Robust Sampling of Defective Pathways in Alzheimer’s Disease. Implications in Drug Repositioning
Abstract
:1. Introduction
2. Results
2.1. Comparison of Late-Onset Alzheimer’s Disease (LOAD) Patients and Healthy Controls
2.2. Comparison of Mild Cognitive Impairment (MCI) Patients and Healthy Controls
2.3. Comparison of MCI and Alzheimer’s Disease (AD) Patients
2.4. Comparison of MCI+LOAD Patients with Healthy Controls
3. Discussion
3.1. LOAD vs. Healthy Controls Classification
3.2. MCI vs. Healthy Controls Classification
3.3. MCI vs. LOAD Classification
3.4. MCI+LOAD vs. Healthy Controls Classification
3.5. Implications in Drug Repositioning
4. Materials and Methods
4.1. Sampling Defective Pathways in Phenotype Prediction Problems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goate, A.; Chartier-Harlin, M.C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L.; et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Cruts, M.; Van Broeckhoven, C. Presenilin mutations in Alzheimer’s disease. Hum. Mutat. 1998, 11, 183–190. [Google Scholar] [CrossRef]
- De Strooper, B. Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 2007, 8, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciarelli, R.; d’Abramo, C.; Massone, S.; Marinari, U.M.; Pronzato, M.A.; Tabaton, M. Microarray Analysis in Alzheimer’s Disease and Normal Aging. Life 2004, 56, 349–354. [Google Scholar] [CrossRef]
- Kong, W.; Mou, X.; Liu, Q.; Chen, Z.; Vanderburg, C.R.; Rogers, J.T.; Huang, X. Independent component analysis of Alzheimer’s DNA microarray gene expression data. Mol. Neurodegener. 2009, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanzi, R.E. The Genetics of Alzheimer Disease. Cold Spring Harbor Perspect. Med. 2012, 2, a006296. [Google Scholar] [CrossRef]
- Hardy, J.; Bogdanovic, N.; Winblad, B.; Portelius, E.; Andreasen, N.; Cedazo-Minguez, A.; Zetterberg, H. Pathways to Alzheimer’s disease. J. Intern. Med. 2014, 275, 296–303. [Google Scholar] [CrossRef]
- Jones, L.; Holmans, P.A.; Hamshere, M.L.; Harold, D.; Moskvina, V.; Ivanov, D.; Pocklington, A.; Abraham, R.; Hollingworth, P.; Sims, R.; et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS ONE 2010, 5, e13950. [Google Scholar] [CrossRef]
- Giri, M.; Zhang, M.; Lü, Y. Genes associated with Alzheimer’s disease: An overview and current status. Clin. Interv. Aging 2016, 11, 665–681. [Google Scholar] [CrossRef] [Green Version]
- Godoy, J.A.; Rios, J.A.; Zolezzi, J.M.; Braidy, N.; Inestrosa, N.C. Signaling pathway cross talk in Alzheimer’s disease. Cell Commun. Signal. 2014, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- De Andrés-Galiana, E.J.; Fernández-Martínez, J.L.; Sonis, S.T. Design of biomedical robots for phenotype prediction problems. J. Comp. Biol. 2016, 23, 678–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vastrik, I.; D’Eustachio, P.; Schmidt, E.; Geeta, J.T.; Gopal, G.; Croft, D.; de Bono, B.; Gillespie, M.; Jassal, B.; Lewis, S.; et al. Reactome: A Knowledge Base of Biologic Pathways and Processes. Genome Biol. 2007, 8, R39. [Google Scholar] [CrossRef] [Green Version]
- Creixell, P.; Reimand, J.; Haider, S.; Wu, G.; Shibata, T.; Vazquez, M.; Mustonen, V.; Gonzalez-Perez, A.; Pearson, J.; Sander, C.; et al. Pathway and network analysis of cancer genomes. Nat. Methods 2015, 12, 615–621. [Google Scholar] [PubMed]
