The Physics of Entropic Pulling: A Novel Model for the Hsp70 Motor Mechanism
Abstract
:1. Introduction
2. Models for Hsp70 Motor Mechanism
2.1. The Usual Suspects: Power-Stroke or Brownian Ratchet
2.2. Entropic Pulling: A Novel Model for Motor Protein Mechanisms
Trees vs. Forests, or Molecular-Kinetic vs. Thermodynamic Descriptions of Entropic Pulling
2.3. The Hsp70 Mechanochemical Cycle
2.3.1. Mechanisms for J Cochaperone Loading of Hsp70 in Constrained Spaces
2.3.2. Mechanisms for Biasing NEF Unloading of Hsp70s from Accessible Spaces
2.3.3. The Energy of ATP is Harnessed at the Loading and Unloading Steps of the Cycle
2.3.4. ATP Binding Stabilizes an Otherwise Unstable Hsp70 Conformation that Disrupts Interactions with NEFs and Substrates, and Forms the Binding Site for the J Cochaperone
2.4. The CRITICAL functions of the Cochaperones are Geometrically Specific and Timely Loading and Unloading of Hsp70s
2.4.1. Optimal Amounts of Different NEFs in Disaggregation Reactions Correlate with their Unloading Activity
2.4.2. Faster J Cochaperone Loading of Hsp70 Correlates with More Effective Disaggregation
2.4.3. Interactions with the SBDs of J Cochaperones and NEFs Could Assist Disaggregation by Shielding Proteins from Reaggregation
2.4.4. Hsp70 Oligomerization or Persistent Associations with Cochaperones could Increase Entropic Pulling Forces
2.5. Entropic Pulling: Objections and Misconceptions
2.5.1. This Model Assumes That Forces Are Generated by Collisions. But in the Crowded, Viscous Environment of the Cytoplasm Proteins Are Moving so Slowly, with Such Short Mean Free Path Steps, That They Cannot be Generating Collision Forces in the Same Way as Molecules Moving Rapidly in the Gas Phase
2.5.2. A Mechanism Based on Local Dissipation of Entropy Cannot Deliver as Big a Force as a Power-Stroke
2.5.3. High Intracellular Protein Concentrations Will Nullify the Entropic Forces Generated by the Locally High Protein Concentrations Effectively Obtained by Tethering Hsp70s in Constrained Spaces
2.6. Entropic Pulling Is a Novel Model and Elicits Novel Questions
3. Summary and Conclusions
Conflicts of Interest
Abbreviations
NBD | Nucleotide Binding Domain |
SBD | Substrate Binding Domain |
Hsp | Heat Shock Protein |
Hsc | Heat-Shock Constitutive |
NEF | Nucleotide Exchange Factor |
References
- Earnshaw, W.C.; Honda, B.M.; Laskey, R.A.; Thomas, J.O. Assembly of nucleosomes: The reaction involving X. laevis nucleoplasmin. Cell 1980, 21, 373–383. [Google Scholar] [CrossRef]
- Mattoo, R.U.; Sharma, S.K.; Priya, S.; Finka, A.; Goloubinoff, P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J. Biol. Chem. 2013, 288, 21399–21411. [Google Scholar]
- Nillegoda, N.B.; Kirstein, J.; Szlachcic, A.; Berynskyy, M.; Stank, A. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 2015, 524, 247–251. [Google Scholar] [CrossRef]
- Rampelt, H.; Kirstein-Miles, J.; Nillegoda, N.B.; Chi, K.; Scholz, S.R. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 2012, 31, 4221–4235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Carroni, M.; Nussbaum-Krammer, C.; Mogk, A.; Nillegoda, N.B. Human Hsp70 Disaggregase Reverses Parkinson’s-Linked alpha-Synuclein Amyloid Fibrils. Mol. Cell. 2015, 59, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.; Lafer, E.M. The role of molecular chaperones in clathrin mediated vesicular trafficking. Front Mol. Biosci. 2015, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, T.A.; Li, L.; Park, E. Structural and Mechanistic Insights into Protein Translocation. Annu. Rev. Cell Dev. Biol. 2017, 33, 369–390. [Google Scholar] [CrossRef]
- Wiedemann, N.; Pfanner, N. Mitochondrial Machineries for Protein Import and Assembly. Annu. Rev. Biochem. 2017, 86, 685–714. [Google Scholar] [CrossRef]
- Voisine, C.; Craig, E.A.; Zufall, N.; von Ahsen, O.; Pfanner, N.; Voos, W. The protein import motor of mitochondria: Unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell 1999, 97, 565–574. [Google Scholar] [CrossRef]
- Matlack, K.E.; Misselwitz, B.; Plath, K.; Rapoport, T.A. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 1999, 97, 553–564. [Google Scholar] [CrossRef]
- De los Rios, P.; Ben-Zvi, A.; Slutsky, O.; Azem, A.; Goloubinoff, P. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl. Acad. Sci. USA 2006, 103, 6166–6171. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.; Liao, H.S.; Cuellar, J.; Jin, S.; Valpuesta, J.M. Clathrin-coat disassembly illuminates the mechanisms of Hsp70 force generation. Nat. Struct. Mol. Biol. 2016, 23, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.; Lafer, E.M. Keep the traffic moving: Mechanism of the Hsp70 motor. Traffic 2006, 7, 1596–1603. [Google Scholar] [CrossRef]
- Goloubinoff, P.; De Los Rios, P. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem. Sci. 2007, 32, 372–380. [Google Scholar] [CrossRef]
- Xing, Y.; Bocking, T.; Wolf, M.; Grigorieff, N.; Kirchhausen, T.; Harrison, S.C. Structure of clathrin coat with bound Hsc70 and auxilin: Mechanism of Hsc70-facilitated disassembly. EMBO J. 2010, 29, 655–665. [Google Scholar] [CrossRef]
- Fotin, A.; Cheng, Y.; Sliz, P.; Grigorieff, N.; Harrison, S.C. Molecular model for a complete clathrin lattice from electron microscopy. Nature 2004, 432, 573–579. [Google Scholar] [CrossRef]
- Fotin, A.; Cheng, Y.; Grigorieff, N.; Walz, T.; Harrison, S.C.; Kirchhausen, T. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 2004, 432, 649–653. [Google Scholar] [CrossRef]
- Liu, Q.; D’Silva, P.; Walter, W.; Marszalek, J.; Craig, E.A. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 2003, 300, 139–141. [Google Scholar] [CrossRef]
- Sousa, R. Hsp110 Chaperones. In eLS2016; John Wiley & Sons Ltd.: Chichester, UK, 2016. [Google Scholar]
- Polier, S.; Dragovic, Z.; Hartl, F.U.; Bracher, A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 2008, 133, 1068–1079. [Google Scholar] [CrossRef]
- Schuermann, J.P.; Dragovic, Z.; Hartl, F.U.; Bracher, A. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell. 2008, 31, 232–243. [Google Scholar] [CrossRef]
- Swain, J.F.; Schulz, E.G.; Gierasch, L.M. Direct comparison of a stable isolated Hsp70 substrate-binding domain in the empty and substrate-bound states. J. Biol. Chem. 2006, 281, 1605–1611. [Google Scholar] [CrossRef]
- Kityk, R.; Schulz, E.G.; Gierasch, L.M. Structure and Dynamics of the ATP-Bound Open Conformation of Hsp70 Chaperones. Mol. Cell. 2012, 48, 863–874. [Google Scholar] [CrossRef]
- Wilbanks, S.M.; Chen, L.; Tsuruta, H.; Hodgson, K.O.; McKay, D.B. Solution small-angle X-ray scattering study of the molecular chaperone Hsc70 and its subfragments. Biochemistry 1995, 34, 12095–12106. [Google Scholar] [CrossRef]
- Bertelsen, E.B.; Chang, L.; Gestwicki, J.E.; Zuiderweg, E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 2009, 106, 8471–8476. [Google Scholar] [CrossRef]
- Craig, E.A.; Huang, P.; Aron, R.; Andrew, A. The diverse roles of J.-proteins, the obligate Hsp70 co-chaperone. Rev. Physiol. Biochem. Pharm. 2006, 156, 1–21. [Google Scholar]
- Finka, A.; Sharma, S.K.; Goloubinoff, P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front. Mol. Biosci. 2015, 2, 29. [Google Scholar] [CrossRef]
- Sharma, S.K.; Christen, P.; Goloubinoff, P. Disaggregating chaperones: An unfolding story. Curr. Protein. Pept. Sci. 2009, 10, 432–446. [Google Scholar] [CrossRef]
- Ben-Zvi, A.; De Los Rios, P.; Dietler, G.; Goloubinoff, P. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones. J. Biol. Chem. 2004, 279, 37298–37303. [Google Scholar] [CrossRef]
- Nillegoda, N.B.; Bukau, B. Metazoan Hsp70-based protein disaggregases: Emergence and mechanisms. Front. Mol. Biosci. 2015, 2, 57. [Google Scholar] [CrossRef]
- Xu, X.; Sarbeng, E.B.; Vorvis, C.; Kumar, D.P.; Zhou, L.; Liu, Q. Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. J. Biol. Chem. 2012, 287, 5661–5672. [Google Scholar] [CrossRef]
- Liu, Q.; Hendrickson, W.A. Insights into hsp70 chaperone activity from a crystal structure of the yeast hsp110 sse1. Cell 2007, 131, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Raviol, H.; Bukau, B.; Mayer, M.P. Human and yeast Hsp110 chaperones exhibit functional differences. FEBS Lett. 2006, 580, 168–174. [Google Scholar] [CrossRef]
- Aprile, F.A.; Dhulesia, A.; Stengel, F.; Roodveldt, C.; Benesch, J.L. Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain. PLoS ONE 2013, 8, e67961. [Google Scholar] [CrossRef]
- Nollen, E.A.A.; Kabakov, A.E.; Brunsting, J.F.; Kanon, B.; Hohfeld, J.; Kampinga, H.H. Modulation of in vivo Hsp70 chaperone activity by Hip and Bag-1. J. Biol. Chem. 2001, 276, 4677–4682. [Google Scholar] [CrossRef]
- Li, Z.; Hartl, F.U.; Bracher, A. Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat. Struct. Mol. Biol. 2013, 20, 929–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irmer, H.; Hohfeld, J. Characterization of functional domains of the eukaryotic co-chaperone Hip. J. Biol. Chem. 1997, 272, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, K.; Block, S.M. Force and velocity measured for single kinesin molecules. Cell 1994, 77, 773–784. [Google Scholar] [CrossRef]
- Morel, J.E. The isometric force exerted per myosin head in a muscle fibre is 8 pN. Consequence on the validity of the traditional concepts of force generation. J. Theor. Biol. 1991, 151, 285–288. [Google Scholar] [CrossRef]
- Coy, D.L.; Wagenbach, M.; Howard, J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 1999, 274, 3667–3671. [Google Scholar] [CrossRef]
- Schnitzer, M.J.; Block, S.M. Kinesin hydrolyses one ATP per 8-nm step. Nature 1997, 388, 386–390. [Google Scholar] [CrossRef]
- Kramer, E.M.; Myers, D.R. Osmosis is not driven by water dilution. Trends Plant. Sci. 2013, 18, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Kramer, E.M.; Myers, D.R. Five popular misconceptions about osmosis. Am. J. Phys. 2012, 80, 694–699. [Google Scholar] [CrossRef]
- Kramer, E.M. Osmosis Confusion: 60 years and counting, in Scientific American. Trends Plant. Sci. 2013, 80, 94–99. [Google Scholar]
- Vilker, V.L.; Colton, C.K.; Smith, K.A. The Osmotic-Pressure of Concentrated Protein Solutions - Effect of Concentration and Ph in Saline Solutions of Bovine Serum-Albumin. J. Colloid Interface Sci. 1981, 79, 548–566. [Google Scholar] [CrossRef]
- Hansen-Goos, H.; Roth, R. A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres. J. Chem. Phys. 2006, 124, 154506. [Google Scholar] [CrossRef]
- Zimmerman, S.B.; Trach, S.O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 1991, 222, 599–620. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, R.; Lafer, E.M. The Physics of Entropic Pulling: A Novel Model for the Hsp70 Motor Mechanism. Int. J. Mol. Sci. 2019, 20, 2334. https://doi.org/10.3390/ijms20092334
Sousa R, Lafer EM. The Physics of Entropic Pulling: A Novel Model for the Hsp70 Motor Mechanism. International Journal of Molecular Sciences. 2019; 20(9):2334. https://doi.org/10.3390/ijms20092334
Chicago/Turabian StyleSousa, Rui, and Eileen M. Lafer. 2019. "The Physics of Entropic Pulling: A Novel Model for the Hsp70 Motor Mechanism" International Journal of Molecular Sciences 20, no. 9: 2334. https://doi.org/10.3390/ijms20092334
APA StyleSousa, R., & Lafer, E. M. (2019). The Physics of Entropic Pulling: A Novel Model for the Hsp70 Motor Mechanism. International Journal of Molecular Sciences, 20(9), 2334. https://doi.org/10.3390/ijms20092334