Methods for the Refinement of Protein Structure 3D Models
Abstract
:1. Introduction
2. Sampling Strategies
Sampling Protocols
3. Scoring Strategies
4. CASP: The Critical Assessment of Techniques for Protein Structure Prediction
4.1. The Refinement Category in CASP Experiments
4.2. Progress with Refinement Strategies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NMR | Nuclear Magnetic Resonance |
CPU | Central Processing Unit |
GPU | graphics processing unit |
Cryo-EM | cryo-electron microscopy |
PDB | Protein Data Bank |
CASP | Critical Assessment of techniques for Structure Prediction |
CHARMM | Chemistry at Harvard Macromolecular Mechanics |
SVM | Support Vector Machine |
NAMD | Nanoscale Molecular Dynamics |
LDDT | Local Distance Difference Test on All Atoms |
TBM | Template-Based Modelling |
FM | Free Modelling |
MQAPs | Model Quality Assessment Programs |
MD | Molecular Dynamics |
DFIRE | Distance-Scaled, Finite-Ideal Gas Reference |
DDFIRE | Dipolar Distance-Scaled, Ideal Gas Reference |
RWplus | Random Walk reference state Plus |
GDT-TS | Global Distance Test Total Score |
GDT_HA | Global Distance Test High Accuracy |
SphGr | SphereGrinder |
RMSD | Root mean square deviation |
TM-Score | Template Modeling Score |
References
- McGuffin, L.J. Aligning Sequences to Structures. In Protein Structure Prediction; Humana Press: Totowa, NJ, USA, 2008; pp. 61–90. [Google Scholar]
- McGuffin, L.J. Protein Fold Recognition and Threading. In Computational Structural Biology; WORLD SCIENTIFIC: Singapore, 2008; pp. 37–60. [Google Scholar]
- Perutz, M.F.; Rossmann, M.G.; Cullis, A.F.; Muirhead, H.; Will, G.; North, A.C.T. Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis. Nature 1960, 185, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Kendrew, J.C.; Bodo, G.; Dintzis, H.M.; Parrish, R.G.; Wyckoff, H.; Phillips, D.C. A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature 1958, 181, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Feig, M. Computational protein structure refinement: Almost there, yet still so far to go. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1307. [Google Scholar] [CrossRef]
- Petsko, G.A.; Ringe, D. Protein Structure and Function; New Science Press: London, UK, 2004; ISBN 9781405119221. [Google Scholar]
- Drenth, J. Principles of Protein X-Ray Crystallography. Springer: Berlin/Heidelberg, Germany, 1999; ISBN 0387985875. [Google Scholar]
- Heinemann, U.; Frevert, J.; Hofman, K.-P.; Illing, G.; Oschkinat, H.; Saenger, W.; Zettl, R. Linking Structural Biology With Genome Research. In Genomics and Proteomics; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 179–189. [Google Scholar]
- Murata, K.; Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Jonic, S.; Vénien-Bryan, C. Protein structure determination by electron cryo-microscopy. Curr. Opin. Pharmacol. 2009, 9, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Brocchieri, L.; Karlin, S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 2005, 33, 3390–3400. [Google Scholar] [CrossRef] [PubMed]
- Rangwala, H.; Karypis, G. Introduction to Protein Structure Prediction: Methods and Algorithms; Wiley: New York, NY, USA, 2010; ISBN 9780470470596. [Google Scholar]
- Roche, D.B.; Buenavista, M.T.; McGuffin, L.J. Protein Structure Prediction and Structural Annotation of Proteomes. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2061–2068. [Google Scholar]
- Stoker, H.S. Organic and Biological Chemistry, 6th ed.; White, A., Ed.; Cengage Learning, Brooks/Cole: Boston, MA, USA, 2013; ISBN 1133103952. [Google Scholar]
- Roche, D.B.; Buenavista, M.T.; McGuffin, L.J. FunFOLDQA: A Quality Assessment Tool for Protein-Ligand Binding Site Residue Predictions. PloS ONE 2012, 7, e38219. [Google Scholar] [CrossRef] [PubMed]
- Pavlopoulou, A.; Michalopoulos, I. State-of-the-art bioinformatics protein structure prediction tools (Review). Int. J. Mol. Med. 2011, 28, 295–310. [Google Scholar]
- Moult, J.; Fidelis, K.; Zemla, A.; Hubbard, T. Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins Struct. Funct. Genet. 2003, 53, 334–339. [Google Scholar] [CrossRef]
