Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy
Abstract
:1. Introduction
2. Classification and Importance of HDACs
3. HDACis at a Glance
4. HDACis as Therapeutic Agents in Immune and Nonimmune Diseases
5. HDACis as Anticancer Agents
5.1. Cell Cycle Arrest
5.2. Angiogenesis
5.3. Apoptosis
5.4. Autophagy
5.5. Modulating Immune Response
6. HDACis as Immunomodulatory Agents
6.1. Cytokines
6.2. Antigen-Presenting Components
6.3. Subsets of T Cells
6.3.1. Treg
6.3.2. Th0, Th1, and Th2 Subsets and Their Interconversion
6.3.3. Th17
6.4. Natural Killer (NK) Cells
7. Advantages of Immunotherapeutic Combinations using HDACis
- Enhancement of the expression of cancer antigens: The expression of tumor antigens and the surface expression of MHC and costimulatory genes are critical determinants in T cell activation. Epigenetic repression of these molecules in tumor cells provides a mechanism for tumor escape, in which HDAC enzymes may play instrumental roles [119,120,121]. Employing HDACis have proven to enhance tumor antigens (e.g., MAGE [122]) and costimulatory molecules (e.g., CD86 and ICAM1 [123]).
- Epigenetic modulation of the immunosuppressive cell population: Regulating inflammation is one of the primary functions attributed to pan-HDACis. Upregulation of the FoxP3 gene and fostering Treg generation and function serve as a novel mechanism by which histone deacetylase inhibitors regulate the inflammation and immune response [82]. On the other hand, using myeloid-derived suppressor cell (MDSC)-rich tumors, the importance of HDACis treatment has been shown to decrease MDSC accumulation in the spleen, blood and tumor bed, and conversely, increasing the proportion of T cells [124].
- Modulation of specific suppressive pathways: Some of the prominent immunosuppressive pathways that dampen T cell functions include the induction of the metabolic enzyme indoleamine-2,3-dioxygenase 1 (IDO1). Other mechanisms of immune-resistance include innate oncologic molecular pathways or their dysregulation. Such examples include β-catenin [125], STAT3 [126], NF-κB [127], PTEN [128], and AXL tyrosine kinase [129]. Some of the inhibitory interactions include programmed cell death 1 (PD-1) with its ligand PD-L1, and engagement of additional inhibitory receptors such as T cell immunoglobulin and mucin domain-containing-3 (HAVCR2 or TIM3) [129,130]. In many cases, the effect of broad spectrum HDACi acts in favor of the immunosuppressive pathways. For example, vorinostat was found to reduce pro-inflammatory cytokines through the induction of indoleamine-2,3-dioxygenase 1 (IDO1) in a STAT-3-dependent manner [59] and increased regulatory T cells (Tregs) [81].
- Induction of specific chemokine expression on T cells: Expression of chemokines ensures T cell motility inside the tumor microenvironment, and pan-HDACis have been described to enhance the expression of specific chemokines. Specific examples include Ccl5, Cxcl9, and Cxcl10 induction by romidepsin and vorinostat [14]. Vorinostat has also been shown to induce the IL-8/CXCL8 expression in ovarian cancer cells, which is dependent on IκB kinase (IKK) activity and is associated with gene-specific recruitment of IKKβ and IKK-dependent recruitment of p65 NFκB to the IL-8/CXCL8 promoter [131]. The potential advantages of using immunotherapy-based pharmacological combinations and a few relevant examples are summarized in Table 2. The following sections will specifically address the HDACi classes particularly explored with immunotherapeutic combinations under preclinical and clinical settings in cancer pathogenesis.
8. Pan-HDACis & Their Involvement/Success in Immunotherapy Combination Modality
8.1. Valproic Acid
8.2. Panobinostat (LBH589)
8.3. LAQ824
8.4. Vorinostat
8.5. Belinostat
9. Class I HDACis
10. Selective HDACis
10.1. HDAC4
10.2. HDAC8
10.3. HDAC11
10.4. HDAC6
11. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Weber, J.S.; Yang, J.C.; Atkins, M.B.; Disis, M.L. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2092–2099. [Google Scholar] [CrossRef]
- Varricchi, G.; Marone, G.; Mercurio, V.; Galdiero, M.R.; Bonaduce, D.; Tocchetti, C.G. Immune checkpoint inhibitors and cardiac toxicity: An emerging issue. Curr. Med. Chem. 2018, 25, 1327–1339. [Google Scholar] [CrossRef]
- Gao, J.; Shi, L.Z.; Zhao, H.; Chen, J.; Xiong, L.; He, Q.; Chen, T.; Roszik, J.; Bernatchez, C.; Woodman, S.E.; et al. Loss of ifn-gamma pathway genes in tumor cells as a mechanism of resistance to anti-ctla-4 therapy. Cell 2016, 167, 397–404.e9. [Google Scholar] [CrossRef] [PubMed]
- Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; et al. Genomic and transcriptomic features of response to anti-pd-1 therapy in metastatic melanoma. Cell 2016, 165, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Terranova-Barberio, M.; Thomas, S.; Ali, N.; Pawlowska, N.; Park, J.; Krings, G.; Rosenblum, M.D.; Budillon, A.; Munster, P.N. Hdac inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget 2017, 8, 114156–114172. [Google Scholar] [CrossRef]
- Woods, D.M.; Sodre, A.L.; Villagra, A.; Sarnaik, A.; Sotomayor, E.M.; Weber, J. Hdac inhibition upregulates pd-1 ligands in melanoma and augments immunotherapy with pd-1 blockade. Cancer Immunol. Res. 2015, 3, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Briere, D.; Sudhakar, N.; Woods, D.M.; Hallin, J.; Engstrom, L.D.; Aranda, R.; Chiang, H.; Sodre, A.L.; Olson, P.; Weber, J.S.; et al. The class i/iv hdac inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol. Immunother. 2018, 67, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.L.; Chiappinelli, K.B.; Li, H.; Murphy, L.M.; Travers, M.E.; Topper, M.J.; Mathios, D.; Lim, M.; Shih, I.M.; Wang, T.L.; et al. Epigenetic therapy activates type i interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl. Acad. Sci. USA 2017, 114, E10981–E10990. [Google Scholar] [CrossRef]
- Cycon, K.A.; Mulvaney, K.; Rimsza, L.M.; Persky, D.; Murphy, S.P. Histone deacetylase inhibitors activate ciita and mhc class ii antigen expression in diffuse large b-cell lymphoma. Immunology 2013, 140, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Knox, T.; Sahakian, E.; Banik, D.; Hadley, M.; Palmer, E.; Noonepalle, S.; Kim, J.; Powers, J.; Gracia-Hernandez, M.; Oliveira, V.; et al. Selective hdac6 inhibitors improve anti-pd-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci. Rep. 2019, 9, 6136. [Google Scholar] [CrossRef] [PubMed]
- Germenis, A.E.; Karanikas, V. Immunoepigenetics: The unseen side of cancer immunoediting. Immunol. Cell Biol. 2007, 85, 55–59. [Google Scholar] [CrossRef]
- Akimova, T.; Beier, U.H.; Liu, Y.; Wang, L.; Hancock, W.W. Histone/protein deacetylases and t-cell immune responses. Blood 2012, 119, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Ellmeier, W.; Seiser, C. Histone deacetylase function in cd4(+) t cells. Nat. Rev. Immunol. 2018, 18, 617–634. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhao, W.; Yan, C.; Watson, C.C.; Massengill, M.; Xie, M.; Massengill, C.; Noyes, D.R.; Martinez, G.V.; Afzal, R.; et al. Hdac inhibitors enhance t-cell chemokine expression and augment response to pd-1 immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 2016, 22, 4119–4132. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.M.; Woan, K.V.; Cheng, F.; Sodre, A.L.; Wang, D.; Wu, Y.; Wang, Z.; Chen, J.; Powers, J.; Pinilla-Ibarz, J.; et al. T-cells lacking hdac11 have increased effector functions and mediate enhanced alloreactivity in a murine model. Blood 2017. [Google Scholar] [CrossRef] [PubMed]