- Dimitrakopoulos, N.; Beerenwinkel, C.M. Computational approaches for the identification of cancer genes and pathways. WIREs Syst. Biol. Med. 2017, 9, e1364. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Iijima, R.; Ogishima, S.; Kikuchi, M.; Matsuoka, Y.; Ghosh, S.; Miyamoto, T.; Miyashita, A.; Kuwano, R.; Tanaka, H. AlzPathway: A comprehensive map of signaling pathways of Alzheimer’s disease. BMC Syst. Biol. 2012, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Khatri, P.; Sirota, M.; Butte, A.J. Ten years of pathway analysis: Current approaches and outstanding challenges. PLoS Comput. Biol. 2012, 8, e1002375. [Google Scholar] [CrossRef]
- DeAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Sonis, S.T. Sensitivity analysis of gene ranking methods in phenotype prediction. J. Biomed. Inf. 2016, 64, 255–264. [Google Scholar] [CrossRef]
- Cernea, A.; Fernández-Martínez, J.L.; deAndrés-Galiana, E.J.; Fernández-Ovies, F.J.; Fernández-Muñiz, Z.; Alvarez-Machancoses, Ó.; Saligan, L.; Sonis, S.T. Sampling defective pathways in phenotype prediction problems via the Holdout sampler. In International Conference on Bioinformatics and Biomedical Engineering; Springer: Cham, Switzerland, 2018; Volume 10814, pp. 24–32. [Google Scholar]
- Karim, S.; Mirza, Z.; Kamal, M.A.; Abuzenadah, A.M.; Azhar, E.I.; Al-Qahtani, M.H.; Damanhouri, G.A.; Ahmad, F.; Gan, S.H.; Sohrab, S.S. The role of viruses in neurodegenerative and neurobehavioral diseases. CNS Neurol. Disord. Drug Targets 2014, 13, 1213–1223. [Google Scholar] [CrossRef]
- Alvarez, O.; Fernández-Martínez, J.L. The importance of Biological Invariance in Drug Design. J. Sci. Technol. Res. 2019, 18, 13211–13212. [Google Scholar]
- Kim, J.H.; You, K.R.; Kim, I.H.; Cho, B.H.; Kim, C.Y.; Kim, D.G. Over-expression of the ribosomal protein L36a gene is associated with cellular proliferation in hepatocellular carcinoma. Hepatology 2004, 39, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yao, P.J. Clathrin-mediated endocytosis and Alzheimer’s disease: An update. Ageing Res. Rev. 2009, 8, 147–149. [Google Scholar] [CrossRef]
- Butcher, N.J.; Horne, M.K.; Mellick, G.D.; Fowler, C.J.; Masters, C.L.; Minchin, R.F. Sulfotransferase 1A3/4 copy number variation is associated with neurodegenerative disease. Pharmacogenom. J. 2017, 18, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Martorana, A.; Koch, G. Is dopamine involved in Alzheimer’s disease? Front. Aging Neurosci. 2014, 6, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawahara, M. Disruption of calcium homeostasis in the pathogenesis of Alzheimer’s disease and other conformational diseases. Curr. Alzheimer Res. 2004, 1, 87–95. [Google Scholar] [CrossRef]
- Small, D.H. Dysregulation of Calcium Homeostasis in Alzheimer’s Disease. Neurochem. Res. 2009, 34, 1824. [Google Scholar] [CrossRef]
- Brawek, B.; Garaschuk, O. Network-wide dysregulation of calcium homeostasis in Alzheimer’s disease. Cell Tissue Res. 2014, 357, 427. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, X. Regulation of apoptosis: The ubiquitous way. FASEB J. 2003, 17, 790–799. [Google Scholar] [CrossRef]
- Huang, G.; Shi, L.Z.; Chi, H. Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination. Cytokine 2009, 48, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Bogoyevitch, M.A.; Boehm, I.; Oakley, A.; Ketterman, A.J.; Barr, R.K. Targeting the JNK MAPK cascade for inhibition: Basic science and therapeutic potential. Biochim. Biophys. Acta 2004, 1697, 89–101. [Google Scholar] [CrossRef]
- Sanchez-Mut, J.V.; Gräff, J. Epigenetic Alterations in Alzheimer’s Disease. Front. Behav. Neurosci. 2015, 9, 347. [Google Scholar] [CrossRef] [PubMed]
