An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer
Abstract
:1. Introduction
2. TNF Family Members and CD137 (L) Biology
3. Agonistic Anti-CD137 Antibody Monotherapy (Anti-CD137 mAb) for Cancer Treatment
4. Combined Therapy of Anti-CD137 mAb and Other Antibodies for Cancer Treatment
5. Other Combinations with Anti-CD137 mAb for Cancer Treatment
6. Prospects and Future Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwon, B.S.; Weissman, S.M. cDNA sequences of two inducible T-cell genes. Proc. Natl. Acad. Sci. USA 1989, 86, 1963–1967. [Google Scholar] [CrossRef]
- Vinay, D.S.; Kwon, B.S. Immunotherapy of Cancer with 4-1BB. Mol. Cancer Ther. 2012, 11, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Vinay, D.; Kwon, B. Immunotherapy Targeting 4-1BB and Its Ligand. Int. J. Hematol. 2006, 83, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 2009, 9, 271–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollok, K.; Kim, Y.; Zhou, Z.; Hurtado, J.; Kim, K.; Pickard, R.; Kwon, B. Inducible T cell antigen 4-1BB. Analysis of expression and function. J. Immunol. 1993, 150, 771–781. [Google Scholar] [PubMed]
- Dubrot, J.; Azpilikueta, A.; Alfaro, C.; Murillo, O.; Arina, A.; Berraondo, P.; Hervás-Stubbs, S.; Melero, I. Absence of surface expression of CD137 (4-1BB) on Myeloid-derived suppressor cells. Inmunología 2007, 26, 121–126. [Google Scholar] [CrossRef]
- Melero, I.; Johnston, J.V.; Shufford, W.W.; Mittler, R.S.; Chen, L. NK1.1 Cells Express 4-1BB (CDw137) Costimulatory Molecule and Are Required for Tumor Immunity Elicited by Anti-4-1BB Monoclonal Antibodies. Cell. Immunol. 1998, 190, 167–172. [Google Scholar] [CrossRef]
- Shuford, W.W.; Klussman, K.; Tritchler, D.D.; Loo, D.T.; Chalupny, J.; Siadak, A.W.; Brown, T.J.; Emswiler, J.; Raecho, H.; Larsen, C.P.; et al. 4-1BB Costimulatory Signals Preferentially Induce CD8+ T Cell Proliferation and Lead to the Amplification In Vivo of Cytotoxic T Cell Responses. J. Exp. Med. 1997, 186, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Collette, Y.; Gilles, A.; Pontarotti, P.; Olive, D. A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. Trends Immunol. 2003, 24, 387–394. [Google Scholar] [CrossRef]
- Li, J.; Yin, Q.; Wu, H. Structural basis of signal transduction in the TNF receptor superfamily. Adv. Immunol. 2013, 119, 135–153. [Google Scholar]
- Croft, M.; Duan, W.; Choi, H.; Eun, S.Y.; Madireddi, S.; Mehta, A. TNF superfamily in inflammatory disease: Translating basic insights. Trends Immunol. 2012, 33, 144–152. [Google Scholar] [CrossRef]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF Receptor Superfamilies. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef] [Green Version]
- Marín, N.D.; García, L.F. The role of CD30 and CD153 (CD30L) in the anti-mycobacterial immune response. Tuberculosis 2017, 102, 8–15. [Google Scholar] [CrossRef]
- Pelekanou, V.; Notas, G.; Theodoropoulou, K.; Kampa, M.; Takos, D.; Alexaki, V.-I.; Radojicic, J.; Sofras, F.; Tsapis, A.; Stathopoulos, E.N.; et al. Detection of The TNFSF Members BAFF, APRIL, TWEAK and Their Receptors in Normal Kidney and Renal Cell Carcinomas. Anal. Cell. Pathol. 2011, 34, 49–60. [Google Scholar] [CrossRef]
- Lee, C.; Park, J.-W.; Suh, J.H.; Moon, K.C. High expression of APRIL correlates with poor prognosis in clear cell renal cell carcinoma. Pathol. Res. Pract. 2015, 211, 824–828. [Google Scholar] [CrossRef]
- Tabrizi, M.; Zhang, D.; Ganti, V.; Azadi, G. Integrative Pharmacology: Advancing Development of Effective Immunotherapies. AAPS J. 2018, 20, 66. [Google Scholar] [CrossRef]
- Schwarz, H.; Tuckwell, J.; Lotz, M. A receptor induced by lymphocyte activation (ILA): A new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene 1993, 134, 295–298. [Google Scholar] [CrossRef]