- Pace, M.; Williams, J.; Kurioka, A.; Gerry, A.B.; Jakobsen, B.; Klenerman, P.; Nwokolo, N.; Fox, J.; Fidler, S.; Frater, J.; et al. Histone deacetylase inhibitors enhance cd4 t cell susceptibility to nk cell killing but reduce nk cell function. PLoS Pathog. 2016, 12, e1005782. [Google Scholar] [CrossRef] [PubMed]
- Das Gupta, K.; Shakespear, M.R.; Iyer, A.; Fairlie, D.P.; Sweet, M.J. Histone deacetylases in monocyte/macrophage development, activation and metabolism: Refining hdac targets for inflammatory and infectious diseases. Clin. Transl. Immunol. 2016, 5, e62. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Sharifi, A.; Pourpaknia, R.; Mohammadian, S.; Sahebkar, A. Manipulating macrophage polarization and function using classical hdac inhibitors: Implications for autoimmunity and inflammation. Crit. Rev. Oncol. Hematol. 2018, 128, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Halili, M.A.; Andrews, M.R.; Labzin, L.I.; Schroder, K.; Matthias, G.; Cao, C.; Lovelace, E.; Reid, R.C.; Le, G.T.; Hume, D.A.; et al. Differential effects of selective hdac inhibitors on macrophage inflammatory responses to the toll-like receptor 4 agonist lps. J. Leukoc. Biol. 2010, 87, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Waibel, M.; Christiansen, A.J.; Hibbs, M.L.; Shortt, J.; Jones, S.A.; Simpson, I.; Light, A.; O’Donnell, K.; Morand, E.F.; Tarlinton, D.M.; et al. Manipulation of b-cell responses with histone deacetylase inhibitors. Nat. Commun. 2015, 6, 6838. [Google Scholar] [CrossRef]
- Haery, L.; Thompson, R.C.; Gilmore, T.D. Histone acetyltransferases and histone deacetylases in b- and t-cell development, physiology and malignancy. Genes Cancer 2015, 6, 184–213. [Google Scholar]
- Choi, S.; Reddy, P. Hdac inhibition and graft versus host disease. Mol. Med. 2011, 17, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wei, J.; Zhong, L.; Shi, M.; Zhou, P.; Zuo, S.; Wu, K.; Zhu, M.; Huang, X.; Yu, Y.; et al. Correction for yang et al., “cross talk between histone deacetylase 4 and stat6 in the transcriptional regulation of arginase 1 during mouse dendritic cell differentiation”. Mol. Cell Biol. 2017, 37. [Google Scholar] [CrossRef] [PubMed]
- Bode, K.A.; Dalpke, A.H. Hdac inhibitors block innate immunity. Blood 2011, 117, 1102–1103. [Google Scholar] [CrossRef]
- Lin, T.Y.; Fenger, J.; Murahari, S.; Bear, M.D.; Kulp, S.K.; Wang, D.; Chen, C.S.; Kisseberth, W.C.; London, C.A. Ar-42, a novel hdac inhibitor, exhibits biologic activity against malignant mast cell lines via down-regulation of constitutively activated kit. Blood 2010, 115, 4217–4225. [Google Scholar] [CrossRef]
- Kankaanranta, H.; Janka-Junttila, M.; Ilmarinen-Salo, P.; Ito, K.; Jalonen, U.; Ito, M.; Adcock, I.M.; Moilanen, E.; Zhang, X. Histone deacetylase inhibitors induce apoptosis in human eosinophils and neutrophils. J. Inflamm. 2010, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Merzvinskyte, R.; Treigyte, G.; Savickiene, J.; Magnusson, K.E.; Navakauskiene, R. Effects of histone deacetylase inhibitors, sodium phenyl butyrate and vitamin b3, in combination with retinoic acid on granulocytic differentiation of human promyelocytic leukemia hl-60 cells. Ann. N. Y. Acad. Sci. 2006, 1091, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.S.; Parmigiani, R.B.; Marks, P.A. Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene 2007, 26, 5541–5552. [Google Scholar] [CrossRef]
- Singh, A.K.; Bishayee, A.; Pandey, A.K. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients 2018, 10. [Google Scholar] [CrossRef]
- Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res. 2011, 3, 166–179. [Google Scholar]
- Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef]
- Skogseth, H.; Larsson, E.; Halgunset, J. Inhibitors of tyrosine kinase inhibit the production of urokinase plasminogen activator in human prostatic cancer cells. APMIS 2005, 113, 332–339. [Google Scholar] [CrossRef]
- Zhu, P.; Martin, E.; Mengwasser, J.; Schlag, P.; Janssen, K.P.; Gottlicher, M. Induction of hdac2 expression upon loss of apc in colorectal tumorigenesis. Cancer Cell 2004, 5, 455–463. [Google Scholar] [CrossRef]
- Montgomery, R.L.; Davis, C.A.; Potthoff, M.J.; Haberland, M.; Fielitz, J.; Qi, X.; Hill, J.A.; Richardson, J.A.; Olson, E.N. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007, 21, 1790–1802. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, F.J.; Ansari, M.; Braunholz, D.; Concepcion Gil-Rodriguez, M.; Decroos, C.; Wilde, J.J.; Fincher, C.T.; Kaur, M.; Bando, M.; Amor, D.J.; et al. Loss-of-function hdac8 mutations cause a phenotypic spectrum of cornelia de lange syndrome-like features, ocular hypertelorism, large fontanelle and x-linked inheritance. Hum. Mol. Genet. 2014, 23, 2888–2900. [Google Scholar] [CrossRef]
- Kroesen, M.; Gielen, P.; Brok, I.C.; Armandari, I.; Hoogerbrugge, P.M.; Adema, G.J. Hdac inhibitors and immunotherapy; a double edged sword? Oncotarget 2014, 5, 6558–6572. [Google Scholar] [CrossRef]
- Saito, Y.; Saito, H.; Liang, G.; Friedman, J.M. Epigenetic alterations and microrna misexpression in cancer and autoimmune diseases: A critical review. Clin. Rev. Allergy Immunol. 2014, 47, 128–135. [Google Scholar] [CrossRef]
- Hull, E.E.; Montgomery, M.R.; Leyva, K.J. Hdac inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases. Biomed. Res. Int. 2016, 2016, 8797206. [Google Scholar] [CrossRef]
- Pandian, G.N.; Taniguchi, J.; Sugiyama, H. Cellular reprogramming for pancreatic beta-cell regeneration: Clinical potential of small molecule control. Clin. Transl. Med. 2014, 3, 6. [Google Scholar] [CrossRef]
- Kawada, Y.; Asahara, S.I.; Sugiura, Y.; Sato, A.; Furubayashi, A.; Kawamura, M.; Bartolome, A.; Terashi-Suzuki, E.; Takai, T.; Kanno, A.; et al. Histone deacetylase regulates insulin signaling via two pathways in pancreatic beta cells. PLoS ONE 2017, 12, e0184435. [Google Scholar] [CrossRef]
- Angiolilli, C.; Kabala, P.A.; Grabiec, A.M.; Van Baarsen, I.M.; Ferguson, B.S.; Garcia, S.; Malvar Fernandez, B.; McKinsey, T.A.; Tak, P.P.; Fossati, G.; et al. Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann. Rheum. Dis. 2017, 76, 277–285. [Google Scholar] [CrossRef]
- Glauben, R.; Siegmund, B. Inhibition of histone deacetylases in inflammatory bowel diseases. Mol. Med. 2011, 17, 426–433. [Google Scholar] [CrossRef]
- Furlan, A.; Monzani, V.; Reznikov, L.L.; Leoni, F.; Fossati, G.; Modena, D.; Mascagni, P.; Dinarello, C.A. Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor itf2357 (givinostat). Mol. Med. 2011, 17, 353–362. [Google Scholar] [CrossRef]
- Edwards, A.J.; Pender, S.L. Histone deacetylase inhibitors and their potential role in inflammatory bowel diseases. Biochem. Soc. Trans. 2011, 39, 1092–1095. [Google Scholar] [CrossRef]
