, Z.G.; Hsu, H.L.; Goeddel, D.V.; Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappa B activation prevents cell death. Cell 1996, 87, 565–576. [Google Scholar] [CrossRef]
- Angel, P.; Karin, M. The Role of Jun, Fos and the Ap-1 Complex in Cell-Proliferation and Transformation. Biochim. Biophys. Acta 1991, 1072, 129–157. [Google Scholar] [CrossRef]
- Blank, V. Small Maf proteins in mammalian gene control: Mere dimerization partners or dynamic transcriptional regulators? J. Mol. Biol. 2008, 376, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Echlin, D.; Tae, H.N.; Taparowsky, E. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and FOS. Oncogene 2000, 19, 1752–1763. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.L.; Nanda, I.; Lyons, G.E.; Kuo, C.T.; Schmid, M.; Leiden, J.M.; Kaplan, M.H.; Taparowsky, E.J. Characterization of murine BATF: A negative regulator of activator protein-1 activity in the thymus. Eur. J. Immunol. 2015, 31, 1620–1627. [Google Scholar] [CrossRef]
- Zhao, L.U.; Peng, Z.S.; Jing, N.; Jia, H.T.; Wei, D. BATF2/SARI Induces Tumor Cell Apoptosis by Inhibiting p53-dependent NF-κB Activity. Chin. J. Biochem. Mol. Biol. 2011. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, R.; Chen, L.; Fu, P.; Luo, L.; He, L.; Li, Y.; Liao, L.; Zhu, Z.; Wang, Y. Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish Shellfish Immunol. 2019, 86, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Jiang, L.; Xing, R.; Wang, Z.; Wang, Z.; Shao, Y.; Zhang, W.; Zhao, X.; Li, C. Cloning, expression analysis and functional characterization of an interleukin-1 receptor-associated kinase 4 from Apostichopus japonicus. Mol. Immunol. 2018, 101, 479–487. [Google Scholar] [CrossRef]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Wang, S.; Zhang, Z.; Ma, X.; Li, W.; Zhang, X.; Deng, J.; Wei, H.; Li, Z.; Zhang, X.E.; et al. In vivo imaging of protein-protein and RNA-protein interactions using novel far-red fluorescence complementation systems. Nucleic Acids Res. 2014, 42, e103. [Google Scholar] [CrossRef]
- Li, S.; Chen, M.; Xiong, Q.; Zhang, J.; Cui, Z.; Ge, F. Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells. J. Proteome Res. 2016, 15, 3741–3751. [Google Scholar] [CrossRef] [PubMed]
The Species Name and Accession Numbers | Percent of Identity | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Percent of identity | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
1. CiBATF3 | 85 | 69.8 | 50.8 | 50.8 | 51.6 | 53.6 | 50 | 50 | 44.5 | 48.7 | 41.7 | 44.1 | 43.3 | 36.9 | 40.3 | 39.7 | 46.9 | ||
2. DrBATF3_NP_001038857.1 | 85 | 67.2 | 52 | 52.8 | 52 | 53.1 | 51.2 | 51.2 | 44.5 | 47.9 | 40.2 | 42.4 | 44.1 | 36.9 | 41.1 | 40.5 | 45.3 | ||