- Alderson Mark, R.; Smith Craig, A.; Tough Teresa, W.; Davis-Smith, T.; Armitage Richard, J.; Falk, B.; Roux, E.; Baker, E.; Sutherland Grant, R.; Din Wenie, S.; et al. Moslecular and biological characterization of human 4-1BB and its ligands. Eur. J. Immunol. 1994, 24, 2219–2227. [Google Scholar] [CrossRef]
- Vinay, D.S.; Kwon, B.S. Therapeutic potential of anti-CD137 (4-1BB) monoclonal antibodies. Expert Opin. Ther. Targets 2016, 20, 361–373. [Google Scholar] [CrossRef]
- Cannons, J.L.; Choi, Y.; Watts, T.H. Role of TNF Receptor-Associated Factor 2 and p38 Mitogen-Activated Protein Kinase Activation During 4-1BB-Dependent Immune Response. J. Immunol. 2000, 165, 6193–6204. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, C.; Mittler, R.S.; Vella, A.T. Cutting Edge: 4-1BB Is a Bona Fide CD8 T Cell Survival Signal. J. Immunol. 1999, 162, 5037–5040. [Google Scholar]
- Lee, H.-W.; Park, S.-J.; Choi, B.K.; Kim, H.H.; Nam, K.-O.; Kwon, B.S. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J. Immunol. 2002, 169, 4882–4888. [Google Scholar] [CrossRef]
- Cole, S.L.; Benam, K.H.; McMichael, A.J.; Ho, L.-P. Involvement of the 4-1BB/4-1BBL Pathway in Control of Monocyte Numbers by Invariant NKT Cells. J. Immunol. 2014, 192, 3898–3907. [Google Scholar] [CrossRef] [Green Version]
- Bostrom, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Bostrom, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Pollok Karen, E.; Kim, Y.-J.; Hurtado, J.; Zhou, Z.; Kim Kack, K.; Kwon Byoung, S. 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-μ-primed splenic B cells. Eur. J. Immunol. 1994, 24, 367–374. [Google Scholar] [CrossRef]
- Gauttier, V.; Judor, J.-P.; Le Guen, V.; Cany, J.; Ferry, N.; Conchon, S. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int. J. Cancer 2014, 135, 2857–2867. [Google Scholar] [CrossRef] [Green Version]
- Narazaki, H.; Zhu, Y.; Luo, L.; Zhu, G.; Chen, L. CD137 agonist antibody prevents cancer recurrence: Contribution of CD137 on both hematopoietic and nonhematopoietic cells. Blood 2010, 115, 1941–1948. [Google Scholar] [CrossRef]
- Houot, R.; Goldstein, M.J.; Kohrt, H.E.; Myklebust, J.H.; Alizadeh, A.A.; Lin, J.T.; Irish, J.M.; Torchia, J.A.; Kolstad, A.; Chen, L.; et al. Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion. Blood 2009, 114, 3431–3438. [Google Scholar] [CrossRef] [Green Version]
- Palazón, A.; Teijeira, A.; Martínez-Forero, I.; Hervás-Stubbs, S.; Roncal, C.; Peñuelas, I.; Dubrot, J.; Morales-Kastresana, A.; Pérez-Gracia, J.L.; Ochoa, M.C.; et al. Agonist Anti-CD137 mAb Act on Tumor Endothelial Cells to Enhance Recruitment of Activated T Lymphocytes. Cancer Res. 2011, 71, 801–811. [Google Scholar] [CrossRef] [Green Version]
- Morales-Kastresana, A.; Catalan, E.; Hervas-Stubbs, S.; Palazon, A.; Azpilikueta, A.; Bolanos, E.; Anel, A.; Pardo, J.; Melero, I. Essential complicity of perforin-granzyme and FAS-L mechanisms to achieve tumor rejection following treatment with anti-CD137 mAb. J. Immunother. Cancer 2013, 1, 3. [Google Scholar] [CrossRef]
- Shi, W.; Siemann, D.W. Augmented Antitumor Effects of Radiation Therapy by 4-1BB Antibody (BMS-469492) Treatment. Anticancer Res. 2006, 26, 3445–3453. [Google Scholar]
- Chacon, J.A.; Wu, R.C.; Sukhumalchandra, P.; Molldrem, J.J.; Sarnaik, A.; Pilon-Thomas, S.; Weber, J.; Hwu, P.; Radvanyi, L. Co-Stimulation through 4-1BB/CD137 Improves the Expansion and Function of CD8+ Melanoma Tumor-Infiltrating Lymphocytes for Adoptive T-Cell Therapy. PLoS ONE 2013, 8, e60031. [Google Scholar] [CrossRef]
- Melero, I.; Hirschhorn-Cymerman, D.; Morales-Kastresana, A.; Sanmamed, M.F.; Wolchok, J.D. Agonist Antibodies to TNFR Molecules That Costimulate T and NK Cells. Clin. Cancer Res. 2013, 19, 1044–1053. [Google Scholar] [CrossRef]
- Melero, I.; Grimaldi, A.M.; Perez-Gracia, J.L.; Ascierto, P.A. Clinical Development of Immunostimulatory Monoclonal Antibodies and Opportunities for Combination. Clin. Cancer Res. 2013, 19, 997–1008. [Google Scholar] [CrossRef] [Green Version]