- Bajić, V.; Spremo-Potparević, B.; Živković, L.; Siedlak, S.L.; Casadeus, G.; Smith, M.A. The X-chromosome instability phenotype in Alzheimer’s disease: A clinical sign of accelerating aging? Med. Hypotheses 2009, 73, 917–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barati, M.; Mansour, E. A Gene Expression Profile of Alzheimer’s Disease Using Microarray Technology. Zahedan J. Res. Med. Sci. 2016, 18, e7950. [Google Scholar] [CrossRef] [Green Version]
- Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; et al. The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 2006, 313, 1929–1935. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; Wang, X.; Turner, J.A.; Baldwin, N.E.; Gu, J. Breaking the paradigm: Dr Insight empowers signature-free, enhanced drug repurposing. Bioinformatics 2019, 35, 2818–2826. [Google Scholar] [CrossRef] [Green Version]
- Chlebek, J.; Novák, Z.; Kassemová, D.; Šafratová, M.; Kostelník, J.; Malý, L.; Ločárek, M.; Opletal, L.; Hošt’álková, A.; Hrabinová, M.; et al. Isoquinoline Alkaloids from Fumaria officinalis L. and Their Biological Activities Related to Alzheimer’s Disease. Chem. Biodivers. 2016, 13, 91–99. [Google Scholar] [CrossRef]
- Hostalkova, A.; Marikova, J.; Opletal, L.; Korabecny, J.; Hulcova, D.; Kunes, J.; Novakova, L.; Perez, D.I.; Jun, D.; Kucera, T.; et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019, 82, 239–248. [Google Scholar] [CrossRef]
- Huang, Y.; Erdmann, N.; Peng, H.; Zhao, Y.; Zheng, J. The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell. Mol. Immunol. 2005, 2, 113–122. [Google Scholar]
- Cantarella, G.; Di Benedetto, G.; Puzzo, D.; Privitera, L.; Loreto, C.; Saccone, S.; Giunta, S.; Palmeri, A.; Bernardini, R. Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer’s disease. Brain 2015, 138, 203–216. [Google Scholar] [CrossRef]
- Frenkel, D. A new TRAIL in Alzheimer’s disease therapy. Brain 2014, 138, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Tang, M.-b.; Luo, H.-y.; Shi, C.-h.; Xu, Y.-m. Necroptosis in neurodegenerative diseases: A potential therapeutic target. Cell Death Dis. 2017, 8, e2905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanella, C.; Pace, A.; Bavisotto, C.; Marzullo, P.; Marino Gammazza, A.; Buscemi, S.; Palumbo Piccionello, A. Heat Shock Proteins in Alzheimer’s Disease: Role and Targeting. Int. J. Mol. Sci. 2018, 19, 2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blommaart, E.F.; Krause, U.; Schellens, J.P.; Vreeling-Sindelarova, H.; Meijer, A.J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 1997, 243, 240–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackisch, R.; Kruchen, A.; Sauermann, W.; Hertting, G.; Feuerstein, T.J. The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists. Eur. J. Pharmacol. 1994, 264, 207–211. [Google Scholar] [CrossRef]
- Thathiah, A.; De Strooper, B. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat. Rev. Neurosci. 2011, 12, 73–87. [Google Scholar] [CrossRef]
- Hua, L.L.; Wen-Na, P.; Yu, D.; Jing-Jing, L.; Xiang-Rong, T. Action of trichostatin A on Alzheimer’s disease-like pathological changes in SH-SY5Y neuroblastoma cells. Neural Regen. Res. 2020, 15, 293–301. [Google Scholar]
- Nunes, M.J.; Moutinho, M.; Gama, M.J.; Rodrigues, E. Trichostatin A, a histone deacetylase inhibitor, modulates signaling pathways involved in the control of neuronal cholesterol metabolism. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2013, 9, 360. [Google Scholar] [CrossRef]
- Quintremil, S.; Medina-Ferrer, F.; Puente, J.; