1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer
Abstract
:1. Introduction
2. Result and Discussion
2.1. Chemistry
2.2. Antibacterial Activity
2.3. MAO Inhibition Studies
2.4. Cytotoxicity Assay
3. Materials and Methods
3.1. General Methods
3.2. General Procedure for the Synthesis of 3,5-Disubstituted-1,2,4-oxadiazoles (3a-h and 5a-t)
3.3. Biological Evaluation
3.3.1. In Vitro Antibacterial Activity
3.3.2. MIC Measurement
3.4. Cell Viability Assay
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MIC | Minimal Inhibition Concentrations |
MAO | Monoamine Oxidase |
MRSA | Methicillin-Resistant Staphylococcus aureus |
VRE | Vancomycin-Resistant Enterococcus |
API | Active Pharmaceutical Ingredient |
References
- Antimicrobial Resistance. Available online: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 27 February 2019).
- Crofts, T.S.; Gasparrini, A.J.; Dantas, G. Next-generation approaches to understand and combat the antibiotic resistome. Nat. Rev. Microbiol. 2017, 15, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 2014, 453, 254–267. [Google Scholar] [CrossRef] [Green Version]
- AYGÜL, A. The Importance of Efflux Systems in Antibiotic Resistance and Efflux Pump Inhibitors in the Management of Resistance. Mikrobiyol. Bul. 2015, 49, 278–291. [Google Scholar] [CrossRef]
- Haynes, K.M.; Abdali, N.; Jhawar, V.; Zgurskaya, H.I.; Parks, J.M.; Green, A.T.; Baudry, J.; Rybenkov, V.V.; Smith, J.C.; Walker, J.K. Identification and Structure–Activity Relationships of Novel Compounds that Potentiate the Activities of Antibiotics in Escherichia coli. J. Med. Chem. 2017, 60, 6205–6219. [Google Scholar] [CrossRef]
- Zhou, D.; Porter, W.R.; Zhang, G.G.Z. Drug Stability and Degradation Studies. In Developing Solid Oral Dosage Forms; Elsevier: Amsterdam, The Netherlands, 2017; pp. 113–149. ISBN 9780128024478. [Google Scholar]
- Krasavin, M.; Shetnev, A.; Sharonova, T.; Baykov, S.; Kalinin, S.; Nocentini, A.; Sharoyko, V.; Poli, G.; Tuccinardi, T.; Presnukhina, S.; et al. Continued exploration of 1,2,4-oxadiazole periphery for carbonic anhydrase-targeting primary arene sulfonamides: Discovery of subnanomolar inhibitors of membrane-bound hCA IX isoform that selectively kill cancer cells in hypoxic environment. Eur. J. Med. Chem. 2019, 164, 92–105. [Google Scholar] [CrossRef]
- Krasavin, M.; Shetnev, A.; Sharonova, T.; Baykov, S.; Tuccinardi, T.; Kalinin, S.; Angeli, A.; Supuran, C.T. Heterocyclic periphery in the design of carbonic anhydrase inhibitors: 1,2,4-Oxadiazol-5-yl benzenesulfonamides as potent and selective inhibitors of cytosolic h CA II and membrane-bound h CA IX isoforms. Bioorg. Chem. 2018, 76, 88–97. [Google Scholar] [CrossRef]
- Shetnev, A.; Osipyan, A.; Baykov, S.; Sapegin, A.; Chirkova, Z.; Korsakov, M.; Petzer, A.; Engelbrecht, I.; Petzer, J.P. Novel monoamine oxidase inhibitors based on the privileged 2-imidazoline molecular framework. Bioorg. Med. Chem. Lett. 2019, 29, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Tarasenko, M.; Sidneva, V.; Belova, A.; Romanycheva, A.; Sharonova, T.; Baykov, S.; Shetnev, A.; Kofanov, E.; Kuznetsov, M. An efficient synthesis and antimicrobial evaluation of 5-alkenyl- and 5-styryl-1,2,4-oxadiazoles. Arkivoc 2018, 2018, 458–470. [Google Scholar] [CrossRef]
- O’Daniel, P.I.; Peng, Z.; Pi, H.; Testero, S.A.; Ding, D.; Spink, E.; Leemans, E.; Boudreau, M.A.; Yamaguchi, T.; Schroeder, V.A.; et al. Discovery of a new class of non-β-lactam inhibitors of penicillin-binding proteins with gram-positive antibacterial activity. J. Am. Chem. Soc. 2014, 136, 3664–3672. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Boudreau, M.A.; Leemans, E.; Spink, E.; Yamaguchi, T.; Testero, S.A.; O’Daniel, P.I.; Lastochkin, E.; Chang, M.; Mobashery, S. Exploration of the structure–activity relationship of 1,2,4-oxadiazole antibiotics. Bioorg. Med. Chem. Lett. 2015, 25, 4854–4857. [Google Scholar] [CrossRef]
