Association of Complement Factor D and H Polymorphisms with Recurrent Pregnancy Loss
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Genotyping
4.3. Assessment of Clinical Risk Factors
4.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss. Fertil. Steril. 2008, 89, 1603. [Google Scholar] [CrossRef] [PubMed]
- Coulam, C.B.; Clark, D.A.; Beer, A.E.; Kutteh, W.H.; Silver, R.; Kwak, J.; Stephenson, M. Current clinical options for diagnosis and treatment of recurrent spontaneous abortion. Am. J. Reprod. Immunol. 1997, 38, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, A.J.; Weinberg, C.R.; O’Connor, J.F.; Baird, D.D.; Schlatterer, J.P.; Canfield, R.E.; Armstrong, E.G.; Nisula, B.C. Incidence of early loss of pregnancy. N. Engl. J. Med. 1988, 319, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Clifford, K.; Rai, R.; Watson, H.; Regan, L. Pregnancy: An informative protocol for the investigation of recurrent miscarriage: Preliminary experience of 500 consecutive cases. Hum. Reprod. 1994, 9, 1328–1332. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2013, 99, 63. [Google Scholar] [CrossRef]
- Park, H.S.; Ko, K.H.; Kim, J.O.; An, H.J.; Kim, Y.R.; Kim, J.H.; Lee, W.S.; Kim, N.K. Association study between the polymorphisms of matrix metalloproteinase (MMP) genes and idiopathic recurrent pregnancy loss. Genes 2019, 10, 347. [Google Scholar] [CrossRef] [Green Version]
- Ryu, C.S.; Sakong, J.H.; Ahn, E.H.; Kim, J.O.; Ko, D.; Kim, J.H.; Lee, W.S.; Kim, N.K. Association study of the three functional polymorphisms (TAS2R46G> A, OR4C16G> A, and OR4X1A> T) with recurrent pregnancy loss. Genes Genom. 2019, 41, 61–70. [Google Scholar] [CrossRef]
- Mor, G.; Cardenas, I. The immune system in pregnancy: A unique complexity. Am. J. Reprod. Immunol. 2010, 63, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Kwan, W.-H.; van der Touw, W.; Paz-Artal, E.; Li, M.O.; Heeger, P.S. Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J. Exp. Med. 2013, 210, 257–268. [Google Scholar] [CrossRef]
- Buurma, A.; Cohen, D.; Veraar, K.; Schonkeren, D.; Claas, F.H.; Bruijn, J.A.; Bloemenkamp, K.W.; Baelde, H.J. Preeclampsia is characterized by placental complement dysregulation. Hypertension 2012, 60, 1332–1337. [Google Scholar] [CrossRef] [Green Version]
- Lokki, A.I.; Heikkinen-Eloranta, J.; Jarva, H.; Saisto, T.; Lokki, M.-L.; Laivuori, H.; Meri, S. Complement activation and regulation in preeclamptic placenta. Front. Immunol. 2014, 5, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostinis, C.; Bulla, R.; Tripodo, C.; Gismondi, A.; Stabile, H.; Bossi, F.; Guarnotta, C.; Garlanda, C.; De Seta, F.; Spessotto, P.; et al. An alternative role of C1q in cell migration and tissue remodeling: Contribution to trophoblast invasion and placental development. J. Immunol. 2010, 185, 4420–4429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohmura, K.; Oku, K.; Kitaori, T.; Amengual, O.; Hisada, R.; Kanda, M.; Shimizu, Y.; Fujieda, Y.; Kato, M.; Bohgaki, T.; et al. Pathogenic roles of anti-C1q antibodies in recurrent pregnancy loss. Clin. Immunol. 2019, 203, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Veglia, M.; D’Ippolito, S.; Marana, R.; Di Nicuolo, F.; Castellani, R.; Bruno, V.; Fiorelli, A.; Ria, F.; Maulucci, G.; De Spirito, M.; et al. Human IgG antinuclear antibodies induce pregnancy loss in mice by increasing immune complex deposition in placental tissue: In vivo study. Am. J. Reprod. Immunol. 