- Bradley, P.; Misura, K.M.S.; Baker, D. Toward High-Resolution de Novo Structure Prediction for Small Proteins. Science 2005, 309, 1868–1871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, S.; Zhu, Q.; Zhou, Y. A Knowledge-Based Energy Function for Protein–Ligand, Protein–Protein, and Protein–DNA Complexes. J. Med. Chem. 2005, 48, 2325–2335. [Google Scholar] [CrossRef]
- Ginalski, K.; Grishin, N.V.; Godzik, A.; Rychlewski, L. Practical lessons from protein structure prediction. Nucleic Acids Res. 2005, 33, 1874–1891. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Wu, S.; Zhang, Y. Ab Initio Protein Structure Prediction. In From Protein Structure to Function with Bioinformatics; Springer: Dordrecht, The Netherlands, 2009; pp. 3–25. [Google Scholar]
- Moult, J.; Fidelis, K.; Kryshtafovych, A.; Rost, B.; Hubbard, T.; Tramontano, A. Critical assessment of methods of protein structure prediction—Round VII. Proteins Struct. Funct. Bioinform. 2007, 69, 3–9. [Google Scholar] [CrossRef]
- Moult, J.; Fidelis, K.; Kryshtafovych, A.; Schwede, T.; Tramontano, A. Critical assessment of methods of protein structure prediction: Progress and new directions in round XI. Proteins Struct. Funct. Bioinform. 2016, 84, 4–14. [Google Scholar] [CrossRef]
- Moult, J.; Fidelis, K.; Rost, B.; Hubbard, T.; Tramontano, A. Critical assessment of methods of protein structure prediction (CASP)—Round 6. Proteins Struct. Funct. Bioinform. 2005, 61, 3–7. [Google Scholar] [CrossRef]
- Moult, J.; Pedersen, J.T.; Judson, R.; Fidelis, K. A large-scale experiment to assess protein structure prediction methods. Proteins Struct. Funct. Genet. 1995, 23, ii–iv. [Google Scholar] [CrossRef]
- Moult, J. A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005, 15, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Tramontano, A.; Morea, V. Assessment of homology-based predictions in CASP5. Proteins Struct. Funct. Genet. 2003, 53, 352–368. [Google Scholar] [CrossRef] [PubMed]
- Lance, B.K.; Deane, C.M.; Wood, G.R. Exploring the potential of template-based modelling. Bioinformatics 2010, 26, 1849–1856. [Google Scholar] [CrossRef]
- Joo, K.; Lee, J.; Lee, S.; Seo, J.-H.; Lee, S.J.; Lee, J. High accuracy template based modeling by global optimization. Proteins Struct. Funct. Bioinforma. 2007, 69, 83–89. [Google Scholar] [CrossRef]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef]
- Šali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, V.; Noyes, K.; Feig, M. Physics-based protein structure refinement through multiple molecular dynamics trajectories and structure averaging. Proteins Struct. Funct. Bioinform. 2014, 82, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F.; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank. A Computer-Based Archival File for Macromolecular Structures. Eur. J. Biochem. 1977, 80, 319–324. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Fischer, D. 3D-SHOTGUN: A novel, cooperative, fold-recognition meta-predictor. Proteins Struct. Funct. Genet. 2003, 51, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Montelione, G.T. Structural genomics: An approach to the protein folding problem. Proc. Natl. Acad. Sci. USA 2001, 98, 13488–13489. [Google Scholar] [CrossRef]
- Westbrook, J.; Feng, Z.; Chen, L.; Yang, H.; Berman, H.M. The Protein Data Bank and structural genomics. Nucleic Acids Res. 2003, 31, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, M.; Edwards, A.; Arrowsmith, C.H.; Montelione, G.T. Structural genomics: Current progress. Science 2003, 299, 1663. [Google Scholar] [CrossRef]
- Baker, D.; Sali, A. Protein structure prediction and structural genomics. Science 2001, 294, 93–96. [Google Scholar] [CrossRef]
- Roche, D.B.; Buenavista, M.T.; Tetchner, S.J.; McGuffin, L.J. The IntFOLD server: An integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction. Nucleic Acids Res. 2011, 39, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Cheng, J. 3Drefine: Consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 2013, 81, 119–131. [Google Scholar] [CrossRef]
- McGuffin, L.J.; Buenavista, M.T.; Roche, D.B. The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res. 2013, 41, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shuid, A.N.; Kempster, R.; McGuffin, L.J. ReFOLD: A server for the refinement of 3D protein models guided by accurate quality estimates. Nucleic Acids Res. 2017, 45, W422–W428. [Google Scholar] [CrossRef] [PubMed]