- Kozikowski, A.; Shen, S.; Pardo, M.; Tavares, M.T.; Szarics, D.; Benoy, V.; Zimprich, C.A.; Kutil, Z.; Zhang, G.; Barinka, C.; et al. Brain penetrable histone deacetylase 6 inhibitor sw-100 ameliorates memory and learning impairments in a mouse model of fragile x syndrome. ACS Chem. Neurosci. 2018. [Google Scholar] [CrossRef]
- Yang, S.S.; Zhang, R.; Wang, G.; Zhang, Y.F. The development prospection of hdac inhibitors as a potential therapeutic direction in alzheimer’s disease. Transl. Neurodegener. 2017, 6, 19. [Google Scholar] [CrossRef]
- Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13, 673–691. [Google Scholar] [CrossRef]
- Li, Y.; Seto, E. Hdacs and hdac inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 2016, 6. [Google Scholar] [CrossRef]
- Munster, P.; Marchion, D.; Bicaku, E.; Lacevic, M.; Kim, J.; Centeno, B.; Daud, A.; Neuger, A.; Minton, S.; Sullivan, D. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: Phase i/ii trial of valproic acid and epirubicin/fec. Clin. Cancer Res. 2009, 15, 2488–2496. [Google Scholar] [CrossRef]
- Newbold, A.; Salmon, J.M.; Martin, B.P.; Stanley, K.; Johnstone, R.W. The role of p21(waf1/cip1) and p27(kip1) in hdaci-mediated tumor cell death and cell cycle arrest in the emu-myc model of b-cell lymphoma. Oncogene 2014, 33, 5415–5423. [Google Scholar] [CrossRef]
- Richon, V.M.; Sandhoff, T.W.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitor selectively induces p21waf1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA 2000, 97, 10014–10019. [Google Scholar] [CrossRef]
- Sorbera, L.A.; Morad, M. Modulation of cardiac sodium channels by camp receptors on the myocyte surface. Science 1991, 253, 1286–1289. [Google Scholar] [CrossRef]
- Ryu, H.W.; Shin, D.H.; Lee, D.H.; Choi, J.; Han, G.; Lee, K.Y.; Kwon, S.H. Hdac6 deacetylates p53 at lysines 381/382 and differentially coordinates p53-induced apoptosis. Cancer Lett. 2017, 391, 162–171. [Google Scholar] [CrossRef]
- Meng, Z.; Jia, L.F.; Gan, Y.H. Pten activation through k163 acetylation by inhibiting hdac6 contributes to tumour inhibition. Oncogene 2016, 35, 2333–2344. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hao, C.L.; Liu, P.; Tian, X.; Wang, L.H.; Zhao, L.; Zhu, C.M. Valproic acid inhibits tumor angiogenesis in mice transplanted with kasumi1 leukemia cells. Mol. Med. Rep. 2014, 9, 443–449. [Google Scholar] [CrossRef]
- Nakata, S.; Yoshida, T.; Horinaka, M.; Shiraishi, T.; Wakada, M.; Sakai, T. Histone deacetylase inhibitors upregulate death receptor 5/trail-r2 and sensitize apoptosis induced by trail/apo2-l in human malignant tumor cells. Oncogene 2004, 23, 6261–6271. [Google Scholar] [CrossRef]
- Bode, K.A.; Schroder, K.; Hume, D.A.; Ravasi, T.; Heeg, K.; Sweet, M.J.; Dalpke, A.H. Histone deacetylase inhibitors decrease toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology 2007, 122, 596–606. [Google Scholar] [CrossRef]
- Woan, K.V.; Sahakian, E.; Sotomayor, E.M.; Seto, E.; Villagra, A. Modulation of antigen-presenting cells by hdac inhibitors: Implications in autoimmunity and cancer. Immunol. Cell Biol. 2012, 90, 55–65. [Google Scholar] [CrossRef]
- Reddy, P.; Sun, Y.; Toubai, T.; Duran-Struuck, R.; Clouthier, S.G.; Weisiger, E.; Maeda, Y.; Tawara, I.; Krijanovski, O.; Gatza, E.; et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent dc functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest. 2008, 118, 2562–2573. [Google Scholar] [CrossRef]
- Song, W.; Tai, Y.T.; Tian, Z.; Hideshima, T.; Chauhan, D.; Nanjappa, P.; Exley, M.A.; Anderson, K.C.; Munshi, N.C. Hdac inhibition by lbh589 affects the phenotype and function of human myeloid dendritic cells. Leukemia 2011, 25, 161–168. [Google Scholar] [CrossRef]
- Leoni, F.; Zaliani, A.; Bertolini, G.; Porro, G.; Pagani, P.; Pozzi, P.; Dona, G.; Fossati, G.; Sozzani, S.; Azam, T.; et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl. Acad. Sci. USA 2002, 99, 2995–3000. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Lienlaf, M.; Wang, H.W.; Perez-Villarroel, P.; Lee, C.; Woan, K.; Rock-Klotz, J.; Sahakian, E.; Woods, D.; Pinilla-Ibarz, J.; et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic stat3/il-10 pathway in apcs. J. Immunol. 2014, 193, 2850–2862. [Google Scholar] [CrossRef]
- Lankat-Buttgereit, B.; Tampe, R. The transporter associated with antigen processing: Function and implications in human diseases. Physiol. Rev. 2002, 82, 187–204. [Google Scholar] [CrossRef]
- Setiadi, A.F.; Omilusik, K.; David, M.D.; Seipp, R.P.; Hartikainen, J.; Gopaul, R.; Choi, K.B.; Jefferies, W.A. Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res. 2008, 68, 9601–9607. [Google Scholar] [CrossRef]
- Seliger, B. Molecular mechanisms of mhc class i abnormalities and apm components in human tumors. Cancer Immunol. Immunother. 2008, 57, 1719–1726. [Google Scholar] [CrossRef]
- Li, J.; Schuler-Thurner, B.; Schuler, G.; Huber, C.; Seliger, B. Bipartite regulation of different components of the mhc class i antigen-processing machinery during dendritic cell maturation. Int. Immunol. 2001, 13, 1515–1523. [Google Scholar] [CrossRef]
- Ritz, U.; Momburg, F.; Pilch, H.; Huber, C.; Maeurer, M.J.; Seliger, B. Deficient expression of components of the mhc class i antigen processing machinery in human cervical carcinoma. Int. J. Oncol. 2001, 19, 1211–1220. [Google Scholar] [CrossRef]
- Vertuani, S.; De Geer, A.; Levitsky, V.; Kogner, P.; Kiessling, R.; Levitskaya, J. Retinoids act as multistep modulators of the major histocompatibility class i presentation pathway and sensitize neuroblastomas to cytotoxic lymphocytes. Cancer Res. 2003, 63, 8006–8013. [Google Scholar]
- Van den Elsen, P.J.; Peijnenburg, A.; van Eggermond, M.C.; Gobin, S.J. Shared regulatory elements in the promoters of mhc class i and class ii genes. Immunol. Today 1998, 19, 308–312. [Google Scholar] [CrossRef]
- Gobin, S.J.; Peijnenburg, A.; Keijsers, V.; van den Elsen, P.J. Site alpha is crucial for two routes of ifn gamma-induced mhc class i transactivation: The isre-mediated route and a novel pathway involving ciita. Immunity 1997, 6, 601–611. [Google Scholar] [CrossRef]
- Rodriguez, T.; Mendez, R.; Del Campo, A.; Jimenez, P.; Aptsiauri, N.; Garrido, F.; Ruiz-Cabello, F. Distinct mechanisms of loss of ifn-gamma mediated hla class i inducibility in two melanoma cell lines. BMC Cancer 2007, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.; Indrova, M.; Lubyova, B.; Pribylova, H.; Bieblova, J.; Hejnar, J.; Simova, J.; Jandlova, T.; Bubenik, J.; Reinis, M. Induction of mhc class i molecule cell surface expression and epigenetic activation of antigen-processing machinery components in a murine model for human papilloma virus 16-associated tumours. Immunology 2008, 123, 218–227. [Google Scholar] [CrossRef]
- Khan, A.N.; Magner, W.J.; Tomasi, T.B. An epigenetic vaccine model active in the prevention and treatment of melanoma. J. Transl. Med. 2007, 5, 64. [Google Scholar] [CrossRef]
- Khan, A.N.; Gregorie, C.J.; Tomasi, T.B. Histone deacetylase inhibitors induce tap, lmp, tapasin genes and mhc class i antigen presentation by melanoma cells. Cancer Immunol. Immunother. CII 2008, 57, 647–654. [Google Scholar] [CrossRef]