3. IpBATF3_XP_017310165.1 | 69.8 | 67.2 | 49.2 | 50 | 53.4 | 54.6 | 51.6 | 51.6 | 50 | 48.7 | 45.1 | 43 | 41.5 | 37.3 | 41.6 | 42.1 | 47.2 | ||
4. OmBATF3a_APH08552.1 | 50.8 | 52 | 49.2 | 98.4 | 89.4 | 80.5 | 69 | 69 | 48.8 | 53.7 | 41.7 | 41.7 | 33.9 | 31.5 | 32.6 | 31 | 42.2 | ||
5. OmBATF3_XP_021454099.1 | 50.8 | 52.8 | 50 | 98.4 | 89.4 | 80.5 | 69 | 69 | 47.9 | 52.9 | 40.9 | 40 | 34.6 | 32.3 | 33.3 | 31.7 | 42.2 | ||
6. SsBATF3_XP_014060214.1 | 51.6 | 52 | 53.4 | 89.4 | 89.4 | 88.5 | 73.6 | 73.6 | 49.6 | 54.5 | 44.1 | 42.5 | 37 | 35.4 | 36.4 | 35.7 | 46.9 | ||
7. SsBATF3_NP_001135082.1 | 53.6 | 53.1 | 54.6 | 80.5 | 80.5 | 88.5 | 69.7 | 68.9 | 51.4 | 52.3 | 44.4 | 43.1 | 36.8 | 37.5 | 37.8 | 37.4 | 47.5 | ||
8. OmBATF3b_APH08553.1 | 50 | 51.2 | 51.6 | 69 | 69 | 73.6 | 69.7 | 96.9 | 50 | 56.3 | 46.6 | 41.6 | 39.8 | 35.9 | 37.7 | 36.2 | 48.1 | ||
9. SsBATF3_XP_014000176.1 | 50 | 51.2 | 51.6 | 69 | 69 | 73.6 | 68.9 | 96.9 | 49.2 | 54.8 | 45 | 40 | 39.1 | 36.6 | 36.2 | 35.4 | 48.1 | ||
10. PfBATF3_XP_007574812.1 | 44.5 | 44.5 | 50 | 48.8 | 47.9 | 49.6 | 51.4 | 50 | 49.2 | 70.6 | 61.3 | 53 | 38.1 | 34.4 | 37.5 | 38.7 | 38.9 | ||
11. AoBATF3_XP_023123541.1 | 48.7 | 47.9 | 48.7 | 53.7 | 52.9 | 54.5 | 52.3 | 56.3 | 54.8 | 70.6 | 63 | 54.2 | 34.9 | 33.3 | 38.3 | 39.2 | 40.2 | ||
12. OlBATF3_XP_011472010.1 | 41.7 | 40.2 | 45.1 | 41.7 | 40.9 | 44.1 | 44.4 | 46.6 | 45 | 61.3 | 63 | 52 | 35.1 | 32.8 | 40.6 | 38 | 42 | ||
13. CsBATF3_XP_016889000.1 | 44.1 | 42.4 | 43 | 41.7 | 40 | 42.5 | 43.1 | 41.6 | 40 | 53 | 54.2 | 52 | 35.2 | 30.5 | 37.6 | 35.5 | 41.8 | ||
14. XtBATF3_XP_004914833.1 | 43.3 | 44.1 | 41.5 | 33.9 | 34.6 | 37 | 36.8 | 39.8 | 39.1 | 38.1 | 34.9 | 35.1 | 35.2 | 61.5 | 61.2 | 56.6 | 53.1 | ||
15. GgBATF3_XP_419428.4 | 36.9 | 36.9 | 37.3 | 31.5 | 32.3 | 35.4 | 37.5 | 35.9 | 36.6 | 34.4 | 33.3 | 32.8 | 30.5 | 61.5 | 61.5 | 57.7 | 54.1 | ||
16. HsBATF3_NP_061134.1 | 40.3 | 41.1 | 41.6 | 32.6 | 33.3 | 36.4 | 37.8 | 37.7 | 36.2 | 37.5 | 38.3 | 40.6 | 37.6 | 61.2 | 61.5 | 80.3 | 57.5 | ||
17. MmBATF3_NP_084336.1 | 39.7 | 40.5 | 42.1 | 31 | 31.7 | 35.7 | 37.4 | 36.2 | 35.4 | 38.7 | 39.2 | 38 | 35.5 | 56.6 | 57.7 | 80.3 | 55.2 | ||
18. LoBATF3_XP_015194606.1 | 46.9 | 45.3 | 47.2 | 42.2 | 42.2 | 46.9 | 47.5 | 48.1 | 48.1 | 38.9 | 40.2 | 42 | 41.8 | 53.1 | 54.1 | 57.5 | 55.2 |
Primers | Sequences (5′—3′) | Purpose |
---|---|---|
BATF3-5′Rout | GCACTGTGCCTGTGGACCTT | 5′ RACE |
BATF3-5′Rin | ACGCCTCGTGCAACTCGTCA | |
BATF3-3′Rout | AGTGATGCTCCAGCTTTACGGT | 3′ RACE |
BATF3-3′Rin | ACCGAGTTGCTGCCCAGAGA | |
BATF3-F | ATGTCACTTTTCAATGCGACAAGTAA | cDNA cloning |
BATF3-R | TCAGATGTGAATGTCTTGTGGCACTGT | |
qBATF3-F | AGTGATGCTCCAGCTTTACGGT | RT-qPCR |