- Spink, E.; Ding, D.; Peng, Z.; Boudreau, M.A.; Leemans, E.; Lastochkin, E.; Song, W.; Lichtenwalter, K.; O’Daniel, P.I.; Testero, S.A.; et al. Structure-activity relationship for the oxadiazole class of antibiotics. J. Med. Chem. 2015, 58, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Leemans, E.; Mahasenan, K.V.; Kumarasiri, M.; Spink, E.; Ding, D.; O’Daniel, P.I.; Boudreau, M.A.; Lastochkin, E.; Testero, S.A.; Yamaguchi, T.; et al. Three-dimensional QSAR analysis and design of new 1,2,4-oxadiazole antibacterials. Bioorg. Med. Chem. Lett. 2016, 26, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Janardhanan, J.; Meisel, J.E.; Ding, D.; Schroeder, V.A.; Wolter, W.R.; Mobashery, S.; Chang, M. In vitro and in vivo synergy of the oxadiazole class of antibacterials with β-lactams. Antimicrob. Agents Chemother. 2016, 60, 5581–5588. [Google Scholar] [CrossRef] [PubMed]
- Janardhanan, J.; Chang, M.; Mobashery, S. The oxadiazole antibacterials. Curr. Opin. Microbiol. 2016, 33, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.P.; Harjani, J.R.; Li, L.; Pitcher, N.P.; Nong, Y.; Riley, T.V.; Williamson, D.A.; Stinear, T.P.; Baell, J.B.; Howden, B.P. 1,2,4-Oxadiazole antimicrobials act synergistically with daptomycin and display rapid kill kinetics against MDR Enterococcus faecium. J. Antimicrob. Chemother. 2018, 73, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Baykov, S.; Sharonova, T.; Shetnev, A.; Rozhkov, S.; Kalinin, S.; Smirnov, A. V The first one-pot ambient-temperature synthesis of 1,2,4-oxadiazoles from amidoximes and carboxylic acid esters. Tetrahedron 2017, 73, 945–951. [Google Scholar] [CrossRef]
- Sharonova, T.; Pankrat’eva, V.; Savko, P.; Baykov, S.; Shetnev, A. Facile room-temperature assembly of the 1,2,4-oxadiazole core from readily available amidoximes and carboxylic acids. Tetrahedron Lett. 2018, 59, 2824–2827. [Google Scholar] [CrossRef]
- Pankrat’eva, V.E.; Sharonova, T.V.; Tarasenko, M.V.; Baikov, S.V.; Kofanov, E.R. One-Pot Synthesis of 3,5-Disubstituted 1,2,4-Oxadiazoles Using Catalytic System NaOH‒DMSO. Russ. J. Org. Chem. 2018, 54, 1250–1255. [Google Scholar] [CrossRef]
- Tarasenko, M.; Duderin, N.; Sharonova, T.; Baykov, S.; Shetnev, A.; Smirnov, A.V. Room-temperature synthesis of pharmaceutically important carboxylic acids bearing the 1,2,4-oxadiazole moiety. Tetrahedron Lett. 2017, 58, 3672–3677. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed.; CLSI document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Flanagan, S.; Bartizal, K.; Minassian, S.L.; Fang, E.; Prokocimer, P. In Vitro, In Vivo, and Clinical Studies of Tedizolid To Assess the Potential for Peripheral or Central Monoamine Oxidase Interactions. Antimicrob. Agents Chemother. 2013, 57, 3060–3066. [Google Scholar] [CrossRef] [Green Version]
- Timperio, A.M.; Kuiper, H.A.; Zolla, L. Identification of a furazolidone metabolite responsible for the inhibition of amino oxidases. Xenobiotica 2003, 33, 153–167. [Google Scholar] [CrossRef]
- Karamanakos, P.N. Furazolidone and serotonin syndrome: Is there any association? Clinics 2008, 63, 553–554. [Google Scholar] [CrossRef]
- Sant’ Anna, G.d.S.; Machado, P.; Sauzem, P.D.; Rosa, F.A.; Rubin, M.A.; Ferreira, J.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Ultrasound promoted synthesis of 2-imidazolines in water: A greener approach toward monoamine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 546–549. [Google Scholar] [CrossRef]
- Gradiz, R.; Silva, H.C.; Carvalho, L.; Botelho, M.F.; Mota-Pinto, A. MIA PaCa-2 and PANC-1—pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci. Rep. 2016, 6, 21648. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Son, K.; Fujioka, S.; Iida, T.; Furukawa, K.; Fujita, T.; Yamada, H.; Chiao, P.J.; Yanaga, K. Doxycycline induces apoptosis in PANC-1 pancreatic cancer cells. Anticancer Res. 2009, 29, 3995–4003. [Google Scholar]