- Brylinski, M.; Skolnick, J. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc. Natl. Acad. Sci. USA 2008, 105, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, R.; Tsai, J.; Ruczinski, I.; Baker, D. Functional Inferences from Blind ab Initio Protein Structure Predictions. J. Struct. Biol. 2001, 134, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Wieman, H.; Tøndel, K.; Anderssen, E.; Drabløs, F. Homology-based modelling of targets for rational drug design. Mini Rev. Med. Chem. 2004, 4, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Protein structure prediction: When is it useful? Curr. Opin. Struct. Biol. 2009, 19, 145–155. [Google Scholar] [CrossRef]
- Mirjalili, V.; Feig, M. Protein Structure Refinement through Structure Selection and Averaging from Molecular Dynamics Ensembles. J. Chem. Theory Comput. 2013, 9, 1294–1303. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Watson, J.D.; Thornton, J.M. ProFunc: A server for predicting protein function from 3D structure. Nucleic Acids Res. 2005, 33, W89–W93. [Google Scholar] [CrossRef]
- Becker, O.M.; Dhanoa, D.S.; Marantz, Y.; Chen, D.; Shacham, S.; Cheruku, S.; Heifetz, A.; Mohanty, P.; Fichman, M.; Sharadendu, A.; et al. An Integrated in Silico 3D Model-Driven Discovery of a Novel, Potent, and Selective Amidosulfonamide 5-HT1A Agonist (PRX-00023) for the Treatment of Anxiety and Depression. J. Med. Chem. 2006, 49, 3116–3135. [Google Scholar] [CrossRef]
- Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharmacol. 2007, 152, 21–37. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Cheng, J. i3Drefine Software for Protein 3D Structure Refinement and Its Assessment in CASP10. PloS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Hovan, L.; Oleinikovas, V.; Yalinca, H.; Kryshtafovych, A.; Saladino, G.; Gervasio, F.L. Assessment of the model refinement category in CASP12. Proteins Struct. Funct. Bioinforma. 2018, 86, 152–167. [Google Scholar] [CrossRef]
- Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013, 41, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Heo, L.; Feig, M. What makes it difficult to refine protein models further via molecular dynamics simulations? Proteins Struct. Funct. Bioinform. 2018, 86, 177–188. [Google Scholar] [CrossRef]
- Khoury, G.A.; Smadbeck, J.; Kieslich, C.A.; Koskosidis, A.J.; Guzman, Y.A.; Tamamis, P.; Floudas, C.A. Princeton_TIGRESS 2.0: High refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment. Proteins Struct. Funct. Bioinform. 2017, 85, 1078–1098. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, J.L.; Hua, L.; Schnieders, M.J.; Pande, V.S.; Jacobson, M.P.; Dill, K.A. Assessment of the protein-structure refinement category in CASP8. Proteins Struct. Funct. Bioinform. 2009, 77, 66–80. [Google Scholar] [CrossRef]
- MacCallum, J.L.; Pérez, A.; Schnieders, M.J.; Hua, L.; Jacobson, M.P.; Dill, K.A. Assessment of protein structure refinement in CASP9. Proteins Struct. Funct. Bioinform. 2011, 79, 74–90. [Google Scholar] [CrossRef]
- Terashi, G.; Kihara, D. Protein structure model refinement in CASP12 using short and long molecular dynamics simulations in implicit solvent. Proteins Struct. Funct. Bioinform. 2018, 86, 189–201. [Google Scholar] [CrossRef]
- Meiler, J.; Baker, D. Rapid protein fold determination using unassigned NMR data. Proc. Natl. Acad. Sci. USA 2003, 100, 15404–15409. [Google Scholar] [CrossRef]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, A.; Raimondo, D.; Miele, A.E.; Tramontano, A. Evaluating the usefulness of protein structure models for molecular replacement. Bioinformatics 2005, 21, ii72–ii76. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.; Raman, S.; Das, R.; Bradley, P.; McCoy, A.J.; Read, R.J.; Baker, D. High-resolution structure prediction and the crystallographic phase problem. Nature 2007, 450, 259–264. [Google Scholar] [CrossRef]
- Nugent, T.; Cozzetto, D.; Jones, D.T. Evaluation of predictions in the CASP10 model refinement category. Proteins Struct. Funct. Bioinform. 2014, 82, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Modi, V.; Dunbrack, R.L. Assessment of refinement of template-based models in CASP11. Proteins 2016, 260–281. [Google Scholar] [CrossRef]
