Pollen Proteases Play Multiple Roles in Allergic Disorders
Abstract
:1. Introduction
2. Results
2.1. Hydration of Pollen Grains from Chenopodium Album, Plantago Lanceolata and Eucalyptus Globulus Leads to the Release of Serine Proteases and Metalloproteinases
2.2. Pollen Proteases Increase Transepithelial Permeability by Disrupting Protein Intercellular Complexes
2.3. Pollen Proteases may Activate PAR-2 and Induce IL6 and IL8 Release
3. Discussion
4. Materials and Methods
4.1. Preparation of Pollen Diffusates
4.2. Enzymatic Activity Assay
4.3. Cell Culture
4.4. Transepithelial Permeability Measurement
4.5. Electrophoresis and Immunoblotting
4.6. Single-Cell Calcium Imaging
4.7. Cytokine Quantification by Flow Cytometry
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skiepko, R.; Zietkowski, Z.; Tomasiak-Lozowska, M.M.; Tomasiak, M.; Bodzenta-Lukaszyk, A. Bronchial hyperresponsiveness and airway inflammation in patients with seasonal allergic rhinitis. J. Investig. Allergol. Clin. Immunol. 2011, 21, 532–539. [Google Scholar]
- Burney, P.; Malmberg, E.; Chinn, S.; Jarvis, D.; Luczynska, C.; Lai, E. The distribution of total and specific serum IgE in the european community respiratory health survey. J. Allergy Clin. Immunol. 1997, 99, 314–322. [Google Scholar] [CrossRef]
- D’Amato, G. Urban air pollution and plant-derived respiratory allergy. Clin. Exp. Allergy 2000, 30, 628–636. [Google Scholar] [CrossRef]
- Behrendt, H.; Ring, J. Climate change, environment and allergy. Chem. Immunol. Allergy 2012, 96, 7–14. [Google Scholar]
- Höllbacher, B.; Schmitt, A.O.; Hofer, H.; Ferreira, F.; Lackner, P. Identification of proteases and protease inhibitors in allergenic and non-allergenic pollen. Int. J. Mol. Sci. 2017, 18, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groeme, R.; Airouche, S.; Kopečný, D.; Jaekel, J.; Savko, M.; Berjont, N.; Bussieres, L.; Le Mignon, M.; Jagi, F.; Zieglmayer, P.; et al. Structural and functional characterization of the major allergen amb a 11 from short ragweed pollen. J. Biol. Chem. 2016, 291, 13076–13087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cleemput, J.; Poelaert, K.C.K.; Laval, K.; Impens, F.; Van den Broeck, W.; Gevaert, K.; Nauwynck, H.J. Pollens destroy respiratory epithelial cell anchors and drive alphaherpesvirus infection. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Burbach, G.J.; Heinzerling, L.M.; Edenharter, G.; Bachert, C.; Bindslev-Jensen, C.; Bonini, S.; Bousquet, J.; Bousquet-Rouanet, L.; Bousquet, P.J.; Bresciani, M.; et al. GA2LEN skin test study II: Clinical relevance of inhalant allergen sensitizations in Europe. Allergy Eur. J. Allergy Clin. Immunol. 2009, 64, 1507–1515. [Google Scholar] [CrossRef]
- Vinhas, R.; Cortes, L.; Cardoso, I.; Mendes, V.M.; Manadas, B.; Todo-Bom, A.; Pires, E.; Veríssimo, P. Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy Eur. J. Allergy Clin. Immunol. 2011, 66, 1088–1098. [Google Scholar] [CrossRef]
- IMS Health Pollen Library Website. Available online: http://www.pollenlibrary.com/ (accessed on 30 April 2020).
- Rede Portuguesa de Aerobiologia RPA (Rede Portuguesa de Aerobiologia). Available online: http://www.rpaerobiologia.com (accessed on 30 April 2020).