- Zhang, L.; Xu, L.; Zhang, F.; Vlashi, E. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle 2017, 16, 737–745. [Google Scholar] [CrossRef]
- Hubina, A.V.; Pogodaev, A.A.; Sharoyko, V.V.; Vlakh, E.G.; Tennikova, T.B. Self-assembled spin-labeled nanoparticles based on poly(amino acids). React. Funct. Polym. 2016, 100, 173–180. [Google Scholar] [CrossRef]
ID | R1 | R2 | MIC, µg/mL | ||||
Gram-positive | Gram-negative | ||||||
S.aureus(ATCC 25923) | B. Subtillis (VCM V3142D) | E. Coli (ATCC 25922) | P. fluorescens(P218) | ||||
3a | p-phenylene | H | >256 | >256 | >256 | >256 | |
3b | p-phenylene | H | 4-MeC6H4 | >256 | >256 | >256 | >256 |
3c | p-phenylene | H | Me | >256 | >256 | >256 | >256 |
3d | p-phenylene | Me | 3,4-diClC6H3 | 8 | 8 | 8 | 16 |
3e | m-phenylene | H | 3-ClC6H4 | 128 | 32 | 128 | 64 |
3f | m-phenylene | H | >256 | >256 | >256 | >256 | |
3g | m-phenylene | H | >256 | >256 | >256 | >256 | |
3h | p-phenylene | H | 4-EtC6H4 | 256 | >256 | 256 | 256 |
5a | p-phenylene | H | 256 | >256 | 256 | >256 | |
5b | p-phenylene | H | >256 | >256 | >256 | >256 | |
5c | p-phenylene | H | PhOCH2 | 256 | >256 | 256 | >256 |
5d | p-phenylene | H | 4-t-BuC6H4 | 256 | >256 | 256 | >256 |
5e | p-phenylene | H | 4-PhOC6H4 | 256 | 256 | 256 | >256 |
5f | p-phenylene | H | >256 | >256 | >256 | >256 | |
5g | p-phenylene | H | 3-ClC6H4 | 16 | 8 | 16 | 32 |
5h | p-phenylene | H | 2-ClC6H4 | 256 | 128 | 128 | 128 |
5i | p-phenylene | H | >256 | >256 | >256 | >256 | |
5j | p-phenylene | H | 3,4-diMeOC6H3 | >256 | >256 | >256 | >256 |
5k | p-phenylene | H | 3-MeOC6H4 | 128 | 64 | 32 | 128 |
5l | p-phenylene | H | 128 | 256 | 256 | >256 | |
5m | p-phenylene | H | 4-MeC6H4CH2 | >256 | >256 | >256 | >256 |
5n | p-phenylene | H | 4-PhC6H4 | 256 | >256 | 256 | >256 |
5o | >256 | >256 | >256 | >256 | |||
5p | p-phenylene | Me | 3,4-diClC6H3 | >256 | >256 | >256 | >256 |
5q | p-phenylene | Me | 256 | >256 | 256 | >256 | |
5r | p-phenylene | Me | 4-MeC6H4 | 16 | 32 | 8 | 32 |
5s | p-phenylene | Me | 3-ClC6H4 | 32 | 32 | 64 | 64 |
5t | p-phenylene | H | 4-MeC6H4 | >256 | >256 | >256 | >256 |
Ref | Pefloxacine | 0.008 | <0.5 | 0.008 | <0.5 |
ID | MIC, µg/mL | ||
---|---|---|---|
E. coli (dhs2) | E. coli (k802) | Enterobacter spp. | |
3d | 16 | 16 | 8 |
3e | 64 | 64 | 32 |
5g | 32 | 16 | 32 |
5k | >64 | >64 | >64 |
5r | 32 | 64 | 64 |
5s | 32 | 64 | 64 |
Pefloxacin | <0.5 | <0.5 | <0.5 |
ID | IC50 (µM) | |
---|---|---|
MAO-A | MAO-B | |
3d | 14.7 ± 1.85 | 0.160 ± 0.0096 |
3e | 1.39 ± 0.067 | 0.030 ± 0.0025 |
5g | 5.47 ± 0.518 | 0.064 ± 0.0054 |
5k | 12.0 ± 0.205 | 0.216 ± 0.019 |
Linezolid | 46 | 2.1 |
Tedizolid | 8.7 | 5.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shetnev, A.; Baykov, S.; Kalinin, S.; Belova, A.; Sharoyko, V.; Rozhkov, A.; Zelenkov, L.; Tarasenko, M.; Sadykov, E.; Korsakov, M.; et al. 1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer. Int. J. Mol. Sci. 2019, 20, 1699. https://doi.org/10.3390/ijms20071699
Shetnev A, Baykov S, Kalinin S, Belova A, Sharoyko V, Rozhkov A, Zelenkov L, Tarasenko M, Sadykov E, Korsakov M, et al. 1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer. International Journal of Molecular Sciences. 2019; 20(7):1699. https://doi.org/10.3390/ijms20071699
Chicago/Turabian StyleShetnev, Anton, Sergey Baykov, Stanislav Kalinin, Alexandra Belova, Vladimir Sharoyko, Anton Rozhkov, Lev Zelenkov, Marina Tarasenko, Evgeny Sadykov, Mikhail Korsakov, and et al. 2019. "1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer" International Journal of Molecular Sciences 20, no. 7: 1699. https://doi.org/10.3390/ijms20071699
APA StyleShetnev, A., Baykov, S., Kalinin, S., Belova, A., Sharoyko, V., Rozhkov, A., Zelenkov, L., Tarasenko, M., Sadykov, E., Korsakov, M., & Krasavin, M. (2019). 1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer. International Journal of Molecular Sciences, 20(7), 1699. https://doi.org/10.3390/ijms20071699