- Madireddi, S.; Eun, S.-Y.; Lee, S.-W.; Nemčovičová, I.; Mehta, A.K.; Zajonc, D.M.; Nishi, N.; Niki, T.; Hirashima, M.; Croft, M. Galectin-9 controls the therapeutic activity of 4-1BB–targeting antibodies. J. Exp. Med. 2014, 211, 1433–1448. [Google Scholar] [CrossRef] [Green Version]
- Palazón, A.; Martínez-Forero, I.; Teijeira, A.; Morales-Kastresana, A.; Alfaro, C.; Sanmamed, M.F.; Perez-Gracia, J.L.; Peñuelas, I.; Hervás-Stubbs, S.; Rouzaut, A.; et al. The HIF-1α Hypoxia Response in Tumor-Infiltrating T Lymphocytes Induces Functional CD137 (4-1BB) for Immunotherapy. Cancer Discov. 2012, 2, 608–623. [Google Scholar] [CrossRef]
- Martinez-Forero, I.; Azpilikueta, A.; Bolaños-Mateo, E.; Nistal-Villan, E.; Palazon, A.; Teijeira, A.; Perez-Chacon, G.; Morales-Kastresana, A.; Murillo, O.; Jure-Kunkel, M.; et al. T Cell Costimulation with Anti-CD137 Monoclonal Antibodies Is Mediated by K63–Polyubiquitin-Dependent Signals from Endosomes. J. Immunol. 2013, 190, 6694–6706. [Google Scholar] [CrossRef] [Green Version]
- Curran, M.A.; Kim, M.; Montalvo, W.; Al-Shamkhani, A.; Allison, J.P. Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production. PLoS ONE 2011, 6, e19499. [Google Scholar] [CrossRef]
- James, A.M.; Cohen, A.D.; Campbell, K.S. Combination immune therapies to enhance anti-tumor responses by NK cells. Front. Immunol. 2013, 4, 481. [Google Scholar]
- Smith, S.; Hoelzinger, D.; Dominguez, A.; Van Snick, J.; Lustgarten, J. Signals through 4-1BB inhibit T regulatory cells by blocking IL-9 production enhancing antitumor responses. Cancer Immunol. Immunother. 2011, 60, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Fisher, T.; Kamperschroer, C.; Oliphant, T.; Love, V.; Lira, P.; Doyonnas, R.; Bergqvist, S.; Baxi, S.; Rohner, A.; Shen, A.; et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol. Immunother. 2012, 61, 1721–1733. [Google Scholar] [CrossRef]
- Yi, L.; Zhao, Y.; Wang, X.; Dai, M.; Hellström, K.E.; Hellström, I.; Zhang, H. Human and Mouse CD137 Have Predominantly Different Binding CRDs to Their Respective Ligands. PLoS ONE 2014, 9, e86337. [Google Scholar] [CrossRef]
- Snell, L.M.; Lin, G.H.Y.; McPherson, A.J.; Moraes, T.J.; Watts, T.H. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol. Rev. 2011, 244, 197–217. [Google Scholar] [CrossRef]
- Chester, C.; Ambulkar, S.; Kohrt, H.E. 4-1BB agonism: Adding the accelerator to cancer immunotherapy. Cancer Immunol. Immunother. 2016, 65, 1243–1248. [Google Scholar] [CrossRef]
- Sznol, M.; Hodi, F.S.; Margolin, K.; McDermott, D.F.; Ernstoff, M.S.; Kirkwood, J.M.; Wojtaszek, C.; Feltquate, D.; Logan, T. Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA). J. Clin. Oncol. 2008, 26 (Suppl. 15), 3007. [Google Scholar] [CrossRef]
- Segal, N.H.; Logan, T.F.; Hodi, F.S.; McDermott, D.; Melero, I.; Hamid, O.; Schmidt, H.; Robert, C.; Chiarion-Sileni, V.; Ascierto, P.A.; et al. Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody. Clin. Cancer Res. 2017, 23, 1929–1936. [Google Scholar] [CrossRef]
- Zhang, J.; Song, K.; Wang, J.; Li, Y.; Liu, S.; Dai, C.; Chen, L.; Wang, S.; Qin, Z. S100A4 blockage alleviates agonistic anti-CD137 antibody-induced liver pathology without disruption of antitumor immunity. OncoImmunology 2018, 7, e1296996. [Google Scholar] [CrossRef] [Green Version]
- Massarelli, E. Clinical safety and efficacy assessment of the CD137 agonist urelumab alone and in combination with nivolumab in patients with hematologic and solid tumor malignancies. In Proceedings of the 31st Annual Meeting & Associated Programs of the Society for Immunotherapy of Cancer (SITC)’s, National Harbor, MD, USA, 9–13 November 2016. [Google Scholar]
- Segal, N.H.; Gopal, A.K.; Bhatia, S.; Kohrt, H.E.; Levy, R.; Pishvaian, M.J.; Houot, R.; Bartlett, N.; Nghiem, P.; Kronenberg, S.A.; et al. A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. J. Clin. Oncol. 2014, 32 (Suppl. 15), 3007. [Google Scholar] [CrossRef]