- Fernández, J.; Emilio, F.; Montserrat, V.; Victor, S.; Purificación, G. Evolution of the incidence of pollen grains and sensitivity to pollen in the city of elche (Spain). Asian Pacific J. Allergy Immunol. 2015, 33, 196–202. [Google Scholar]
- Elvira-Rendueles, B.; Zapata, J.J.; Miralles, J.C.; Moreno, J.M.; García-Sánchez, A.; Negral, L.; Moreno-Grau, S. Aerobiological importance and allergic sensitization to Amaranthaceae under arid climate conditions. Sci. Total Environ. 2017, 583, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Barderas, R.; Villalba, M.; Pascual, C.Y.; Batanero, E.; Rodríguez, R. Profilin (Che a 2) and polcalcin (Che a 3) are relevant allergens of Chenopodium album pollen: Isolation, amino acid sequences, and immunologic properties. J. Allergy Clin. Immunol. 2004, 113, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Gadermaier, G.; Dedic, A.; Obermeyer, G.; Frank, S.; Himly, M.; Ferreira, F. Biology of weed pollen allergens. Curr. Allergy Asthma Rep. 2004, 4, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Nouri, H.R.; Sankian, M.; Vahedi, F.; Afsharzadeh, D.; Rouzbeh, L.; Moghadam, M.; Varasteh, A. Diagnosis of Chenopodium album allergy with a cocktail of recombinant allergens as a tool for component-resolved diagnosis. Mol. Biol. Rep. 2012, 39, 3169–3178. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi, S.; Gheybi, M.K.; Movahed, A.; Tahmasebi, R.; Iranpour, D.; Fatemi, A.; Etemadan, R.; Gooya, M.; Zandi, S.; Ashourinejad, H.; et al. Common aeroallergens in patients with asthma and allergic rhinitis living in southwestern part of Iran: Based on skin prick test reactivity. Iran. J. Allergy, Asthma Immunol. 2015, 14, 133–138. [Google Scholar]
- El-Aziz, A.A.; Shaaban, M.; Atwa, A.; El-Maksuod, A.A. Evaluation of Chenopodium album allergenicity in atopic asthmatics. Curr. Trends Immunol. 2016, 17, 55–63. [Google Scholar]
- Mehta, V.; Wheeler, A.W. IgE-mediated sensitization to english plantain pollen in seasonal respiratory allergy: Identification and partial characterisation of its allergenic components. Int. Arch. Allergy Immunol. 1991, 96, 211–217. [Google Scholar] [CrossRef]
- Til-Pérez, G.; Carnevale, C.; Sarría-Echegaray, P.L.; Arancibia-Tagle, D.; Chugo-Gordillo, S.; Tomás-Barberán, M.D. Sensitization profile in patients with respiratory allergic diseases: Differences between conventional and molecular diagnosis (a cross-sectional study). Clin. Mol. Allergy 2019, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Stemeseder, T.; Metz-Favre, C.; De Blay, F.; Pauli, G.; Gadermaier, G. Do Plantago lanceolata Skin Prick Test-Positive Patients Display IgE to Genuine Plantain Pollen Allergens? Investigation of Pollen Allergic Patients from the North-East of France. Int. Arch. Allergy Immunol. 2018, 177, 97–106. [Google Scholar] [CrossRef]
- Raftery, M.J.; Saldanha, R.G.; Geczy, C.L.; Kumar, R.K. Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates. Respir. Res. 2003, 4, 10. [Google Scholar] [CrossRef]
- Radłowski, M. Proteolytic enzymes from generative organs of flowering plants (Angiospermae). J. Appl. Genet. 2005, 46, 247–257. [Google Scholar] [PubMed]
- Li, B.; Zou, Z.; Meng, F.; Raz, E.; Huang, Y.; Tao, A.; Ai, Y. Dust mite-derived Der f 3 activates a pro-inflammatory program in airway epithelial cells via PAR-1 and PAR-2. Mol. Immunol. 2019, 109, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Takai, T.; Ikeda, S. Barrier dysfunction caused by environmental proteases in the pathogenesis of allergic diseases. Allergol. Int. 2011, 60, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassim, Z.; Maronese, S.E.; Kumar, R.K. Injury to murine airway epithelial cells by pollen enzymes. Thorax 1998, 53, 368–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, L.; Carvalho, A.L.; Todo-Bom, A.; Faro, C.; Pires, E.; Veríssimo, P. Purification of a novel aminopeptidase from the pollen of Parietaria judaica that alters epithelial integrity and degrades neuropeptides. J. Allergy Clin. Immunol. 2006, 118, 878–884. [Google Scholar] [CrossRef]
- Runswick, S.; Mitchell, T.; Davies, P.; Robinson, C.; Garrod, D.R. Pollen proteolytic enzymes degrade tight junctions. Respirology 2007, 12, 834–842. [Google Scholar] [CrossRef]
- Cocks, T.M.; Moffatt, J.D. Protease-activated receptor-2 (PAR2) in the airways. Pulm. Pharmacol. Ther. 2001, 14, 183–191. [Google Scholar] [CrossRef]
- Palmer, M.L.; So, Y.L.; Maniak, P.J.; Carlson, D.; Fahrenkrug, S.C.; O’Grady, S.M. Protease-activated receptor regulation of Cl- secretion in Calu-3 cells requires prostaglandin release and CFTR activation. Am. J. Physiol. Cell Physiol. 2006, 290, C1189–C1198. [Google Scholar] [CrossRef] [Green Version]
- Berger, P.; Perng, D.W.; Thabrew, H.; Compton, S.J.; Cairns, J.A.; McEuen, A.R.; Marthan, R.; Tunon De Lara, J.M.; Walls, A.F. Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells. J. Appl. Physiol. 2001, 91, 1372–1379. [Google Scholar] [CrossRef]
- Ubl, J.J.; Grishina, Z.V.; Sukhomlin, T.K.; Welte, T.; Sedehizade, F.; Reiser, G. Human bronchial epithelial cells express PAR-2 with different sensitivity to thermolysin. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 282, L1339–L1348. [Google Scholar] [CrossRef] [Green Version]
- Grainger, C.I.; Greenwell, L.L.; Lockley, D.J.; Martin, G.P.; Forbes, B. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm. Res. 2006, 23, 1482. [Google Scholar] [CrossRef] [PubMed]
- Winton, H.L.; Wan, H.; Cannell, M.B.; Gruenert, D.C.; Thompson, P.J.; Garrod, D.R.; Stewart, G.A.; Robinson, C. Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin. Exp. Allergy 1998, 28, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Collares-Buzato, C.B.; Jepson, M.A.; Simmons, N.L.; Hirst, B.H. Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. Eur. J. Cell Biol. 1998, 76, 85–92. [Google Scholar] [CrossRef]
- Goto, Y.; Uchida, Y.; Nomura, A.; Sakamoto, T.; Ishii, Y.; Morishima, Y.; Masuyama, K.; Sekizawa, K. Dislocation of E-cadherin in the airway epithelium during an antigen-induced asthmatic response. Am. J. Respir. Cell Mol. Biol. 2000, 23, 712–718. [Google Scholar] [CrossRef]
- Puc, M. Characterisation of pollen allergens. Ann. Agric. Environ. Med. 2003, 10, 143–149. [Google Scholar]
- Gumbiner, B. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. Cell Physiol. 1987, 253, C749–C758. [Google Scholar] [CrossRef]
- Baker, S.F.; Yin, Y.; Runswick, S.K.; Stewart, G.A.; Thompson, P.J.; Garrod, D.R.; Robinson, C. Peptidase allergen Der p 1 initiates apoptosis of epithelial cells independently of tight junction proteolysis. Mol. Membr. Biol. 2003, 20, 71–81. [Google Scholar] [CrossRef]
- Shi, X.; Gangadharan, B.; Brass, L.F.; Ruf, W.; Mueller, B.M. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol. Cancer Res. 2004, 2, 395–402. [Google Scholar]
- Reed, C.E.; Kita, H. The role of protease activation of inflammation in allergic respiratory diseases. J. Allergy Clin. Immunol. 2004, 114, 997–1008. [Google Scholar] [CrossRef]
- Asokananthan, N.; Graham, P.T.; Stewart, D.J.; Bakker, A.J.; Eidne, K.A.; Thompson, P.J.; Stewart, G.A. House Dust Mite Allergens Induce Proinflammatory Cytokines from Respiratory Epithelial Cells: The Cysteine Protease Allergen, Der p 1, Activates Protease-Activated Receptor (PAR)-2 and Inactivates PAR-1. J. Immunol. 2002, 169, 4572–4578. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Stacey, M.A.; Schmidt, M.; Mori, L.; Mattoli, S. Interaction of Mite Allergens Der P3 and Der P9 with Protease-Activated Receptor-2 Expressed by Lung Epithelial Cells. J. Immunol. 2001, 167, 1014–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, E.; Hansen, K.K.; Astudillo, O.F.; Coulon, L.; Bex, F.; Duhant, X.; Jaumotte, E.; Hollenberg, M.D.; Jacquet, A. The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism. J. Biol. Chem. 2006, 281, 6910–6923. [Google Scholar] [CrossRef] [Green Version]
- Caminati, M.; Le Pham, D.; Bagnasco, D.; Canonica, G.W. World Allergy Organization Journal. World Allergy Organ. J. 2018, 11, 1–10. [Google Scholar]
- Vliagoftis, H.; Schwingshackl, A.; Milne, C.D.; Duszyk, M.; Hollenberg, M.D.; Wallace, J.L.; Befus, A.D.; Moqbel, R. Proteinase-activated receptor-2-mediated matrix metalloproteinase-9 release from airway epithelial cells. J. Allergy Clin. Immunol. 2000, 106, 537–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, P. Sensitization to Cockroach allergen: Immune regulation and genetic determinants. Clin. Dev. Immunol. 2012, 2012, 631847. [Google Scholar] [CrossRef] [Green Version]
- Vliagoftis, H.; Befus, A.D.; Hollenberg, M.D.; Moqbel, R. Airway epithelial cells release eosinophil survival-promoting factors (GM-CSF) after stimulation of proteinase-activated receptor 2. J. Allergy Clin. Immunol. 2001, 107, 679–685. [Google Scholar] [CrossRef]
- Kawabata, A.; Kawao, N. Physiology and pathophysiology of proteinase-activated receptors (PARs): PARs in the respiratory system: Cellular signaling and physiological/ pathological roles. J. Pharmacol. Sci. 2005, 97, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Berridge, M.J.; Bootman, M.D.; Lipp, P. Calcium - A life and death signal. Nature 1998, 395, 645–648. [Google Scholar] [CrossRef]
- Chiu, L.-L.; Perng, D.-W.; Yu, C.-H.; Su, S.-N.; Chow, L.-P. Mold Allergen, Pen c 13, Induces IL-8 Expression in Human Airway Epithelial Cells by Activating Protease-Activated Receptor 1 and 2. J. Immunol. 2007, 178, 5237–5244. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, H.F.; Christomee, J.F.; Van De Riet, M.A.; Timmerman, A.J.B.; Borger, P. Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J. Allergy Clin. Immunol. 2000, 105, 1185–1193. [Google Scholar] [CrossRef]
- King, C.; Brennan, S.; Thompson, P.J.; Stewart, G.A. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J. Immunol. 1998, 161, 3645–3651. [Google Scholar] [PubMed]
- Cho, H.J.; Choi, J.Y.; Yang, Y.M.; Hong, J.H.; Kim, C.H.; Gee, H.Y.; Lee, H.J.; Shin, D.M.; Yoon, J.H. House dust mite extract activates apical Cl- channels through protease-activated receptor 2 in human airway epithelia. J. Cell. Biochem. 2010, 109, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Mozdzanowski, J.; Hembach, P.; Speicher, D.W. High yield electroblotting onto polyvinylidene difluoride membranes from polyacrylamide gels. Electrophoresis 1992, 13, 59–64. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, R.; de Matos, M.R.; Cortes, L.; Nunes-Correia, I.; Todo-Bom, A.; Pires, E.; Veríssimo, P. Pollen Proteases Play Multiple Roles in Allergic Disorders. Int. J. Mol. Sci. 2020, 21, 3578. https://doi.org/10.3390/ijms21103578
Gaspar R, de Matos MR, Cortes L, Nunes-Correia I, Todo-Bom A, Pires E, Veríssimo P. Pollen Proteases Play Multiple Roles in Allergic Disorders. International Journal of Molecular Sciences. 2020; 21(10):3578. https://doi.org/10.3390/ijms21103578
Chicago/Turabian StyleGaspar, Ricardo, Mafalda Ramos de Matos, Luísa Cortes, Isabel Nunes-Correia, Ana Todo-Bom, Euclides Pires, and Paula Veríssimo. 2020. "Pollen Proteases Play Multiple Roles in Allergic Disorders" International Journal of Molecular Sciences 21, no. 10: 3578. https://doi.org/10.3390/ijms21103578
APA StyleGaspar, R., de Matos, M. R., Cortes, L., Nunes-Correia, I., Todo-Bom, A., Pires, E., & Veríssimo, P. (2020). Pollen Proteases Play Multiple Roles in Allergic Disorders. International Journal of Molecular Sciences, 21(10), 3578. https://doi.org/10.3390/ijms21103578