- Rodrigues, J.P.G.L.M.; Levitt, M.; Chopra, G. KoBaMIN: A knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res. 2012, 40, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 2011, 101, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Misura, K.M.S.S.; Baker, D. Progress and challenges in high-resolution refinement of protein structure models. Proteins Struct. Funct. Genet. 2005, 59, 15–29. [Google Scholar] [CrossRef]
- Jagielska, A.; Wroblewska, L.; Skolnick, J. Protein model refinement using an optimized physics-based all-atom force field. Proc. Natl. Acad. Sci. USA 2008, 105, 8268–8273. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.S.; Head-Gordon, T. Reliable protein structure refinement using a physical energy function. J. Comput. Chem. 2011, 32, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Skolnick, J. Application of statistical potentials to protein structure refinement from low resolutionab initio models. Biopolymers 2003, 70, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Chopra, G.; Kalisman, N.; Levitt, M. Consistent refinement of submitted models at CASP using a knowledge-based potential. Proteins Struct. Funct. Bioinform. 2010, 78, 2668–2678. [Google Scholar] [CrossRef]
- Han, R.; Leo-Macias, A.; Zerbino, D.; Bastolla, U.; Contreras-Moreira, B.; Ortiz, A.R. An efficient conformational sampling method for homology modeling. Proteins Struct. Funct. Bioinform. 2008, 71, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Blum, B.; Bradley, P.; Baker, D. Sampling Bottlenecks in De novo Protein Structure Prediction. J. Mol. Biol. 2009, 393, 249–260. [Google Scholar] [CrossRef]
- Leaver-Fay, A.; Tyka, M.; Lewis, S.M.; Lange, O.F.; Thompson, J.; Jacak, R.; Kaufman, K.W.; Renfrew, P.D.; Smith, C.A.; Sheffler, W.; et al. Rosetta3: An Object-Oriented Software Suite for the Simulation and Design of Macromolecules. Methods Enzymol. 2011, 487, 545–574. [Google Scholar]
- Song, Y.; DiMaio, F.; Wang, R.Y.-R.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.; Baker, D. High-Resolution Comparative Modeling with RosettaCM. Structure 2013, 21, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, S.; Park, H.; Kim, D.E.; DiMaio, F.; Baker, D. Protein structure prediction using Rosetta in CASP12. Proteins Struct. Funct. Bioinform. 2018, 86, 113–121. [Google Scholar] [CrossRef]
- Summa, C.M.; Levitt, M. Near-native structure refinement using in vacuo energy minimization. Proc. Natl. Acad. Sci. USA 2007, 104, 3177–3182. [Google Scholar] [CrossRef]
- Fan, H.; Mark, A.E. Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci. 2004, 13, 211–220. [Google Scholar] [CrossRef]
- Chen, J.; Brooks, C.L. Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins Struct. Funct. Bioinform. 2007, 67, 922–930. [Google Scholar] [CrossRef]
- Ishitani, R.; Terada, T.; Shimizu, K. Refinement of comparative models of protein structure by using multicanonical molecular dynamics simulations. Mol. Simul. 2008, 34, 327–336. [Google Scholar] [CrossRef]
- Kannan, S.; Zacharias, M. Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent. Proteins Struct. Funct. Bioinform. 2010, 78, 2809–2819. [Google Scholar] [CrossRef]
- Gront, D.; Kmiecik, S.; Blaszczyk, M.; Ekonomiuk, D.; Koliński, A. Optimization of protein models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 479–493. [Google Scholar] [CrossRef]
- Chen, J.; Brooks, C.L.; Khandogin, J. Recent advances in implicit solvent-based methods for biomolecular simulations. Curr. Opin. Struct. Biol. 2008, 18, 140–148. [Google Scholar] [CrossRef]
- Heo, L.; Feig, M. PREFMD: A web server for protein structure refinement via molecular dynamics simulations. Bioinformatics 2018, 34, 1063–1065. [Google Scholar] [CrossRef]
- Feig, M. Local Protein Structure Refinement via Molecular Dynamics Simulations with locPREFMD. J. Chem. Inf. Model. 2016, 56, 1304–1312. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010, 78, 1950–1958. [Google Scholar] [CrossRef]
- Lee, G.R.; Heo, L.; Seok, C. Effective protein model structure refinement by loop modeling and overall relaxation. Proteins Struct. Funct. Bioinform. 2016, 84, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Khoury, G.A.; Tamamis, P.; Pinnaduwage, N.; Smadbeck, J.; Kieslich, C.A.; Floudas, C.A. Princeton_TIGRESS: Protein geometry refinement using simulations and support vector machines. Proteins Struct. Funct. Bioinform. 2014, 82, 794–814. [Google Scholar] [CrossRef] [PubMed]