2015, 74, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.N.; Lee, Y.L.; Wong, P.C.; Chung, M.K.; Lee, K.F.; Yeung, W.S. Complement 3 deficiency impairs early pregnancy in mice. Mol. Reprod. Dev. 2009, 76, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.L.; Lee, K.F.; Xu, J.S.; He, Q.Y.; Chiu, J.F.; Lee, W.M.; Luk, J.M.; Yeung, W.S. The embryotrophic activity of oviductal cell-derived complement C3b and iC3b, a novel function of complement protein in reproduction. J. Biol. Chem. 2004, 279, 12763–12768. [Google Scholar] [CrossRef] [Green Version]
- Mohlin, F.; Gros, P.; Mercier, E.; Gris, J.-C.R.; Blom, A.M. Analysis of C3 Gene Variants in Patients with Idiopathic, Recurrent, Spontaneous Pregnancy Loss. Front. Immunol. 2018, 9, 1813. [Google Scholar] [CrossRef]
- Blom, A. The role of complement inhibitors beyond controlling inflammation. J. Biol. Chem. 2017, 282, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Hao, J.-B.; Chu, H.; Wang, F.-M.; Song, D.; Zhu, L.; Yu, F.; Li, Y.-Z.; Song, Y.; Zhao, M.-H. Genetic variants in FH are associated with renal histopathologic subtypes of lupus nephritis: A large cohort study from China. Lupus 2017, 26, 1309–1317. [Google Scholar] [CrossRef]
- De Jorge, E.G.; Harris, C.L.; Esparza-Gordillo, J.; Carreras, L.; Arranz, E.A.; Garrido, C.A.; López-Trascasa, M.; Sánchez-Corral, P.; Paul Morgan, P.; de Córdoba, S.R.; et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc. Natl. Acad. Sci. USA 2007, 104, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wu, H.; Khosravi, M.; Cui, H.; Qian, X.; Kelly, J.A.; Kaufman, K.M.; Langefeld, C.D.; Williams, A.H.; Comeau, M.E.; et al. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet. 2011, 7, e1002079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brai, M.; Misiano, G.; Maringhini, S.; Cutaja, I.; Hauptmann, G. Combined homozygous factor H and heterozygous C2 deficiency in an Italian family. J. Clin. Immunol. 1988, 8, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Skerka, C.; Lauer, N.; Weinberger, A.A.; Keilhauer, C.N.; Sühnel, J.; Smith, R.; Schlötzer–Schrehardt, U.; Fritsche, L.; Heinen, S.; Hartmann, A. Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol. Immunol. 2007, 44, 3398–3406. [Google Scholar] [CrossRef] [PubMed]
- Prosser, B.; Johnson, S.; Roversi, P.; Herbert, A.; Blaum, B.S.; Uhrin, D.; Tyrrell, J.; Clark, S.; Tarelli, E.; Barlow, P.; et al. Structural basis for complement factor H–linked age-related macular degeneration. J. Exp. Med. 2007, 204, 2277–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, S.J.; Higman, V.A.; Mulloy, B.; Perkins, S.J.; Lea, S.M.; Sim, R.B.; Day, A.J. His-384 allotypic variant of factor H associated with age-related macular degeneration has different heparin binding properties from the non-disease-associated form. J. Biol. Chem. 2006, 281, 24713–24720. [Google Scholar] [CrossRef] [Green Version]
- Valoti, E.; Noris, M.; Perna, A.; Rurali, E.; Gherardi, G.; Breno, M.; Ilieva, A.P.; Iliev, I.P.; Bossi, A.; Trevisan, R.; et al. Impact of a Complement Factor H Gene Variant on Renal Dysfunction, Cardiovascular Events, and Response to ACE Inhibitor Therapy in Type 2 Diabetes. Front. Genet. 2019, 10, 681. [Google Scholar] [CrossRef] [Green Version]
- Landowski, M.; Kelly, U.; Klingeborn, M.; Groelle, M.; Ding, J.-D.; Grigsby, D.; Rickman, C.B. Human complement factor H Y402H polymorphism causes an age-related macular degeneration phenotype and lipoprotein dysregulation in mice. Proc. Natl. Acad. Sci. USA 2019, 116, 3703–3711. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.; Bishop, P. Role of factor H and related proteins in regulating complement activation in the macula, and relevance to age-related macular degeneration. J. Clin. Med. 2015, 4, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Laine, M.; Jarva, H.; Seitsonen, S.; Haapasalo, K.; Lehtinen, M.J.; Lindeman, N.; Anderson, N.H.; Johnson, P.T.; Järvelä, I.; Jokiranta, T.S.; et al. Y402H polymorphism of complement factor H affects binding affinity to C-reactive protein. J. Immunol. 2007, 178, 3831–3836. [Google Scholar] [CrossRef] [Green Version]
- Fedarko, N.S.; Fohr, B.; Robey, P.G.; Young, M.F.; Fisher, L.W. Factor H binding to bone sialoprotein and osteopontin enables tumor cell evasion of complement-mediated attack. J. Biol. Chem. 2000, 275, 16666–16672. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Controls (n = 384) | RPL Patients (n = 412) | p a |
---|---|---|---|
Age (years, mean ± SD) | 32.84 ± 4.17 | 33.09 ± 4.30 | 0.4224 |
BMI (kg/m2) | 21.78 ± 3.29 | 21.48 ± 3.87 | 0.459 b |
Live birth (n, mean ± SD) | 1.64 ± 0.57 | - | |
Pregnancy loss (n, mean ± SD) | - | 3.27 ± 1.83 | |
Gestational age at the termination of previous pregnancy (week, mean ± SD) | 39.21 ± 1.66 | 7.41 ± 1.89 | |
IVF treatment (n, pregnancy loss n (mean ± SD) | |||
- Nontreatment | - | 334 (3.38 ± 1.98) | |
- One cycle | - | 33 (2.65 ± 1.29) | |
- Two cycles | - | 41 (3.18 ± 1.22) | |
- Three cycles | - | 3 (3.50 ± 1.29) | |
Hematocrit (μmol/L) | 35.76 ± 4.10 | 37.25 ± 3.69 | 0.0001 |
PLT (103/µL) | 237.61 ± 61.07 | 255.37 ± 59.05 | 0.003 |
PT (sec) | 11.52 ± 3.36 | 11.32 ± 1.76 | 0.0001 b |
aPTT (sec) | 29.92 ± 4.24 | 32.02 ± 4.25 | 0.0001 |
BUN (mg/dL) | 8.03 ± 2.01 | 9.95 ± 2.69 | <0.0001 b |
Creatinine (mg/dL) | 0.69 ± 0.08 | 0.73 ± 0.13 | 0.025 b |
Uric acid (mg/dL) | 4.19 ± 1.44 | 3.80 ± 0.82 | 0.340 b |
Total cholesterol (mg/dl) | 239.00 ± 85.19 | 187.70 ± 49.06 | 0.004 b |
Folate (nmol/L) | 13.71 ± 8.37 | 16.94 ± 19.70 | 0.887 b |
Homocysteine (μmol/L) | 7.28 ± 1.58 | 6.91 ± 2.06 | 0.536 |
FSH (mIU/mL) | 8.12 ± 2.85 | 7.76 ± 11.47 | <0.0001 b |
LH (mIU/mL) | 3.26 ± 1.76 | 6.37 ± 11.95 | <0.0001 b |
E2 (pg/mL) | 26.00 ± 14.75 | 43.55 ± 72.70 | 0.0002 b |
TSH (µIU/mL) | - | 2.16 ± 1.52 | - |
Prolactin (ng/mL) | - | 15.35 ± 12.76 | - |
Triglyceride (mg/dL) | - | 181.42 ± 156.63 | - |
HDL cholesterol (mg/dL) | - | 61.82 ± 17.63 | - |
FBS (mg/dL) | - | 95.05 ± 16.87 | - |
Genotypes | Controls (n = 384) | RPL Patients (n = 412) | AOR (95% CI) * | p | FDR-p |
---|---|---|---|---|---|
CFD rs2230216 C>G | |||||
CC | 306 (79.7) | 317 (76.9) | 1.000 (reference) | ||
CG | 72 (18.8) | 93 (22.6) | 1.225 (0.866–1.732) | 0.252 | 0.397 |
GG | 6 (1.6) | 2 (0.5) | 0.302 (0.060–1.513) | 0.145 | 0.305 |
Dominant (CC vs. CG+GG) | 1.154 (0.822–1.621) | 0.408 | 0.643 | ||
Recessive (CC+CG vs. GG) | 0.296 (0.059–1.481) | 0.138 | 0.290 | ||
HWE-p | 0.461 | 0.078 | |||
CFH rs1065489 G>T | |||||
GG | 109 (28.4) | 123 (29.9) | 1.000 (reference) | ||