- Segal, N.H.; He, A.R.; Doi, T.; Levy, R.; Bhatia, S.; Pishvaian, M.J.; Cesari, R.; Chen, Y.; Davis, C.B.; Huang, B.; et al. Phase I Study of Single-Agent Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Patients with Advanced Cancer. Clin. Cancer Res. 2018, 24, 1816–1823. [Google Scholar] [CrossRef]
- Chin, S.M.; Kimberlin, C.R.; Roe-Zurz, Z.; Zhang, P.; Xu, A.; Liao-Chan, S.; Sen, D.; Nager, A.R.; Oakdale, N.S.; Brown, C.; et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat. Commun. 2018, 9, 4679. [Google Scholar] [CrossRef]
- Chester, C.; Sanmamed, M.F.; Wang, J.; Melero, I. Immunotherapy targeting 4-1BB: Mechanistic rationale, clinical results, and future strategies. Blood 2018, 131, 49–57. [Google Scholar] [CrossRef]
- Kerage, D.; Soon, M.S.F.; Doff, B.L.; Kobayashi, T.; Nissen, M.D.; Lam, P.Y.; Leggatt, G.R.; Mattarollo, S.R. Therapeutic vaccination with 4–1BB co-stimulation eradicates mouse acute myeloid leukemia. OncoImmunology 2018, 7, e1486952. [Google Scholar] [CrossRef]
- Murillo, O.; Arina, A.; Hervas-Stubbs, S.; Gupta, A.; McCluskey, B.; Dubrot, J.; Palazón, A.; Azpilikueta, A.; Ochoa, M.C.; Alfaro, C.; et al. Therapeutic Antitumor Efficacy of Anti-CD137 Agonistic Monoclonal Antibody in Mouse Models of Myeloma. Clin. Cancer Res. 2008, 14, 6895–6906. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, L.; Li, W.; Fan, K.; Qian, W.; Hou, S.; Wang, H.; Dai, M.; Hellstrom, I.; Hellstrom, K.E.; et al. Combinatorial PD-1 Blockade and CD137 Activation Has Therapeutic Efficacy in Murine Cancer Models and Synergizes with Cisplatin. PLoS ONE 2013, 8, e84927. [Google Scholar] [CrossRef]
- Choi, B.K.; Kim, Y.H.; Kang, W.J.; Lee, S.K.; Kim, K.H.; Shin, S.M.; Yokoyama, W.M.; Kim, T.Y.; Kwon, B.S. Mechanisms Involved in Synergistic Anticancer Immunity of Anti-4-1BB and Anti-CD4 Therapy. Cancer Res. 2007, 67, 8891–8899. [Google Scholar] [CrossRef] [Green Version]
- Westwood, J.A.; Matthews, G.M.; Shortt, J.; Faulkner, D.; Pegram, H.J.; Duong, C.P.M.; Chesi, M.; Bergsagel, P.L.; Sharp, L.L.; Huhn, R.D.; et al. Combination anti-CD137 and anti-CD40 antibody therapy in murine myc-driven hematological cancers. Leuk. Res. 2014, 38, 948–954. [Google Scholar] [CrossRef]
- Kocak, E.; Lute, K.; Chang, X.; May, K.F.; Exten, K.R.; Zhang, H.; Abdessalam, S.F.; Lehman, A.M.; Jarjoura, D.; Zheng, P.; et al. Combination Therapy with Anti–CTL Antigen-4 and Anti-4-1BB Antibodies Enhances Cancer Immunity and Reduces Autoimmunity. Cancer Res. 2006, 66, 7276–7284. [Google Scholar] [CrossRef] [Green Version]
- Simeone, E.; Ascierto, P.A. Immunomodulating antibodies in the treatment of metastatic melanoma: The experience with anti-CTLA-4, anti-CD137, and anti-PD1. J. Immunotoxicol. 2012, 9, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; Wei, H.; Yip, Y.Y.; Feng, Q.; He, K.; Popov, V.; Hellstrom, I.; Hellstrom, K.E. Long-lasting Complete Regression of Established Mouse Tumors by Counteracting Th2 Inflammation. J. Immunother. 2013, 36, 248–257. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Kalos, M.; Schaer, D.A.; Callahan, M.K.; Wolchok, J.D. Biomarkers for Immunostimulatory Monoclonal Antibodies in Combination Strategies for Melanoma and Other Tumor Types. Clin. Cancer Res. 2013, 19, 1009–1020. [Google Scholar] [CrossRef] [Green Version]
- Ascierto, P.; Capone, M.; Urba, W.; Bifulco, C.; Botti, G.; Lugli, A.; Marincola, F.; Ciliberto, G.; Galon, J.; Fox, B. The additional facet of immunoscore: Immunoprofiling as a possible predictive tool for cancer treatment. J. Transl. Med. 2013, 11, 54. [Google Scholar] [CrossRef]
- Morales-Kastresana, A.; Sanmamed, M.F.; Rodriguez, I.; Palazon, A.; Martinez-Forero, I.; Labiano, S.; Hervas-Stubbs, S.; Sangro, B.; Ochoa, C.; Rouzaut, A.; et al. Combined Immunostimulatory Monoclonal Antibodies Extend Survival in an Aggressive Transgenic Hepatocellular Carcinoma Mouse Model. Clin. Cancer Res. 2013, 19, 6151–6162. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Cheng, D.; Xia, Z.; Luan, M.; Wu, L.; Wang, G.; Zhang, S. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J. Transl. Med. 2013, 11, 215. [Google Scholar] [CrossRef]
- Lee, C.; Tannock, I. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer 2010, 10, 255. [Google Scholar] [CrossRef]
- Kohrt, H.E.; Colevas, A.D.; Houot, R.; Weiskopf, K.; Goldstein, M.J.; Lund, P.; Mueller, A.; Sagiv-Barfi, I.; Marabelle, A.; Lira, R.; et al. Targeting CD137 enhances the efficacy of cetuximab. J. Clin. Investig. 2014, 124, 2668–2682. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, J.; Zhang, J.; Dai, C.; Liu, X.; Wang, J.; Gao, Z.; Guo, H.; Wang, R.; Lu, S.; et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J. Hepatol. 2015, 62, 156–164. [Google Scholar] [CrossRef]
- Hansen, M.T.; Forst, B.; Cremers, N.; Quagliata, L.; Ambartsumian, N.; Grum-Schwensen, B.; Klingelhöfer, J.; Abdul-Al, A.; Herrmann, P.; Osterland, M.; et al. A link between inflammation and metastasis: Serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 2014, 34, 424–435. [Google Scholar] [CrossRef]
- Schmidt-Hansen, B.; Örnås, D.; Grigorian, M.; Klingelhöfer, J.; Tulchinsky, E.; Lukanidin, E.; Ambartsumian, N. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 2004, 23, 5487–5495. [Google Scholar] [CrossRef] [Green Version]
- Yonezawa, A.; Dutt, S.; Chester, C.; Kim, J.; Kohrt, H.E. Boosting Cancer Immunotherapy with Anti-CD137 Antibody Therapy. Clin. Cancer Res. 2015, 21, 3113–3120. [Google Scholar] [CrossRef] [Green Version]
- Hosoi, A.; Takeda, K.; Nagaoka, K.; Iino, T.; Matsushita, H.; Ueha, S.; Aoki, S.; Matsushima, K.; Kubo, M.; Morikawa, T.; et al. Increased diversity with reduced “diversity evenness” of tumor infiltrating T-cells for the successful cancer immunotherapy. Sci. Rep. 2018, 8, 1058. [Google Scholar] [CrossRef] [Green Version]
- McKee, S.J.; Doff, B.L.; Soon, M.S.F.; Mattarollo, S.R. Therapeutic Efficacy of 4-1BB Costimulation Is Abrogated by PD-1 Blockade in a Model of Spontaneous B-cell Lymphoma. Cancer Immunol. Res. 2017, 5, 191–197. [Google Scholar] [CrossRef]
- Verbrugge, I.; Hagekyriakou, J.; Sharp, L.L.; Galli, M.; West, A.; McLaughlin, N.M.; Duret, H.; Yagita, H.; Johnstone, R.W.; Smyth, M.J.; et al. Radiotherapy Increases the Permissiveness of Established Mammary Tumors to Rejection by Immunomodulatory Antibodies. Cancer Res. 2012, 72, 3163–3174. [Google Scholar] [CrossRef] [Green Version]
- Jensen, B.A.H.; Pedersen, S.R.; Christensen, J.P.; Thomsen, A.R. The Availability of a Functional Tumor Targeting T-Cell Repertoire Determines the Anti-Tumor Efficiency of Combination Therapy with Anti-CTLA-4 and Anti-4-1BB Antibodies. PLoS ONE 2013, 8, e66081. [Google Scholar] [CrossRef]
- Verbrugge, I.; Gasparini, A.; Haynes, N.M.; Hagekyriakou, J.; Galli, M.; Stewart, T.J.; Abrams, S.I.; Yagita, H.; Verheij, M.; Johnstone, R.W.; et al. The Curative Outcome of Radioimmunotherapy in a Mouse Breast Cancer Model Relies on mTOR Signaling. Radiat. Res. 2014, 182, 219–229. [Google Scholar] [CrossRef]
- Hebb, J.P.O.; Mosley, A.R.; Vences-Catalán, F.; Rajasekaran, N.; Rosén, A.; Ellmark, P.; Felsher, D.W. Administration of low-dose combination anti-CTLA4, anti-CD137, and anti-OX40 into murine tumor or proximal to the tumor draining lymph node induces systemic tumor regression. Cancer Immunol. Immunother. 2018, 67, 47–60. [Google Scholar] [CrossRef]
- Kohrt, H.E.; Houot, R.; Weiskopf, K.; Goldstein, M.J.; Scheeren, F.; Czerwinski, D.; Colevas, A.D.; Weng, W.-K.; Clarke, M.F.; Carlson, R.W.; et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J. Clin. Investig. 2012, 122, 1066–1075. [Google Scholar] [CrossRef] [Green Version]
- Stagg, J.; Loi, S.; Divisekera, U.; Ngiow, S.F.; Duret, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti–PD-1 or anti-CD137 mAb therapy. Proc. Natl. Acad. Sci. USA 2011, 108, 7142–7147. [Google Scholar] [CrossRef] [Green Version]
- Tolcher, A.W.; Sznol, M.; Hu-Lieskovan, S.; Papadopoulos, K.P.; Patnaik, A.; Rasco, D.W.; Di Gravio, D.; Huang, B.; Gambhire, D.; Chen, Y.; et al. Phase Ib Study of Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Combination with Pembrolizumab (MK-3475) in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2017, 23, 5349–5357. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Gu, P.; Pan, P.-Y.; Li, Q.; Sato, A.I.; Chen, S.-H. NK and CD8+ T cell-mediated eradication of poorly immunogenic B16-F10 melanoma by the combined action of IL-12 gene therapy and 4-1BB costimulation. Int. J. Cancer 2004, 109, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Tirapu, I.; Arina, A.; Mazzolini, G.; Duarte, M.; Alfaro, C.; Feijoo, E.; Qian, C.; Chen, L.; Prieto, J.; Melero, I. Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens. Int. J. Cancer 2004, 110, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Ito, F.; Li, Q.; Shreiner, A.B.; Okuyama, R.; Jure-Kunkel, M.N.; Teitz-Tennenbaum, S.; Chang, A.E. Anti-CD137 Monoclonal Antibody Administration Augments the Antitumor Efficacy of Dendritic Cell-Based Vaccines. Cancer Res. 2004, 64, 8411–8419. [Google Scholar] [CrossRef] [Green Version]
- Quetglas, J.I.; Dubrot, J.; Bezunartea, J.; Sanmamed, M.F.; Hervas-Stubbs, S.; Smerdou, C.; Melero, I. Immunotherapeutic Synergy Between Anti-CD137 mAb and Intratumoral Administration of a Cytopathic Semliki Forest Virus Encoding IL-12. Mol. Ther. 2012, 20, 1664–1675. [Google Scholar] [CrossRef]
- Westwood, J.A.; Potdevin Hunnam, T.C.U.; Pegram, H.J.; Hicks, R.J.; Darcy, P.K.; Kershaw, M.H. Routes of Delivery for CpG and Anti-CD137 for the Treatment of Orthotopic Kidney Tumors in Mice. PLoS ONE 2014, 9, e95847. [Google Scholar] [CrossRef]
- Ko, E.; Luo, W.; Peng, L.; Wang, X.; Ferrone, S. Mouse Dendritic-Endothelial Cell Hybrids and 4-1BB Costimulation Elicit Antitumor Effects Mediated by Broad Antiangiogenic Immunity. Cancer Res. 2007, 67, 7875–7884. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-H.; Pham-Nguyen, K.B.; Martinet, O.; Huang, Y.; Yang, W.; Thung, S.N.; Chen, L.; Mittler, R.; Woo, S.L. Rejection of Disseminated Metastases of Colon Carcinoma by Synergism of IL-12 Gene Therapy and 4-1BB Costimulation. Mol. Ther. 2000, 2, 39–46. [Google Scholar] [CrossRef]
- Li, B.; Lin, J.; VanRoey, M.; Jure-Kunkel, M.; Jooss, K. Established B16 tumors are rejected following treatment with GM-CSF-secreting tumor cell immunotherapy in combination with anti-4-1BB mAb. Clin. Immunol. 2007, 125, 76–87. [Google Scholar] [CrossRef]
- Ju, S.-A.; Cheon, S.-H.; Park, S.-M.; Tam, N.Q.; Kim, Y.M.; An, W.G.; Kim, B.-S. Eradication of established renal cell carcinoma by a combination of 5-fluorouracil and anti-4-1BB monoclonal antibody in mice. Int. J. Cancer 2008, 122, 2784–2790. [Google Scholar] [CrossRef] [Green Version]
- John, L.B.; Howland, L.J.; Flynn, J.K.; West, A.C.; Devaud, C.; Duong, C.P.; Stewart, T.J.; Westwood, J.A.; Guo, Z.S.; Bartlett, D.L.; et al. Oncolytic Virus and Anti–4-1BB Combination Therapy Elicits Strong Antitumor Immunity against Established Cancer. Cancer Res. 2012, 72, 1651–1660. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-J.; Anand, S.; Zhao, Y.; Matsumura, Y.; Sakoda, Y.; Kuramasu, A.; Strome, S.; Chen, L.; Tamada, K. Expression of anti-HVEM single-chain antibody on tumor cells induces tumor-specific immunity with long-term memory. Cancer Immunol. Immunother. 2012, 61, 203–214. [Google Scholar] [CrossRef]
- Kobayashi, T.; Doff, B.L.; Rearden, R.C.; Leggatt, G.R.; Mattarollo, S.R. NKT cell-targeted vaccination plus anti-4–1BB antibody generates persistent CD8 T cell immunity against B cell lymphoma. OncoImmunology 2015, 4, e990793. [Google Scholar] [CrossRef]
- Wilcox, R.A.; Tamada, K.; Strome, S.E.; Chen, L. Signaling Through NK Cell-Associated CD137 Promotes Both Helper Function for CD8+ Cytolytic T Cells and Responsiveness to IL-2 But Not Cytolytic Activity. J. Immunol. 2002, 169, 4230–4236. [Google Scholar] [CrossRef] [PubMed]
- Kohrt, H.E.; Houot, R.; Goldstein, M.J.; Weiskopf, K.; Alizadeh, A.A.; Brody, J.; Müller, A.M.S.; Pachynski, R.; Czerwinski, D.; Coutre, S.; et al. CD137 stimulation enhances the anti-lymphoma activity of anti-CD20 antibodies. Blood 2010, 117, 2423–2432. [Google Scholar] [CrossRef]
- Knight, D.A.; Ngiow, S.F.; Li, M.; Parmenter, T.; Mok, S.; Cass, A.; Haynes, N.M.; Kinross, K.; Yagita, H.; Koya, R.C.; et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J. Clin. Investig. 2013, 123, 1371–1381. [Google Scholar] [CrossRef] [Green Version]
- Kwong, B.; Gai, S.A.; Elkhader, J.; Wittrup, K.D.; Irvine, D.J. Localized Immunotherapy via Liposome-Anchored Anti-CD137 + IL-2 Prevents Lethal Toxicity and Elicits Local and Systemic Antitumor Immunity. Cancer Res. 2013, 73, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, N.; Suh, H.; Irvine, D.J. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat. Commun. 2018, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Ledford, H.; Else, H.; Warren, M. Cancer immunologists scoop medicine Nobel prize. Nature 2018, 562, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Pilones, K.; Aryankalayil, J.; Babb, J.; Demaria, S. Invariant natural killer T cells regulate anti-tumor immunity by controlling the population of dendritic cells in tumor and draining lymph nodes. J. Immunother. Cancer 2014, 2, 37. [Google Scholar] [CrossRef] [Green Version]
Name (Brand Name) | Agonist or Antagonist | Properties | Binding Sites |
---|---|---|---|
Urelumab (BMS-663513) | Agonist | Human IgG4 mAb | CRD I |
Utomilumab (PF-05082566) | Agonist | Humanized IgG2 mAb | CRDs III and IV |
Therapies | Cancer Models | Effects on Cancer Immunity | Ref |
---|---|---|---|
α-CD137 mAb | Mouse model of hepatocellular carcinoma | ↓tumor, ↓MDSC, ↓regulatory T cells (Treg), ↑cytotoxic T lymphocytes (CTLs), ↑NK cells, ↑macrophages | [26] |
α-CD137 mAb | Mouse model of lymphoma | ↓tumor, ↑survival, ↑memory T cells, ↑NK cells, ↑CD8 T cells, ↓Treg | [28] |
α-CD137 mAb | Mouse models of metastatic melanoma | ↓tumor, ↓tumor recurrence and metastases, ↑survival, ↑antigen-specific memory T cells | [27] |
α-CD137 mAb | Mouse model of thymomas | ↓tumor, ↑survival | [30] |
α-CD137 mAb | Mouse model of lung and breast carcinoma | ↓tumor, ↑survival | [31] |
α-CD137 mAb | Mouse model of B16 melanomas | ↑survival, ↑CD8 and CD4 effector T cells, ↓Treg | [38] |
α-CD137 mAb | Mouse mole of CT26 tumor | ↓tumor, ↑survival | [36] |
α-CD137 mAb (PF-05082566) | Mouse mole of prostate carcinoma | ↓tumor, ↑CD8 | [41] |
Radiation + α-CD137 mAb | Mouse model of lung, breast carcinoma, and 4T1 cancer | ↓tumor, ↑survival | [31,73,99] |
Therapies | Cancer Models | Effects on Cancer Immunity | Ref |
---|---|---|---|
α-PD-1 mAbs + α-CD137 mAb | Mouse models of ovarian and lung cancer | ↑↑ survival, ↑CTLs, ↑memory T cells, ↓Treg | [55] |
α-CTLA-4 Ab + α-CD137 mAb | Mouse models of colon cancer and melanoma | ↓tumor, ↓Liver metastases, ↑CD8 T cells, ↑Treg | [58,74] |
α-CTLA-4 Ab + α-CD137 mAb | Mouse model of B16 melanomas | ↑survival, ↑CD8 and CD4 effector T cells, ↓Treg, ↑IFN-γ | [38] |
α-PD-1 mAb + α-CTLA-4 Ab + α-CD137 mAb | Mouse models of ovarian carcinoma and subcutaneous melanoma | ↓tumor, ↑survival, ↑IFN-γ and TNF-α producing CD4 and CD8 T cells, ↑mature CD cells, ↓Treg, ↓MDSC, ↓immunosuppressive Th2 | [60] |
α-B7-H1 Ab + α-CD137 mAb | Mouse moles of CT26 tumor | ↓tumor, ↑survival, ↑CD137 on activated T lymphocytes | [36] |
α-OX40 Ab + α-B7-H1 Ab + α-CD137 mAb | Mouse model of hepatocellular carcinoma | ↓tumor, ↑survival, ↑CD8 and CD4 effector T cells | [63] |
Radiation + α-PD-1 mAbs + α-CD137 mAb | Mouse model of AT-3 tumors | ↓tumor, ↑survival, ↑CD137 on tumor-associated CD8 T cells | [73] |
Trastuzumab + α-CD137 mAb | Xenotransplant model of human breast cancer | ↓tumor, ↑survival, ↑CD137 on NK cells, ↑trastuzumab-mediated NK cell cytokine secretion and cytotoxicity | [77] |
Trastuzumab + α-CD137 mAb | Mouse model of breast carcinomas | ↓tumor, ↑survival | [78] |
5-fluorouracil (5-FU) + CD137 mAb | Mouse model of renal carcinoma | ↓tumor, ↑survival, ↑lymphocytes | [88] |
α-CD40 mAb + α-CD137 mAb | Mouse models of colon cancer, lymphoma | ↓tumor, ↑survival | [57] |
α-CD4 mAb + α-CD137 mAb | Mouse model of melanoma | ↓tumor, ↑survival, ↑CD8 T cells, ↑tumor-specific CTLs | [56] |
α-TIM-3 Ab + α-CD137 mAb | Mouse model of ovarian cancer | ↓tumor, ↑survival, ↑CD4 (memory) and CD8 (effector) T cells, ↓Treg and MDSC, ↑Th1 type, ↑IFN-γ | [64] |
Cetuximab + α-CD137 mAb | Mouse models of head and neck cancer, colorectal cancer | ↓tumor, ↑survival, ↑CD137 on NK cells, ↑NK cell degranulation and cytotoxicity | [66] |
CpG1826 + α-CD137 mAb | Mouse model of kidney tumors | ↓tumor, ↑survival | [84] |
Therapies | Cancer Models | Effects on Cancer Immunity | Ref |
---|---|---|---|
DC-EC hybrids + α-CD137 mAb | Mouse models of melanoma and colon adenocarcinoma | ↓tumor, ↓tumor angiogenesis, ↑survival, ↑EC-specific T-cell responses | [85] |
GM-CSF-secreting tumor cell + α-CD137 mAb | Mouse models of melanoma and colon carcinoma | ↓tumor, ↑ survival, ↑CD8 T responses, ↑CD8 T cell infiltration, ↑memory responses | [87] |
PLX4720 + α-CD137 mAb | Mouse model of metastatic melanoma | ↓tumor, ↑ survival, ↓Ccl2, ↑CD8T cells, ↑NK cells | [94] |
TP-DC vaccination + α-CD137 mAb | Mouse models of established pulmonary and subcutaneous tumor | ↓tumor, ↑survival, ↓metastases, ↓local recurrence, ↑CD137 on NK cells, ↑antigen-reactive T cells | [82] |
ADV/IL-12 + α-CD137 mAb | Mouse models of subcutaneous and lung metastatic melanoma | ↓tumor, ↓pulmonary metastases, ↑ survival, ↑NK cells, ↑CD8 T cells, | [80] |
ADV/IL-12 + α-CD137 mAb | Mouse model of liver cancer | ↓tumor, ↑survival, ↑CD8 Tcell infiltration, ↑NK cell activation, ↑antigen-specific memory T cells | [86] |
AdCMVIL-12-DCs + α-CD137 mAb | Mouse model of colon cancer | ↓tumor, ↑survival, ↑IFN-γ | [81] |
Vvdd + α-CD137 mAb | Mouse model of AT-3 tumors | ↓tumor, ↑ survival, ↓pulmonary metastasis, ↑CD8 T cells, ↑NK cells | [89] |
α-HVEM scFv vaccine + α-CD137 mAb | Mouse models of mastocytoma and lymphoma | ↓tumor, ↑ survival, ↑CD8 T cells, ↑T cell memory | [90] |
SFV-IL-12 + α-CD137 mAb | Mouse models of melanoma and lung carcinoma | ↓tumor, ↑CD137 on tumor-infiltrating CD8 T cells, ↑CTLs, ↓Treg | [83] |
IL-2Fc + α-CD137 mAb | Mouse models of melanoma | ↓tumor, ↑survival, ↓systemic toxicity | [95] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, D.-T.; Bac, N.D.; Nguyen, K.-H.; Tien, N.L.B.; Thanh, V.V.; Nga, V.T.; Ngoc, V.T.N.; Anh Dao, D.T.; Hoan, L.N.; Hung, N.P.; et al. An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer. Int. J. Mol. Sci. 2019, 20, 1822. https://doi.org/10.3390/ijms20081822
Chu D-T, Bac ND, Nguyen K-H, Tien NLB, Thanh VV, Nga VT, Ngoc VTN, Anh Dao DT, Hoan LN, Hung NP, et al. An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer. International Journal of Molecular Sciences. 2019; 20(8):1822. https://doi.org/10.3390/ijms20081822
Chicago/Turabian StyleChu, Dinh-Toi, Nguyen Duy Bac, Khanh-Hoang Nguyen, Nguyen Le Bao Tien, Vo Van Thanh, Vu Thi Nga, Vo Truong Nhu Ngoc, Duong Thi Anh Dao, Le Ngoc Hoan, Nguyen Phuc Hung, and et al. 2019. "An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer" International Journal of Molecular Sciences 20, no. 8: 1822. https://doi.org/10.3390/ijms20081822
APA StyleChu, D. -T., Bac, N. D., Nguyen, K. -H., Tien, N. L. B., Thanh, V. V., Nga, V. T., Ngoc, V. T. N., Anh Dao, D. T., Hoan, L. N., Hung, N. P., Trung Thu, N. T., Pham, V. -H., Vu, L. N., Pham, T. A. V., & Thimiri Govinda Raj, D. B. (2019). An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer. International Journal of Molecular Sciences, 20(8), 1822. https://doi.org/10.3390/ijms20081822