- Nencioni, A.; Beck, J.; Werth, D.; Grunebach, F.; Patrone, F.; Ballestrero, A.; Brossart, P. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin. Cancer Res. 2007, 13, 3933–3941. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.D.; Lee, J.S.; Jeong, Y.I.; Lee, C.M.; Chang, J.H.; Jeong, S.K.; Chun, S.H.; Park, W.S.; Han, J.; Shin, Y.K.; et al. Apicidin, the histone deacetylase inhibitor, suppresses th1 polarization of murine bone marrow-derived dendritic cells. Int. J. Immunopathol. Pharmacol. 2009, 22, 501–515. [Google Scholar] [CrossRef]
- Frikeche, J.; Peric, Z.; Brissot, E.; Gregoire, M.; Gaugler, B.; Mohty, M. Impact of hdac inhibitors on dendritic cell functions. Exp. Hematol. 2012, 40, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chin, Y.E.; Weisiger, E.; Malter, C.; Tawara, I.; Toubai, T.; Gatza, E.; Mascagni, P.; Dinarello, C.A.; Reddy, P. Cutting edge: Negative regulation of dendritic cells through acetylation of the nonhistone protein stat-3. J. Immunol. 2009, 182, 5899–5903. [Google Scholar] [CrossRef]
- Badawy, A.A. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int. J. Tryptophan Res. 2017, 10. [Google Scholar] [CrossRef]
- Jasperson, L.K.; Bucher, C.; Panoskaltsis-Mortari, A.; Mellor, A.L.; Munn, D.H.; Blazar, B.R. Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (ido), for suppression of graft-versus-host disease (gvhd) lethality. Blood 2009, 114, 5062–5070. [Google Scholar] [CrossRef]
- Tao, R.; de Zoeten, E.F.; Ozkaynak, E.; Chen, C.; Wang, L.; Porrett, P.M.; Li, B.; Turka, L.A.; Olson, E.N.; Greene, M.I.; et al. Deacetylase inhibition promotes the generation and function of regulatory t cells. Nat. Med. 2007, 13, 1299–1307. [Google Scholar] [CrossRef]
- Lucas, J.L.; Mirshahpanah, P.; Haas-Stapleton, E.; Asadullah, K.; Zollner, T.M.; Numerof, R.P. Induction of FOXP3+ regulatory t cells with histone deacetylase inhibitors. Cell Immunol. 2009, 257, 97–104. [Google Scholar] [CrossRef]
- Brogdon, J.L.; Xu, Y.; Szabo, S.J.; An, S.; Buxton, F.; Cohen, D.; Huang, Q. Histone deacetylase activities are required for innate immune cell control of th1 but not th2 effector cell function. Blood 2007, 109, 1123–1130. [Google Scholar] [CrossRef]
- Lee, D.U.; Agarwal, S.; Rao, A. Th2 lineage commitment and efficient il-4 production involves extended demethylation of the il-4 gene. Immunity 2002, 16, 649–660. [Google Scholar] [CrossRef]
- Chang, S.; Collins, P.L.; Aune, T.M. T-bet dependent removal of sin3a-histone deacetylase complexes at the ifng locus drives th1 differentiation. J. Immunol. 2008, 181, 8372–8381. [Google Scholar] [CrossRef]
- Moreira, J.; Scheipers, P.; Sorensen, P. The histone deacetylase inhibitor trichostatin a modulates cd4+ t cell responses. BMC Cancer 2003, 3, 30. [Google Scholar] [CrossRef]
- Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 2005, 363, 15–23. [Google Scholar] [CrossRef]
- Morinobu, A.; Kanno, Y.; O’Shea, J.J. Discrete roles for histone acetylation in human t helper 1 cell-specific gene expression. J. Biol. Chem. 2004, 279, 40640–40646. [Google Scholar] [CrossRef]
- Salkowska, A.; Karas, K.; Walczak-Drzewiecka, A.; Dastych, J.; Ratajewski, M. Differentiation stage-specific effect of histone deacetylase inhibitors on the expression of rorgammat in human lymphocytes. J. Leukoc Biol. 2017, 102, 1487–1495. [Google Scholar] [CrossRef]
- Regna, N.L.; Chafin, C.B.; Hammond, S.E.; Puthiyaveetil, A.G.; Caudell, D.L.; Reilly, C.M. Class i and ii histone deacetylase inhibition by itf2357 reduces sle pathogenesis in vivo. Clin. Immunol. 2014, 151, 29–42. [Google Scholar] [CrossRef]
- Glauben, R.; Sonnenberg, E.; Wetzel, M.; Mascagni, P.; Siegmund, B. Histone deacetylase inhibitors modulate interleukin 6-dependent cd4+ t cell polarization in vitro and in vivo. J. Biol. Chem. 2014, 289, 6142–6151. [Google Scholar] [CrossRef]
- Wu, Q.; Nie, J.; Gao, Y.; Xu, P.; Sun, Q.; Yang, J.; Han, L.; Chen, Z.; Wang, X.; Lv, L.; et al. Reciprocal regulation of rorgammat acetylation and function by p300 and hdac1. Sci. Rep. 2015, 5, 16355. [Google Scholar] [CrossRef]
- Bottino, C.; Castriconi, R.; Moretta, L.; Moretta, A. Cellular ligands of activating nk receptors. Trends Immunol. 2005, 26, 221–226. [Google Scholar] [CrossRef]
- Wu, X.; Tao, Y.; Hou, J.; Meng, X.; Shi, J. Valproic acid upregulates nkg2d ligand expression through an erk-dependent mechanism and potentially enhances nk cell-mediated lysis of myeloma. Neoplasia 2012, 14, 1178–1189. [Google Scholar] [CrossRef]
- Ogbomo, H.; Michaelis, M.; Kreuter, J.; Doerr, H.W.; Cinatl, J., Jr. Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett. 2007, 581, 1317–1322. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Denman, C.J.; Cobanoglu, Z.S.; Kiany, S.; Lau, C.C.; Gottschalk, S.M.; Hughes, D.P.; Kleinerman, E.S.; Lee, D.A. The narrow-spectrum hdac inhibitor entinostat enhances nkg2d expression without nk cell toxicity, leading to enhanced recognition of cancer cells. Pharm. Res. 2015, 32, 779–792. [Google Scholar] [CrossRef]
- Ni, L.; Wang, L.; Yao, C.; Ni, Z.; Liu, F.; Gong, C.; Zhu, X.; Yan, X.; Watowich, S.S.; Lee, D.A.; et al. The histone deacetylase inhibitor valproic acid inhibits nkg2d expression in natural killer cells through suppression of stat3 and hdac3. Sci. Rep. 2017, 7, 45266. [Google Scholar] [CrossRef]
- Shi, X.; Li, M.; Cui, M.; Niu, C.; Xu, J.; Zhou, L.; Li, W.; Gao, Y.; Kong, W.; Cui, J.; et al. Epigenetic suppression of the antitumor cytotoxicity of nk cells by histone deacetylase inhibitor valproic acid. Am. J. Cancer Res. 2016, 6, 600–614. [Google Scholar]
- Slichenmyer, W.J.; Von Hoff, D.D. Taxol: A new and effective anticancer drug. Anticancer Drugs 1991, 2, 519–530. [Google Scholar] [CrossRef]
- Hortobagyi, G.N. Anthracyclines in the treatment of cancer. An overview. Drugs 1997, 54, 1–7. [Google Scholar]
- Larkin, J.M.; Kaye, S.B. Epothilones in the treatment of cancer. Expert Opin. Investig. Drugs 2006, 15, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Swami, U. Eribulin mesilate, a halichondrin b analogue, in the treatment of breast cancer. Drugs Today 2010, 46, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R. Targeting targeted therapy. N. Engl. J. Med. 2004, 350, 2191–2193. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, M.O.; Kavan, P.; Miller, W.H., Jr.; Panasci, L.; Assouline, S.; Johnson, N.; Cohen, V.; Patenaude, F.; Pollak, M.; Jagoe, R.T.; et al. Systemic cancer therapy: Achievements and challenges that lie ahead. Front. Pharmacol. 2013, 4, 57. [Google Scholar] [CrossRef]
- Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (hdaci) for the treatment of cancer: Achieving the full therapeutic potential of hdaci. Front. Oncol. 2018, 8, 92. [Google Scholar] [CrossRef]
- Owyong, M.; Efe, G.; Owyong, M.; Abbasi, A.J.; Sitarama, V.; Plaks, V. Overcoming barriers of age to enhance efficacy of cancer immunotherapy: The clout of the extracellular matrix. Front. Cell Dev. Biol. 2018, 6, 19. [Google Scholar] [CrossRef]
- Dunn, J.; Rao, S. Epigenetics and immunotherapy: The current state of play. Mol. Immunol. 2017, 87, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Wrangle, J.; Wang, W.; Koch, A.; Easwaran, H.; Mohammad, H.P.; Vendetti, F.; Vancriekinge, W.; Demeyer, T.; Du, Z.; Parsana, P.; et al. Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget 2013, 4, 2067–2079. [Google Scholar] [CrossRef]