- Raval, A.; Piana, S.; Eastwood, M.P.; Dror, R.O.; Shaw, D.E. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins Struct. Funct. Bioinform. 2012, 80, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Lindorff-Larsen, K.; Piana, S.; Dror, R.O.; Shaw, D.E. How Fast-Folding Proteins Fold. Science 2011, 334, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Fan, H.; Periole, X.; Honig, B.; Mark, A.E. Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. Proteins Struct. Funct. Bioinform. 2008, 72, 1171–1188. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Tsai, J.; Baker, D.; Kollman, P.A. Molecular dynamics in the endgame of protein structure prediction. J. Mol. Biol. 2001, 313, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Heo, L.; Feig, M. Experimental accuracy in protein structure refinement via molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 2018, 115, 13276–13281. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Eastwood, M.P.; Dror, R.O.; Shaw, D.E. Systematic Validation of Protein Force Fields against Experimental Data. PloS ONE 2012, 7, e32131. [Google Scholar] [CrossRef]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ 1 and χ 2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Buchete, N.-V.; Hummer, G. Are Current Molecular Dynamics Force Fields too Helical? Biophys. J. 2008, 95, L07–L09. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Robertson, M.J.; Tirado-Rives, J.; Jorgensen, W.L. Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field. J. Chem. Theory Comput. 2015, 11, 3499–3509. [Google Scholar] [CrossRef]
- MacPherson, S.; Larochelle, M.; Turcotte, B.; Link, C.; Kann, M.; Swinkels, J.W.; Kornegay, E.T.; Verstegen, M.W.; Tertiary, P.; Structures, Q.; et al. Computational Protein Design: A problem in combinatorial optimization. What is a protein? Nutr. Res. Rev. 2004, 11, 205–229. [Google Scholar]
- MacKerell, A.D.; Banavali, N.; Foloppe, N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 2001, 56, 257–265. [Google Scholar] [CrossRef]
- MacKerell, A.D.; Feig, M.; Brooks, C.L. Extending the treatment of backbone energetics in protein force fields. J. Comp. Chem. 2004, 25, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, S.; Kim, D.E.; Wang, R.Y.-R.; Liu, Y.; DiMaio, F.; Baker, D. Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta. Proteins Struct. Funct. Bioinforma. 2016, 84, 67–75. [Google Scholar] [CrossRef]
- Case, D.A.; Darden, T.; Cheatham, T.E.; Wang, J.; Duck, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; Roberts, B.P.; et al. Amber 12; University of California: San Francisco, CA, USA, 2012. [Google Scholar]
- Cheng, Q.; Joung, I.; Lee, J. A Simple and Efficient Protein Structure Refinement Method. J. Chem. Theory Comput. 2017, 13, 5146–5162. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-H.; Gangupomu, V.; Wagner, J.; Jain, A.; Vaidehi, N. Structure Refinement of Protein Low Resolution Models Using the GNEIMO Constrained Dynamics Method. J. Phys. Chem. B 2012, 116, 2365–2375. [Google Scholar] [CrossRef]
- Feig, M.; Mirjalili, V. Protein Structure Refinement via Molecular-Dynamics Simulations: What works and what does not? Proteins Struct. Funct. Bioinforma. 2016, 84, 282–292. [Google Scholar] [CrossRef]
- Cao, W.; Terada, T.; Nakamura, S.; Shimizu, K. Refinement of Comparative-Modeling Structures by Multicanonical Molecular Dynamics. Genome Inform. 2003, 14, 484–485. [Google Scholar]
- Zhang, J.; Liang, Y.; Zhang, Y. Atomic-Level Protein Structure Refinement Using Fragment-Guided Molecular Dynamics Conformation Sampling. Structure 2011, 19, 1784–1795. [Google Scholar] [CrossRef]
- Park, H.; Seok, C. Refinement of Unreliable Local Regions in Template-based Protein Models. Proteins Struct. Funct. Bioinform. 2012, 80, 1974–1986. [Google Scholar] [CrossRef]
- Maghrabi, A.H.A.; McGuffin, L.J. ModFOLD6: An accurate web server for the global and local quality estimation of 3D protein models. Nucleic Acids Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Critical Assessment of Techniques for Protein Structure Prediction. 13 Abstracts. Available online: http://predictioncenter.org/casp13/index.cgi (accessed on 2 April 2019).