qBATF3-R | ACGCCTCGTGCAACTCGTCA | |
qIL10-F | TATTAAACGAGAACGTGCAACAGAA | |
qIL10-R | TCCCGCTTGAGATCTTGAAATATACT | |
qIRF8-F | CAGAGGAGGAACAGAAGTTGGGTAA | |
qIRF8-R | ACGCTTCAGGATGCCCATGTA | |
q β-actin-F | TCGGTATGGGACAGAAGGAC | |
q β-actin-R | GACCAGAGGCATACAGGGAC | |
qIL4-F | CTCAGGTGAAGCCCTTTGCC | |
qIL4-R | ACTGGATGTTCCTCTGAAGCTGTAA | |
qIL-12 p35-F | AGGCTCGGATGATTCCTTACA | |
qIL-12 p35-R | TCACACTGGGCTGGTAGGAG | |
qIL-12 p40-F | GGAGAAGTCTACGAAGGGCAA | |
qIL-12 p40-F | GTGTGTGGTTTAGGTAGGAGCC | |
q c-myc-F | GAGCGAAGACATTTGGAAGA | |
q c-myc-R | TGATGAAGGACTGGGAGTAG | |
qGATA-3-F | TACGAGGAGGACAAAGAGT | |
qGATA-3-R | GTAAGTGGCGATGGGATGGT | |
qS6-F | AGCGCAGCAGGCAATTACTATCT | GCRV RT-qPCR |
qS6-R | ATCTGCTGGTAATGCGGAACG | |
Negative control | UUCUCCGAACGUGUCACGUTT | siRNA |
siRNA-BATF3-1 | GGCGUAUGAGUGUCUGGAATT | |
siRNA-BATF3-2 | GAGGAACAGCAACGCUUAATT | |
siRNA-BATF3-3 | GCACAGUGCCACAAGACAUTT |
Primers | Sequences (5′–3′) | Purpose |
---|---|---|
L-BATF3-F | XhoI CGctcgagGTATGTCACTTTTCAATGCGACAAGTAA | Subcellular localization |
L-BATF3-R | BamHI CGggatccGATGTGAATGTCTTGTGGCACTGT | |
BF-BATF3-F | XhoI CCCctcgagCTATGTCACTTTTCAATGCGACAAGTAA | BiFC Analysis |
BF-BATF3-R | EcoRI CAAgaattcGAACTCCCGCCACCTCCACTCCCG CCACCTCCGATGTGAATGTCTTGTGGCACTGT | |
BF-IL10-F | EcoRI CGgaattcTGGGAGGTGGCGGGAGTGGAGGTGGCGG GAGTATGATTTTCTCTAGAGTCATCTTTTCTGC | |
BF-IL10-R | KpnI CGCggtaccGTGCTTTTCTCTCTTTGATGCCAG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D.; Huang, R.; Fu, P.; Chen, L.; Luo, L.; Chu, P.; He, L.; Li, Y.; Liao, L.; Zhu, Z.; et al. Investigating the Role of BATF3 in Grass Carp (Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis. Int. J. Mol. Sci. 2019, 20, 1687. https://doi.org/10.3390/ijms20071687
Zhu D, Huang R, Fu P, Chen L, Luo L, Chu P, He L, Li Y, Liao L, Zhu Z, et al. Investigating the Role of BATF3 in Grass Carp (Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis. International Journal of Molecular Sciences. 2019; 20(7):1687. https://doi.org/10.3390/ijms20071687
Chicago/Turabian StyleZhu, Denghui, Rong Huang, Peipei Fu, Liangming Chen, Lifei Luo, Pengfei Chu, Libo He, Yongming Li, Lanjie Liao, Zuoyan Zhu, and et al. 2019. "Investigating the Role of BATF3 in Grass Carp (Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis" International Journal of Molecular Sciences 20, no. 7: 1687. https://doi.org/10.3390/ijms20071687
APA StyleZhu, D., Huang, R., Fu, P., Chen, L., Luo, L., Chu, P., He, L., Li, Y., Liao, L., Zhu, Z., & Wang, Y. (2019). Investigating the Role of BATF3 in Grass Carp (Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis. International Journal of Molecular Sciences, 20(7), 1687. https://doi.org/10.3390/ijms20071687