- Lee, S.; Margolin, K. Cytokines in cancer immunotherapy. Cancers 2011, 3, 3856–3893. [Google Scholar] [CrossRef]
- Bethune, M.T.; Joglekar, A.V. Personalized t cell-mediated cancer immunotherapy: Progress and challenges. Curr. Opin. Biotechnol. 2017, 48, 142–152. [Google Scholar] [CrossRef]
- Chester, C.; Sanmamed, M.F.; Wang, J.; Melero, I. Immunotherapy targeting 4-1bb: Mechanistic rationale, clinical results, and future strategies. Blood 2018, 131, 49–57. [Google Scholar] [CrossRef]
- Weiner, L.M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327. [Google Scholar] [CrossRef]
- Wang, T.; Wang, D.; Yu, H.; Feng, B.; Zhou, F.; Zhang, H.; Zhou, L.; Jiao, S.; Li, Y. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat. Commun. 2018, 9, 1532. [Google Scholar] [CrossRef]
- Yang, L.; Ng, K.Y.; Lillehei, K.O. Cell-mediated immunotherapy: A new approach to the treatment of malignant glioma. Cancer Control. J. Moffitt Cancer Cent. 2003, 10, 138–147. [Google Scholar]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Dine, J.; Gordon, R.; Shames, Y.; Kasler, M.K.; Barton-Burke, M. Immune checkpoint inhibitors: An innovation in immunotherapy for the treatment and management of patients with cancer. Asia. Pac. J. Oncol. Nurs. 2017, 4, 127–135. [Google Scholar] [CrossRef]
- Zamarin, D.; Holmgaard, R.B.; Subudhi, S.K.; Park, J.S.; Mansour, M.; Palese, P.; Merghoub, T.; Wolchok, J.D.; Allison, J.P. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med. 2014, 6, 226ra232. [Google Scholar] [CrossRef]
- Zika, E.; Greer, S.F.; Zhu, X.S.; Ting, J.P. Histone deacetylase 1/msin3a disrupts gamma interferon-induced ciita function and major histocompatibility complex class ii enhanceosome formation. Mol. Cell Biol. 2003, 23, 3091–3102. [Google Scholar] [CrossRef]
- Tomasi, T.B.; Magner, W.J.; Khan, A.N. Epigenetic regulation of immune escape genes in cancer. Cancer Immunol. Immunother. 2006, 55, 1159–1184. [Google Scholar] [CrossRef]
- Chou, S.D.; Khan, A.N.; Magner, W.J.; Tomasi, T.B. Histone acetylation regulates the cell type specific ciita promoters, mhc class ii expression and antigen presentation in tumor cells. Int. Immunol. 2005, 17, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Wischnewski, F.; Pantel, K.; Schwarzenbach, H. Promoter demethylation and histone acetylation mediate gene expression of mage-a1, -a2, -a3, and -a12 in human cancer cells. Mol. Cancer Res. 2006, 4, 339–349. [Google Scholar] [CrossRef]
- Maeda, T.; Towatari, M.; Kosugi, H.; Saito, H. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 2000, 96, 3847–3856. [Google Scholar] [PubMed]
- Wang, H.F.; Ning, F.; Liu, Z.C.; Wu, L.; Li, Z.Q.; Qi, Y.F.; Zhang, G.; Wang, H.S.; Cai, S.H.; Du, J. Histone deacetylase inhibitors deplete myeloid-derived suppressor cells induced by 4t1 mammary tumors in vivo and in vitro. Cancer Immunol. Immunother. 2017, 66, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol. 2017, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Pal, S.K.; Reckamp, K.; Figlin, R.A.; Yu, H. Stat3: A target to enhance antitumor immune response. Curr. Top. Microbiol. Immunol. 2011, 344, 41–59. [Google Scholar] [PubMed]
- Hayden, M.S.; West, A.P.; Ghosh, S. Nf-kappab and the immune response. Oncogene 2006, 25, 6758–6780. [Google Scholar] [CrossRef]
- Brandmaier, A.; Hou, S.Q.; Demaria, S.; Formenti, S.C.; Shen, W.H. Pten at the interface of immune tolerance and tumor suppression. Front. Biol. 2017, 12, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, T.A.; Giaccia, A.J. Molecular pathways: Oncologic pathways and their role in t-cell exclusion and immune evasion-a new role for the axl receptor tyrosine kinase. Clin. Cancer Res. 2017, 23, 2928–2933. [Google Scholar] [CrossRef] [PubMed]
- Spranger, S.; Spaapen, R.M.; Zha, Y.; Williams, J.; Meng, Y.; Ha, T.T.; Gajewski, T.F. Up-regulation of pd-l1, ido, and t(regs) in the melanoma tumor microenvironment is driven by cd8(+) t cells. Sci. Transl. Med. 2013, 5, 200ra116. [Google Scholar] [CrossRef]
- Gatla, H.R.; Zou, Y.; Uddin, M.M.; Singha, B.; Bu, P.; Vancura, A.; Vancurova, I. Histone deacetylase (hdac) inhibition induces ikappab kinase (ikk)-dependent interleukin-8/cxcl8 expression in ovarian cancer cells. J. Biol. Chem. 2017, 292, 5043–5054. [Google Scholar] [CrossRef]
- Sawas, A.; Radeski, D.; O’Connor, O.A. Belinostat in patients with refractory or relapsed peripheral t-cell lymphoma: A perspective review. Ther. Adv. Hematol. 2015, 6, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Moore, D. Panobinostat (farydak): A novel option for the treatment of relapsed or relapsed and refractory multiple myeloma. Pharm. Ther. 2016, 41, 296–300. [Google Scholar]
- Booth, L.; Roberts, J.L.; Poklepovic, A.; Kirkwood, J.; Dent, P. Hdac inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget 2017, 8, 83155–83170. [Google Scholar] [CrossRef] [PubMed]
- McKay, R.D. The origins of cellular diversity in the mammalian central nervous system. Cell 1989, 58, 815–821. [Google Scholar] [CrossRef]
- Okayama, H.; Holmes, M.D.; Brantly, M.L.; Crystal, R.G. Characterization of the coding sequence of the normal m4 alpha 1-antitrypsin gene. Biochem. Biophys. Res. Commun. 1989, 162, 1560–1570. [Google Scholar] [CrossRef]
- Griffiths, E.A.; Gore, S.D. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin. Hematol. 2008, 45, 23–30. [Google Scholar] [CrossRef]
- Garcia-Guerrero, E.; Gogishvili, T.; Danhof, S.; Schreder, M.; Pallaud, C.; Perez-Simon, J.A.; Einsele, H.; Hudecek, M. Panobinostat induces cd38 upregulation and augments the antimyeloma efficacy of daratumumab. Blood 2017, 129, 3386–3388. [Google Scholar]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef]
- Shimizu, R.; Kikuchi, J.; Wada, T.; Ozawa, K.; Kano, Y.; Furukawa, Y. Hdac inhibitors augment cytotoxic activity of rituximab by upregulating cd20 expression on lymphoma cells. Leukemia 2010, 24, 1760–1768. [Google Scholar] [CrossRef]
- Laszlo, G.S.; Gudgeon, C.J.; Harrington, K.H.; Dell’Aringa, J.; Newhall, K.J.; Means, G.D.; Sinclair, A.M.; Kischel, R.; Frankel, S.R.; Walter, R.B. Cellular determinants for preclinical activity of a novel cd33/cd3 bispecific t-cell engager (bite) antibody, amg 330, against human aml. Blood 2014, 123, 554–561. [Google Scholar] [CrossRef]
- Vo, D.D.; Prins, R.M.; Begley, J.L.; Donahue, T.R.; Morris, L.F.; Bruhn, K.W.; de la Rocha, P.; Yang, M.Y.; Mok, S.; Garban, H.J.; et al. Enhanced antitumor activity induced by adoptive t-cell transfer and adjunctive use of the histone deacetylase inhibitor laq824. Cancer Res. 2009, 69, 8693–8699. [Google Scholar] [CrossRef]
- Campbell, P.; Thomas, C.M. Belinostat for the treatment of relapsed or refractory peripheral t-cell lymphoma. J. Oncol. Pharm. Pract. 2017, 23, 143–147. [Google Scholar] [CrossRef]
- Kong, L.R.; Tan, T.Z.; Ong, W.R.; Bi, C.; Huynh, H.; Lee, S.C.; Chng, W.J.; Eichhorn, P.J.A.; Goh, B.C. Belinostat exerts antitumor cytotoxicity through the ubiquitin-proteasome pathway in lung squamous cell carcinoma. Mol. Oncol. 2017, 11, 965–980. [Google Scholar] [CrossRef] [Green Version]
- Puvvada, S.D.; Guillen-Rodriguez, J.M.; Rivera, X.I.; Heard, K.; Inclan, L.; Schmelz, M.; Schatz, J.H.; Persky, D.O. A phase ii exploratory study of pxd-101 (belinostat) followed by zevalin in patients with relapsed aggressive high-risk lymphoma. Oncology 2017, 93, 401–405. [Google Scholar] [CrossRef]
- Nebbioso, A.; Carafa, V.; Benedetti, R.; Altucci, L. Trials with ’epigenetic’ drugs: An update. Mol. Oncol. 2012, 6, 657–682. [Google Scholar] [CrossRef]
- Younes, A.; Oki, Y.; Bociek, R.G.; Kuruvilla, J.; Fanale, M.; Neelapu, S.; Copeland, A.; Buglio, D.; Galal, A.; Besterman, J.; et al. Mocetinostat for relapsed classical hodgkin’s lymphoma: An open-label, single-arm, phase 2 trial. Lancet Oncol. 2011, 12, 1222–1228. [Google Scholar] [CrossRef]
- Luo, Y.; Carmichael, G.G. Splice site skipping in polyomavirus late pre-mrna processing. J. Virol. 1991, 65, 6637–6644. [Google Scholar]
- Boumber, Y.; Younes, A.; Garcia-Manero, G. Mocetinostat (mgcd0103): A review of an isotype-specific histone deacetylase inhibitor. Expert Opin. Investig. Drugs 2011, 20, 823–829. [Google Scholar] [CrossRef]
- Bracker, T.U.; Sommer, A.; Fichtner, I.; Faus, H.; Haendler, B.; Hess-Stumpp, H. Efficacy of ms-275, a selective inhibitor of class i histone deacetylases, in human colon cancer models. Int. J. Oncol. 2009, 35, 909–920. [Google Scholar]
- Orillion, A.; Hashimoto, A.; Damayanti, N.; Shen, L.; Adelaiye-Ogala, R.; Arisa, S.; Chintala, S.; Ordentlich, P.; Kao, C.; Elzey, B.; et al. Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of pd-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 2017, 23, 5187–5201. [Google Scholar] [CrossRef]
- Trapani, D.; Esposito, A.; Criscitiello, C.; Mazzarella, L.; Locatelli, M.; Minchella, I.; Minucci, S.; Curigliano, G. Entinostat for the treatment of breast cancer. Expert Opin. Investig. Drugs 2017, 26, 965–971. [Google Scholar] [CrossRef]
- Robertson, F.M.; Chu, K.; Boley, K.M.; Ye, Z.; Liu, H.; Wright, M.C.; Moraes, R.; Zhang, X.; Green, T.L.; Barsky, S.H.; et al. The class i hdac inhibitor romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. J. Exp. Ther. Oncol. 2013, 10, 219–233. [Google Scholar]
- West, A.C.; Johnstone, R.W. New and emerging hdac inhibitors for cancer treatment. J. Clin. Invest. 2014, 124, 30–39. [Google Scholar] [CrossRef]
- Huang, H.L.; Peng, C.Y.; Lai, M.J.; Chen, C.H.; Lee, H.Y.; Wang, J.C.; Liou, J.P.; Pan, S.L.; Teng, C.M. Novel oral histone deacetylase inhibitor, mpt0e028, displays potent growth-inhibitory activity against human b-cell lymphoma in vitro and in vivo. Oncotarget 2015, 6, 4976–4991. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhou, Y.; Li, J.; Chen, K.; Zhang, L.; Deng, M.; Deng, S.; Li, P.; Xu, B. Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin. Epigenetics 2017, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Jia, B.; Xu, W.; Li, W.; Liu, T.; Liu, P.; Zhao, W.; Zhang, H.; Sun, X.; Yang, H.; et al. Chidamide in relapsed or refractory peripheral t cell lymphoma: A multicenter real-world study in china. J. Hematol. Oncol. 2017, 10, 69. [Google Scholar] [CrossRef]
- Adedoyin, O.; Boddu, R.; Traylor, A.; Lever, J.M.; Bolisetty, S.; George, J.F.; Agarwal, A. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am. J. Physiol. Renal. Physiol. 2018, 314, F702–F714. [Google Scholar] [CrossRef]
- Vogl, D.T.; Raje, N.; Jagannath, S.; Richardson, P.; Hari, P.; Orlowski, R.; Supko, J.G.; Tamang, D.; Yang, M.; Jones, S.S.; et al. Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clin. Cancer Res. 2017, 23, 3307–3315. [Google Scholar] [CrossRef] [Green Version]
- Mielcarek, M.; Zielonka, D.; Carnemolla, A.; Marcinkowski, J.T.; Guidez, F. Hdac4 as a potential therapeutic target in neurodegenerative diseases: A summary of recent achievements. Front. Cell Neurosci. 2015, 9, 42. [Google Scholar] [CrossRef]
- Mielcarek, M.; Landles, C.; Weiss, A.; Bradaia, A.; Seredenina, T.; Inuabasi, L.; Osborne, G.F.; Wadel, K.; Touller, C.; Butler, R.; et al. Hdac4 reduction: A novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 2013, 11, e1001717. [Google Scholar] [CrossRef]
- Zeng, L.S.; Yang, X.Z.; Wen, Y.F.; Mail, S.J.; Wang, M.H.; Zhang, M.Y.; Zheng, X.F.; Wang, H.Y. Overexpressed hdac4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging 2016, 8, 1236–1249. [Google Scholar] [CrossRef]
- Wilson, A.J.; Byun, D.S.; Nasser, S.; Murray, L.B.; Ayyanar, K.; Arango, D.; Figueroa, M.; Melnick, A.; Kao, G.D.; Augenlicht, L.H.; et al. Hdac4 promotes growth of colon cancer cells via repression of p21. Mol. Biol. Cell 2008, 19, 4062–4075. [Google Scholar] [CrossRef]
- Kang, Z.H.; Wang, C.Y.; Zhang, W.L.; Zhang, J.T.; Yuan, C.H.; Zhao, P.W.; Lin, Y.Y.; Hong, S.; Li, C.Y.; Wang, L. Histone deacetylase hdac4 promotes gastric cancer sgc-7901 cells progression via p21 repression. PLoS ONE 2014, 9, e98894. [Google Scholar] [CrossRef]
- Geng, H.; Harvey, C.T.; Pittsenbarger, J.; Liu, Q.; Beer, T.M.; Xue, C.; Qian, D.Z. Hdac4 protein regulates hif1alpha protein lysine acetylation and cancer cell response to hypoxia. J. Biol. Chem. 2011, 286, 38095–38102. [Google Scholar] [CrossRef]
- Vanaja, G.R.; Ramulu, H.G.; Kalle, A.M. Overexpressed hdac8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with hdac6. Cell Commun. Signal. 2018, 16, 20. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Ramos, J.; Luo, W.; Sirisawad, M.; Verner, E.; Buggy, J.J. A novel histone deacetylase 8 (hdac8)-specific inhibitor pci-34051 induces apoptosis in t-cell lymphomas. Leukemia 2008, 22, 1026–1034. [Google Scholar] [CrossRef]
- Van den Wyngaert, I.; de Vries, W.; Kremer, A.; Neefs, J.; Verhasselt, P.; Luyten, W.H.; Kass, S.U. Cloning and characterization of human histone deacetylase 8. FEBS Lett. 2000, 478, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Marek, M.; Kannan, S.; Hauser, A.T.; Moraes Mourao, M.; Caby, S.; Cura, V.; Stolfa, D.A.; Schmidtkunz, K.; Lancelot, J.; Andrade, L.; et al. Structural basis for the inhibition of histone deacetylase 8 (hdac8), a key epigenetic player in the blood fluke schistosoma mansoni. PLoS Pathog. 2013, 9, e1003645. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Oehme, I.; Witt, O.; Oliveira, G.; Sippl, W.; Romier, C.; Pierce, R.J.; Jung, M. Hdac8: A multifaceted target for therapeutic interventions. Trends Pharmacol. Sci. 2015, 36, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Deubzer, H.E.; Schier, M.C.; Oehme, I.; Lodrini, M.; Haendler, B.; Sommer, A.; Witt, O. Hdac11 is a novel drug target in carcinomas. Int. J. Cancer 2013, 132, 2200–2208. [Google Scholar] [CrossRef]
- Sun, L.; Marin de Evsikova, C.; Bian, K.; Achille, A.; Telles, E.; Pei, H.; Seto, E. Programming and regulation of metabolic homeostasis by hdac11. EBioMedicine 2018, 33, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Distler, A.; Brayer, J.B.; Meads, M.; Sahakian, E.; Powers, J.J.; Alsina, M.; Nishihori, T.; Baz, R.C.; Pinilla-Ibarz, J.; Sotomayor, E.M.; et al. Hdac11 as a candidate therapeutic target in multiple myeloma. J. Clin. Oncol. 2017, 35, 8029. [Google Scholar] [CrossRef]
- Villagra, A.; Cheng, F.; Wang, H.W.; Suarez, I.; Glozak, M.; Maurin, M.; Nguyen, D.; Wright, K.L.; Atadja, P.W.; Bhalla, K.; et al. The histone deacetylase hdac11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol. 2009, 10, 92–100. [Google Scholar] [CrossRef]
- Huang, J.; Wang, L.; Dahiya, S.; Beier, U.H.; Han, R.; Samanta, A.; Bergman, J.; Sotomayor, E.M.; Seto, E.; Kozikowski, A.P.; et al. Histone/protein deacetylase 11 targeting promotes FOXP3+ treg function. Sci. Rep. 2017, 7, 8626. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lim, K.H.; Guo, X.; Kawaguchi, Y.; Gao, Y.; Barrientos, T.; Ordentlich, P.; Wang, X.F.; Counter, C.M.; Yao, T.P. The cytoplasmic deacetylase hdac6 is required for efficient oncogenic tumorigenesis. Cancer Res. 2008, 68, 7561–7569. [Google Scholar] [CrossRef]
- Wickstrom, S.A.; Masoumi, K.C.; Khochbin, S.; Fassler, R.; Massoumi, R. Cyld negatively regulates cell-cycle progression by inactivating hdac6 and increasing the levels of acetylated tubulin. EMBO J. 2010, 29, 131–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Caron, C.; Matthias, G.; Hess, D.; Khochbin, S.; Matthias, P. Hdac-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 2003, 22, 1168–1179. [Google Scholar] [CrossRef]
- Matsuyama, A.; Shimazu, T.; Sumida, Y.; Saito, A.; Yoshimatsu, Y.; Seigneurin-Berny, D.; Osada, H.; Komatsu, Y.; Nishino, N.; Khochbin, S.; et al. In vivo destabilization of dynamic microtubules by hdac6-mediated deacetylation. EMBO J. 2002, 21, 6820–6831. [Google Scholar] [CrossRef]
- Kovacs, J.J.; Murphy, P.J.; Gaillard, S.; Zhao, X.; Wu, J.T.; Nicchitta, C.V.; Yoshida, M.; Toft, D.O.; Pratt, W.B.; Yao, T.P. Hdac6 regulates hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell. 2005, 18, 601–607. [Google Scholar] [CrossRef]
- M, L.; P, P.V.; T, K.; M, P.; E, S.; J, P.; K, V.W.; C, L.; F, C.; S, D.; et al. Essential role of hdac6 in the regulation of pd-l1 in melanoma. Mol. Oncol. 2016, 10, 735–750. [Google Scholar] [PubMed]
- Keremu, A.; Aimaiti, A.; Liang, Z.; Zou, X. Role of the hdac6/stat3 pathway in regulating pd-l1 expression in osteosarcoma cell lines. Cancer Chemother Pharm. 2019, 83, 255–264. [Google Scholar] [CrossRef]
- Powers, J.J.; Maharaj, K.K.; Sahakian, E.; Xing, L.; PerezVillarroel, P.; Knox, T.; Quayle, S.; Jones, S.S.; Villagra, A.; Sotomayor, E.M.; et al. Histone deacetylase 6 (hdac6) as a regulator of immune check-point molecules in chronic lymphocytic leukemia (cll). Blood Cancer J. 2014, 124, 3311. [Google Scholar]
- Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, L.; Hugo, W.; Wang, X.; et al. Interferon receptor signaling pathways regulating pd-l1 and pd-l2 expression. Cell Rep. 2017, 19, 1189–1201. [Google Scholar] [CrossRef]
- Leyk, J.; Daly, C.; Janssen-Bienhold, U.; Kennedy, B.N.; Richter-Landsberg, C. Hdac6 inhibition by tubastatin a is protective against oxidative stress in a photoreceptor cell line and restores visual function in a zebrafish model of inherited blindness. Cell Death Dis. 2017, 8, e3028. [Google Scholar] [CrossRef]
- Subramanian, S.; Bates, S.E.; Wright, J.J.; Espinoza-Delgado, I.; Piekarz, R.L. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals 2010, 3, 2751–2767. [Google Scholar] [CrossRef]
- Lee, J.H.; Choy, M.L.; Marks, P.A. Mechanisms of resistance to histone deacetylase inhibitors. Adv. Cancer Res. 2012, 116, 39–86. [Google Scholar]
- Waldman, S.A. Does potency predict clinical efficacy? Illustration through an antihistamine model. Ann. Allergy Asthma Immunol. 2002, 89, 7–11, quiz 11–12, 77. [Google Scholar] [CrossRef]
- Muller, P.Y.; Milton, M.N. The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug Discov. 2012, 11, 751–761. [Google Scholar] [CrossRef]
Class I | Class IIa | Class IIb | Class IV | Clinicaltrials.gov | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inhibitor Name | HDAC1 | HDAC2 | HDAC3 | HDAC8 | HDAC4 | HDAC5 | HDAC7 | HDAC9 | HDAC6 | HDAC10 | HDAC11 | (02/22/2019) | |
Vorinostat (SAHA, MK0683) | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | Merck (FDA) | 251 |
Panobinostat (LBH589) | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | Novartis (FDA) | 133 |
Trichostatin A (TSA) | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | 15 | |
Belinostat (PXD101) | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | TopoTarget (FDA) | 44 |
LAQ824 (Dacinostat) | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | Novartis | - |
M344 | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | - | |
AR-42 | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | Arno Theraputics | 5 |
Quisinostat (JNJ-26481585) 2HCl | ++++ | ++++ | ++++ | ++++ | ++++ | ++++ | ++ | +++ | ++ | ++++ | ++++ | 6 | |
CUDC-907 | ++++ | ++++ | ++++ | ++ | ++ | + | ++ | ++ | +++ | ++++ | ++++ | 6 | |
Pracinostat (SB939) | +++ | ++ | +++ | ++ | +++ | +++ | ++ | ++ | + | +++ | ++ | MEI Pharma (FDA) | 12 |
CUDC-101 | ++++ | +++ | ++++ | ++ | +++ | +++ | ++ | ++ | ++++ | +++ | Curis | 4 | |
Ricolinostat (ACY-1215) | ++ | +++ | +++ | ++ | + | + | + | ++++ | Celgene/Acetylon | 9 | |||
PCI-24781 (Abexinostat) | ++++ | +++ | ++++ | ++ | +++ | +++ | Pharmacyclics | 9 | |||||
HPOB | + | + | + | + | +++ | + | 1 | ||||||
MC1568 | ++ | ++ | ++ | ++ | - | ||||||||
Mocetinostat (MGCD0103) | ++ | ++ | + | + | Mirati (FDA) | 22 | |||||||
TMP269 | ++ | ++ | +++ | +++ | - | ||||||||
PCI-34051 | + | ++++ | + | + | - | ||||||||
Droxinostat | + | + | + | - | |||||||||
Resminostat | +++ | +++ | ++ | 4SC | 5 | ||||||||
BRD73954 | + | ++ | +++ | - | |||||||||
BG45 | + | + | ++ | - | |||||||||
4SC-202 | + | + | + | 4SC | 3 | ||||||||
CI994 (Tacedinaline) | + | + | + | 3 | |||||||||
LMK-235 | +++ | ++++ | - | ||||||||||
Romidepsin (FK228, Depsipeptide) | +++ | +++ | Celgene | 88 | |||||||||
RG2833 (RGFP109) | +++ | ++++ | Replign | - | |||||||||
Entinostat (MS-275) | ++ | + | Syndax | 60 | |||||||||
CAY10603 | ++ | ++++ | - | ||||||||||
Tubacin | ++++ | - | |||||||||||
RGFP966 | ++ | - | |||||||||||
Tubastatin A | +++ | - | |||||||||||
Nexturastat A | ++++ | - | |||||||||||
SS-2-08 | ++++ | - |
Advantage | Example | References |
---|---|---|
Overcome resistance | Resistance to specific inhibitors can be overcome by combining with checkpoint inhibitor. 1. BRAF mutant melanoma developing resistance to BRAF inhibitor, achieved prolonged survival with Nivolumab. 2. Nivolumab + veliparib + Platinum Doublet Chemotherapy (Metastatic NSCLC) | NCT01721746 (Checkmate 037) NCT02944396 |
Increase efficacy and prolong survival | Targeting non-overlapping pathways to restore T cell function: nivolumab and ipilimumab combination; CTLA-4 blockade diminishes the CTLA-4 upregulation which may partially contribute to the resistance to PD-1 blockade. | [68,69] Currently 284 studies with dual checkpoint inhibitors registered in clinicaltrials.gov |
Increase the span of target disease types | Combining checkpoint inhibitors with specific targeted therapy such as, Anti-PDL1 + anti-VEGF (for RCC), Anti-PD1 + BRAF inhibitor (for melanoma) | NCT02420821 (IMmotion151) NCT03625141 |