GT | 199 (51.8) | 208 (50.5) | 0.921 (0.666–1.272) | 0.617 | 0.648 |
TT | 76 (19.8) | 81 (19.7) | 0.931 (0.620–1.398) | 0.731 | 0.768 |
Dominant (GG vs. GT+TT) | 0.926 (0.682–1.258) | 0.624 | 0.655 | ||
Recessive (GG+GT vs. TT) | 0.983 (0.693–1.396) | 0.925 | 0.971 | ||
HWE-p | 0.387 | 0.680 | |||
CFH rs1061170 T>C | |||||
TT | 325 (84.6) | 370 (89.8) | 1.000 (reference) | ||
TC | 59 (15.4) | 42 (10.2) | 0.625 (0.409–0.954) | 0.029 | 0.091 |
CC | 0 (0.0) | 0 (0.0) | N/A | N/A | N/A |
Dominant (TT vs. TC+CC) | 0.625 (0.409–0.954) | 0.029 | 0.091 | ||
Recessive (TT+TC vs. CC) | N/A | N/A | N/A | ||
HWE-p | 0.103 | 0.276 |
Genotype combination | Controls (n = 384) | RPL Patients (n = 412) | AOR (95% CI) * | p | FDR-p |
---|---|---|---|---|---|
CFD rs2230216C>G/CFH rs1065489G>T | |||||
CC/GG | 86 (22.4) | 100 (24.3) | |||
CC/GT | 151 (39.3) | 157 (38.1) | 0.897 (0.623–1.000) | 0.561 | 0.813 |
CC/TT | 69 (18.0) | 60 (14.6) | 0.747 (0.476–1.173) | 0.205 | 0.646 |
CG/GG | 23 (6.0) | 23 (5.6) | 0.859 (0.450–1.640) | 0.645 | 0.813 |
CG/GT | 44 (11.5) | 49 (11.9) | 0.951 (0.575–1.571) | 0.843 | 0.885 |
CG/TT | 5 (1.3) | 21 (5.1) | 3.443 (1.239–9.569) | 0.018 | 0.113 |
GG/GT | 4 (1.0) | 2 (0.5) | 0.421 (0.075–2.369) | 0.326 | 0.685 |
GG/TT | 2 (0.5) | 0 (0.0) | N./A | N./A | N./A |
CFD rs2230216C>G/CFH rs1061170T>C | |||||
CC/TT | 260 (67.7) | 283 (68.7) | 1.000 (reference) | ||
CC/TC | 46 (12.0) | 34 (8.3) | 0.673 (0.419–1.082) | 0.102 | 0.293 |
CG/TT | 60 (15.6) | 85 (20.6) | 1.277 (0.880–1.000) | 0.199 | 0.293 |
CG/TC | 12 (3.1) | 8 (1.9) | 0.607 (0.244–1.511) | 0.283 | 0.297 |
GG/TT | 5 (1.3) | 2 (0.5) | 0.347 (0.066–1.811) | 0.209 | 0.293 |
GG/TC | 1 (0.3) | 0 (0.0) | N./A | N./A | N./A |
CFH rs1065489G>T/CFH rs1061170T>C | |||||
GG/TT | 92 (16.4) | 108 (32.6) | 1.000 (reference) | ||
GG/TC | 17 (3.0) | 15 (4.5) | 0.752 (0.356–1.588) | 0.454 | 0.563 |
GT/TT | 161 (28.6) | 188 (56.8) | 0.991 (0.699–1.404) | 0.957 | 0.804 |
GT/TC | 38 (6.8) | 20 (6.0) | 0.439 (0.238–0.810) | 0.008 | 0.034 |
TT/TT | 72 (18.8) | 74 (18.0) | 0.863 (0.563–1.325) | 0.501 | 0.563 |
TT/TC | 4 (1.0) | 7 (1.7) | 1.489 (0.422–5.246) | 0.536 | 0.563 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.Y.; Park, H.S.; Ko, E.J.; Ryu, C.S.; Kim, J.O.; Kim, Y.R.; Ahn, E.H.; Lee, W.S.; Kim, N.K. Association of Complement Factor D and H Polymorphisms with Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2020, 21, 17. https://doi.org/10.3390/ijms21010017
Cho HY, Park HS, Ko EJ, Ryu CS, Kim JO, Kim YR, Ahn EH, Lee WS, Kim NK. Association of Complement Factor D and H Polymorphisms with Recurrent Pregnancy Loss. International Journal of Molecular Sciences. 2020; 21(1):17. https://doi.org/10.3390/ijms21010017
Chicago/Turabian StyleCho, Hee Young, Han Sung Park, Eun Ju Ko, Chang Soo Ryu, Jung Oh Kim, Young Ran Kim, Eun Hee Ahn, Woo Sik Lee, and Nam Keun Kim. 2020. "Association of Complement Factor D and H Polymorphisms with Recurrent Pregnancy Loss" International Journal of Molecular Sciences 21, no. 1: 17. https://doi.org/10.3390/ijms21010017
APA StyleCho, H. Y., Park, H. S., Ko, E. J., Ryu, C. S., Kim, J. O., Kim, Y. R., Ahn, E. H., Lee, W. S., & Kim, N. K. (2020). Association of Complement Factor D and H Polymorphisms with Recurrent Pregnancy Loss. International Journal of Molecular Sciences, 21(1), 17. https://doi.org/10.3390/ijms21010017