- Seemayer, S.; Gruber, M.; Söding, J. CCMpred—Fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics 2014, 30, 3128–3130. [Google Scholar] [CrossRef]
- Liu, Y.; Palmedo, P.; Ye, Q.; Berger, B.; Peng, J. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks. Cell Syst. 2018, 6, 65.e3–74.e3. [Google Scholar] [CrossRef] [PubMed]
- Heo, L.; Lee, H.; Seok, C. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking. Sci. Rep. 2016, 6, 32153. [Google Scholar] [CrossRef]
- Güntert, P. Automated NMR Structure Calculation With CYANA. In Protein NMR Techniques; Humana Press: Totowa, NJ, USA, 2004; Volume 278, pp. 353–378. [Google Scholar]
- Yang, Y.; Zhou, Y. Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins Struct. Funct. Bioinform. 2008, 72, 793–803. [Google Scholar] [CrossRef]
- Cossio, P.; Granata, D.; Laio, A.; Seno, F.; Trovato, A. A simple and efficient statistical potential for scoring ensembles of protein structures. Sci. Rep. 2012, 2, 351. [Google Scholar] [CrossRef]
- Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Design of a novel globular protein fold with atomic-level accuracy. Science 2003, 302, 1364–1368. [Google Scholar] [CrossRef] [PubMed]
- Kalisman, N.; Levi, A.; Maximova, T.; Reshef, D.; Zafriri-Lynn, S.; Gleyzer, Y.; Keasar, C. MESHI: A new library of Java classes for molecular modeling. Bioinformatics 2005, 21, 3931–3932. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Res. 2016, 44, W406–W409. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- McGuffin, L.J.; Atkins, J.D.; Salehe, B.R.; Shuid, A.N.; Roche, D.B. IntFOLD: An integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res. 2015, 43, W169–W173. [Google Scholar] [CrossRef] [PubMed]
- Rykunov, D.; Fiser, A. New statistical potential for quality assessment of protein models and a survey of energy functions. BMC Bioinform. 2010, 11, 128. [Google Scholar] [CrossRef]
- Alford, R.F.; Leaver-Fay, A.; Jeliazkov, J.R.; O’Meara, M.J.; DiMaio, F.P.; Park, H.; Shapovalov, M.V.; Renfrew, P.D.; Mulligan, V.K.; Kappel, K.; et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J. Chem. Theory Comput. 2017, 13, 3031–3048. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; DiMaio, F.; Baker, D. The Origin of Consistent Protein Structure Refinement from Structural Averaging. Structure 2015, 23, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Stumpff-Kane, A.W.; Maksimiak, K.; Lee, M.S.; Feig, M. Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations. Proteins Struct. Funct. Bioinform. 2007, 70, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Larsen, A.B.; Wagner, J.R.; Jain, A.; Vaidehi, N. Protein Structure Refinement of CASP Target Proteins Using GNEIMO Torsional Dynamics Method. J. Chem. Inf. Model. 2014, 54, 508–517. [Google Scholar] [CrossRef]
- Olson, M.A.; Lee, M.S. Evaluation of Unrestrained Replica-Exchange Simulations Using Dynamic Walkers in Temperature Space for Protein Structure Refinement. PloS ONE 2014, 9, e96638. [Google Scholar] [CrossRef]
- Kumar, A.; Campitelli, P.; Thorpe, M.F.; Ozkan, S.B. Partial unfolding and refolding for structure refinement: A unified approach of geometric simulations and molecular dynamics. Proteins Struct. Funct. Bioinform. 2015, 83, 2279–2292. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. SPICKER: A clustering approach to identify near-native protein folds. J. Comput. Chem. 2004, 25, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins Struct. Funct. Bioinform. 2004, 57, 702–710. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y. A Novel Side-Chain Orientation Dependent Potential Derived from Random-Walk Reference State for Protein Fold Selection and Structure Prediction. PloS ONE 2010, 5, e15386. [Google Scholar] [CrossRef]
- Anfinsen, C.B. Principles that govern the folding of protein chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef]
- Lu, M.; Dousis, A.D.; Ma, J. OPUS-PSP: An orientation-dependent statistical all-atom potential derived from side-chain packing. J. Mol. Biol. 2008, 376, 288–301. [Google Scholar] [CrossRef]
- Tyka, M.D.; Keedy, D.A.; André, I.; Dimaio, F.; Song, Y.; Richardson, D.C.; Richardson, J.S.; Baker, D. Alternate states of proteins revealed by detailed energy landscape mapping. J. Mol. Biol. 2011, 405, 607–618. [Google Scholar] [CrossRef] [PubMed]
- DiMaio, F.; Tyka, M.D.; Baker, M.L.; Chiu, W.; Baker, D. Refinement of Protein Structures into Low-Resolution Density Maps Using Rosetta. J. Mol. Biol. 2009, 392, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Gohlke, H.; Klebe, G. Statistical potentials and scoring functions applied to protein–ligand binding. Curr. Opin. Struct. Biol. 2001, 11, 231–235. [Google Scholar] [CrossRef]