Engage different arms of the immune system | For locally advanced, recurrent, or metastatic incurable malignancies which have failed standard therapy due to insufficiency, treatment resistance, intolerance. E.g., anti PDL1 + IDO inhibitor in recurrent metastatic solid tumor, combining vaccine Viagenpumatucel-L with ICI Nivolumab for NSCLC | NCT02471846 NCT02439450 |
Combination | Cancer Type | Phase | Trial Identifier | Trials Status | Agency |
---|---|---|---|---|---|
Vorinostat + Pembrolizumab | Recurrent unresectable/metastatic HNSCC and SGC | I/II | NCT02538510 | Active, not recruiting | U Washington + NCI |
Vorinostat + Pembrolizumab | Lung Cancer, Stage IV NSCLC | I/II | NCT02638090 | Recruiting | H. Lee Moffitt Cancer Center and Research Institute + Merck Sharp & Dohme Corp. |
Vorinostat + Pembrolizumab | Advanced renal or urothelial cell | I/Ib | NCT02619253 | Recruiting | Roberto Pili, Indiana University School of Medicine |
Vorinostat + Pembrolizumab + Tamoxifen | Hormone resistant BC | II | NCT02395627 | Active, not recruiting | Pamela Munster, University of California |
Pembrolizumab + Vorinostat + Temozolomide | Glioblastoma | I | NCT03426891 | Recruiting | H. Lee Moffitt Cancer Center + Merck Sharp & Dohme Corp. |
Vorinostat + Exemestane | ER+ breast cancer | II | NCT00676663 | Completed | Syndax pharmaceuticals |
Vorinostat + Bortezomib | Recurrent Mantle Cell Lymphoma or Recurrent and/or Refractory Diffuse Large B-Cell Lymphoma | II | NCT00703664 | Completed | NCI |
Vorinostat, Paclitaxel, and Radiation Therapy | Stage IIIA/B unresectable non-small cell lung cancer who can’t tolerate cisplatin | I/II | NCT00662311 | Terminated | U Washington + NCI |
Vorinostat + Bortezomib | Multiple myeloma | III | NCT00773747 | Completed | Merck Sharp & Dohme Corp. |
Vorinostat + Gemtuzumab ozogamicin | Acute myeloid leukemia (older patients without prior treatment) | II | NCT00673153 | Terminated | Fred Hutchinson Cancer Research Center + NCI |
Vorinostat + Dexamethasone + Bortezomib | Relapsed or Refractory Multiple Myeloma | II | NCT00773838 | Completed | Merck Sharp & Dohme Corp. |
Vorinostat + Olaparib | Relapsed/Refractory and/or Metastatic Breast Cancer | I | NCT03742245 | Not yet recruiting | Jenny C. Chang + Aztrazeneca |
Vorinostat + gefitinib | Resistance by BIM Polymorphysim in EGFR Mutant Lung Cancer | I | NCT02151721 | Active, not recruiting | Kanazawa University |
Entinostat + Exemestane | Postmenopausal Women Patients with Locally Recurrent or Metastatic Breast Cancer | I | NCT02833155 | Recruiting | EddingPharm Oncology |
Entinostat + Atezolizumab | Phase 1b TNBC | I/II | NCT02708680 | Active, not recruiting | Syndax Pharmaceuticals + Roche |
Entinostat + Avelumab | Advanced Epithelial Ovarian Cancer | Ib/2 | NCT02915523 | Active, not recruiting | Syndax Pharmaceuticals +Merck KGaA, Darmstadt, Germany Pfizer |
Entinostat + Nivolumab | Children and Adolescents with High-risk Refractory Malignancies | I/II | NCT03838042 | Not yet recruiting | University Hospital Heidelberg + Geramn Cancer Research Center |
Entinostat + Pembrolizumab | Non-Small Cell Lung Cancer, Melanoma, Mismatch Repair-Proficient Colorectal Cancer | I/II | NCT02437136 | Not yet recruiting | Syndax Pharmaceuticals + Merck Sharp & Dohme Corp. |
Entinostat, Lapatinib Ditosylate and Trastuzumab | HER2/Neu Positive Invasive Breast Carcinoma Recurrent Breast Carcinoma Stage IV Breast Cancer AJCC v6 and v7 | I | NCT01434303 | Active, not recruiting | NCI |
Panobinostat + Trastuzumab | HER2 Positive Metastatic Breast Cancer, pretreated with Transtuzumab | I/II | NCT00567879 | Terminated | Novartis |
Panobinostat Given in Combination with Trastuzumab and Paclitaxel | HER-2 Positive Breast Cancer | I | NCT00788931 | Completed | Novartis |
Pembrolizumab + Guadecitabine + Mocetinostat | Advanced lung cancer | I | NCT03220477 | Recruiting | Memorial Sloan Kettering Cancer Center + Merck Sharp & Dohme Corp. Astex Pharmaceuticals. Mirati Therapeutics Inc. Stand Up To Cancer Van Andel Research Institute |
Glesatinib + Sitravatinib + Mocetinostat + Nivolumab | Carcinoma, Non-Small-Cell Lung | II | NCT02954991 | Recruiting | Mirati pharmaceuticals |
Romidepsin + Nivolumab | Metastatic TNBC | I/II | NCT02393794 | Recruiting | Priyanka Sharma, U of Kansas + Celgene Corporation Bristol-Myers Squibb |
Combination | Cancer Type | Phase | Trial Identifier | Trials Status | Agency |
---|---|---|---|---|---|
MPT0E028 | Advanced Solid Malignancies Without Standard Treatment | I | NCT02350868 | Recruiting | Taipei medical University |
Chidamide Maintenance After Autologous Hematopoietic Stem Cell Transplantation | Relapsed, Refractory or High-risk Lymphoma | II | NCT03611231 | Not yet recruiting | Peking University + Hebei Medical University Fourth Hospital + Peking University International Hospital |
Chidamide Combined with Clad/Gem/Bu With AutoSCT | High Risk Hodgkin & Non-Hodgkin Lymphoma | II | NCT03602131 | Not yet recruiting | Sichuan University |
Ricolinostat in Combination with Pomalidomide and Dexamethasone | Relapsed or Relapsed-and-Refractory Multiple Myeloma | I | NCT02189343 | Active, not recruiting | Celgene |
Ricolinostat Alone and in Combination with Bortezomib and Dexamethasone | Multiple myeloma | I/II | NCT01323751 | Completed | Celgene |
pan HDACi | Class I HDACi | HDAC6i | |
---|---|---|---|
Tumor | ↑ MHC and Antigen Presentation [7,58,65] Cellular Toxicity [144,145,146] ↑ Immunosupressive pathways [29,33,151] ↑ Tumor Associated Antigens [152] | ↑ MHC and Antigen Presentation [7] ↑ Immunosupressive Pathways [147,148,149] | ↓ Immunosuppressive pathways [138,139,141] ↑ MHC and Antigen Presentation [150] ↑ Tumor Associated Antigens [150] |
APC | Cellular Toxicity [153] ↓ Inflammatory mediators [156] ↑ MHC and Antigen Presentation [7,58,65] Modulate APC Function [62] ↑ Immunosupressive pathways [163,164] | ↑ Immunosupressive pathways [148,149,154,155] ↑ MHC and Antigen Presentation [157,158] Modulates APC Function [160,161,162] | ↓ Immunosupressive pathways [138,139,141] ↑ MHC and Antigen Presentation [159] |
T Cell (effectors) | ↓ Inflammatory mediators [33,165] ↑ T cell functionality [85,167] ↑ Chemokine production [85] | Cellular Toxicity [166] ↓ Proliferation [158,166,168] | Minimal Changes [141] |
Treg | ↓ Proliferation [151] ↓ Suppressive function [151] | ↓ Proliferation [5] ↓ Suppresive function [155] | ↑Suppresive function [169,170] |
MDSC | Cellular Toxicity [164] | ↓ Suppresive Function [154] | ND |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banik, D.; Moufarrij, S.; Villagra, A. Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy. Int. J. Mol. Sci. 2019, 20, 2241. https://doi.org/10.3390/ijms20092241
Banik D, Moufarrij S, Villagra A. Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy. International Journal of Molecular Sciences. 2019; 20(9):2241. https://doi.org/10.3390/ijms20092241
Chicago/Turabian StyleBanik, Debarati, Sara Moufarrij, and Alejandro Villagra. 2019. "Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy" International Journal of Molecular Sciences 20, no. 9: 2241. https://doi.org/10.3390/ijms20092241
APA StyleBanik, D., Moufarrij, S., & Villagra, A. (2019). Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy. International Journal of Molecular Sciences, 20(9), 2241. https://doi.org/10.3390/ijms20092241