- Russ, W.P.; Ranganathan, R. Knowledge-based potential functions in protein design. Curr. Opin. Struct. Biol. 2002, 12, 447–452. [Google Scholar] [CrossRef]
- Buchete, N.-V.; Straub, J.; Thirumalai, D. Development of novel statistical potentials for protein fold recognition. Curr. Opin. Struct. Biol. 2004, 14, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, H.; Zhang, C.; Liu, S. What is a Desirable Statistical Energy Function for Proteins and How Can It Be Obtained? Cell Biochem. Biophys. 2006, 46, 165–174. [Google Scholar] [CrossRef]
- Skolnick, J. In quest of an empirical potential for protein structure prediction. Curr. Opin. Struct. Biol. 2006, 16, 166–171. [Google Scholar] [CrossRef]
- Bradley, P.; Malmström, L.; Qian, B.; Schonbrun, J.; Chivian, D.; Kim, D.E.; Meiler, J.; Misura, K.M.S.; Baker, D. Free modeling with Rosetta in CASP6. Proteins Struct. Funct. Bioinform. 2005, 61, 128–134. [Google Scholar] [CrossRef]
- Sippl, M.J. Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 1995, 5, 229–235. [Google Scholar] [CrossRef]
- Jernigan, R.L.; Bahar, I. Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 1996, 6, 195–209. [Google Scholar] [CrossRef]
- Moult, J. Comparison of database potentials and molecular mechanics force fields. Curr. Opin. Struct. Biol. 1997, 7, 194–199. [Google Scholar] [CrossRef]
- Lazaridis, T.; Karplus, M. Effective energy functions for protein structure prediction. Curr. Opin. Struct. Biol. 2000, 10, 139–145. [Google Scholar] [CrossRef]
- Dutagaci, B.; Heo, L.; Feig, M. Structure refinement of membrane proteins via molecular dynamics simulations. Proteins Struct. Funct. Bioinform. 2018, 86, 738–750. [Google Scholar] [CrossRef]
- Olson, M.A.; Lee, M.S. Application of replica exchange umbrella sampling to protein structure refinement of nontemplate models. J. Comput. Chem. 2013, 34, 1785–1793. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 2002, 11, 2714–2726. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Y. Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all-atom statistical energy functions. Protein Sci. 2008, 17, 1212–1219. [Google Scholar] [CrossRef]
- Leaver-Fay, A.; O’Meara, M.J.; Tyka, M.; Jacak, R.; Song, Y.; Kellogg, E.H.; Thompson, J.; Davis, I.W.; Pache, R.A.; Lyskov, S.; et al. Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement. Methods Enzymol. 2013, 523, 109–143. [Google Scholar] [PubMed]
- Rohl, C.A.; Strauss, C.E.M.; Misura, K.M.S.; Baker, D. Protein Structure Prediction Using Rosetta. Methods Enzymol. 2004, 383, 66–93. [Google Scholar]
- Kuhlman, B.; Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA 2000, 97, 10383–10388. [Google Scholar] [CrossRef]
- Park, H.; DiMaio, F.; Baker, D. CASP11 refinement experiments with ROSETTA. Proteins Struct. Funct. Bioinform. 2016, 84, 314–322. [Google Scholar] [CrossRef]
- Park, H.; Ovchinnikov, S.; Kim, D.E.; DiMaio, F.; Baker, D. Protein homology model refinement by large-scale energy optimization. Proc. Natl. Acad. Sci. USA 2018, 115, 3054–3059. [Google Scholar] [CrossRef] [PubMed]
- Wallner, B.; Elofsson, A. Can correct protein models be identified? Protein Sci. 2003, 12, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Lindahl, E.; Orn Wallner, B. Improved model quality assessment using ProQ2. BMC Bioinform. 2012, 13, 1–12. [Google Scholar] [CrossRef]
- Randall, A.; Baldi, P. SELECTpro: Effective protein model selection using a structure-based energy function resistant to BLUNDERs. BMC Struct. Biol. 2008, 8, 52. [Google Scholar] [CrossRef]
- Kryshtafovych, A.; Barbato, A.; Fidelis, K.; Monastyrskyy, B.; Schwede, T.; Tramontano, A. Assessment of the assessment: Evaluation of the model quality estimates in CASP10. Proteins 2014, 82 Suppl. 2, 112–126. [Google Scholar] [CrossRef]
- Larsson, P.; Skwark, M.J.; Wallner, B.; Elofsson, A. Assessment of global and local model quality in CASP8 using Pcons and ProQ. Proteins Struct. Funct. Bioinform. 2009, 77, 167–172. [Google Scholar] [CrossRef]
- Cozzetto, D.; Kryshtafovych, A.; Tramontano, A. Evaluation of CASP8 model quality predictions. Proteins Struct. Funct. Bioinform. 2009, 77, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Kryshtafovych, A.; Venclovas, Č.; Fidelis, K.; Moult, J. Progress over the first decade of CASP experiments. Proteins Struct. Funct. Bioinform. 2005, 61, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Moult, J.; Fidelis, K.; Kryshtafovych, A.; Rost, B.; Tramontano, A. Critical assessment of methods of protein structure prediction-Round VIII. Proteins Struct. Funct. Bioinform. 2009, 77, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Moult, J.; Fidelis, K.; Kryshtafovych, A.; Schwede, T.; Tramontano, A. Critical assessment of methods of protein structure prediction (CASP)—Round x. Proteins Struct. Funct. Bioinform. 2014, 82, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef]
- Zemla, A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res. 2003, 31, 3370–3374. [Google Scholar] [CrossRef]
- Kryshtafovych, A.; Monastyrskyy, B.; Fidelis, K. CASP11 statistics and the prediction center evaluation system. Proteins Struct. Funct. Bioinform. 2016, 84, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef]
- Kryshtafovych, A.; Monastyrskyy, B.; Fidelis, K. CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL. Proteins Struct. Funct. Bioinform. 2014, 82, 7–13. [Google Scholar] [CrossRef]
- Mariani, V.; Biasini, M.; Barbato, A.; Schwede, T. lDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 2013, 29, 2722–2728. [Google Scholar] [CrossRef]
- Olechnovič, K.; Kulberkytė, E.; Venclovas, Č. CAD-score: A new contact area difference-based function for evaluation of protein structural models. Proteins Struct. Funct. Bioinform. 2013, 81, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Cong, Q.; Kinch, L.N.; Pei, J.; Shi, S.; Grishin, V.N.; Li, W.; Grishin, N.V. An automatic method for CASP9 free modeling structure prediction assessment. Bioinformatics 2011, 27, 3371–3378. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.F.; Stock, A.M.; Ringe, D.; Petsko, G.A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 1992, 357, 423–424. [Google Scholar] [CrossRef]
- Eisenmesser, E.Z.; Bosco, D.A.; Akke, M.; Kern, D. Enzyme dynamics during catalysis. Science 2002, 295, 1520–1523. [Google Scholar] [CrossRef]
- Benkovic, S.J.; Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 2003, 301, 1196–1202. [Google Scholar] [CrossRef]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Storoni, L.C.; Read, R.J. IUCr likelihood-enhanced fast translation functions. Acta Crystallogr. Sect. D Biol. Crystallogr. 2005, 61, 458–464. [Google Scholar] [CrossRef]
- Mobley, D.L.; Chodera, J.D.; Dill, K.A. On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J. Chem. Phys. 2006, 125, 084902. [Google Scholar] [CrossRef]
- Zagrovic, B.; van Gunsteren, W.F. Comparing atomistic simulation data with the NMR experiment: How much can NOEs actually tell us? Proteins Struct. Funct. Bioinform. 2006, 63, 210–218. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Best, R.B.; DePristo, M.A.; Dobson, C.M.; Vendruscolo, M. Simultaneous determination of protein structure and dynamics. Nature 2005, 433, 128–132. [Google Scholar] [CrossRef]
- Senior, A.; Jumper, J.; Hassabis, D. Deep Mind, AlphaFold: Using AI for scientific discovery. Available online: https://deepmind.com/blog/alphafold/ (accessed on 8 May 2019).
- Wallner, B.; Elofsson, A. Prediction of global and local model quality in CASP7 using Pcons and ProQ. Proteins Struct. Funct. Bioinform. 2007, 69, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Uziela, K.; Wallner, B. ProQ2: Estimation of model accuracy implemented in Rosetta. Bioinformatics 2016, 32, 1411–1413. [Google Scholar] [CrossRef] [PubMed]
Name | URL |
---|---|
PREFMD [85] | http://feiglab.org/prefmd |
locPREFMD [86] | http://feig.bch.msu.edu/web/services/locprefmd/ |
GalaxyRefine [54] | http://galaxy.seoklab.org/refine |
KoBaMIN [66] | http://csb.stanford.edu/kobamin |
Princeton_TIGRESS 2.0 [56] | http://atlas.engr.tamu.edu/refinement/ |
ModRefiner [67] | http://zhanglab.ccmb.med.umich.edu/ModRefiner |
3DRefine [41,122] | http://sysbio.rnet.missouri.edu/3Drefine/ |
ReFOLD [43] | http://www.reading.ac.uk/bioinf/ReFOLD/ |
FG-MD [110] | http://zhanglab.ccmb.med.umich.edu/FG-MD/ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adiyaman, R.; McGuffin, L.J. Methods for the Refinement of Protein Structure 3D Models. Int. J. Mol. Sci. 2019, 20, 2301. https://doi.org/10.3390/ijms20092301
Adiyaman R, McGuffin LJ. Methods for the Refinement of Protein Structure 3D Models. International Journal of Molecular Sciences. 2019; 20(9):2301. https://doi.org/10.3390/ijms20092301
Chicago/Turabian StyleAdiyaman, Recep, and Liam James McGuffin. 2019. "Methods for the Refinement of Protein Structure 3D Models" International Journal of Molecular Sciences 20, no. 9: 2301. https://doi.org/10.3390/ijms20092301
APA StyleAdiyaman, R., & McGuffin, L. J. (2019). Methods for the Refinement of Protein Structure 3D Models. International Journal of Molecular Sciences, 20(9), 2301. https://doi.org/10.3390/ijms20092301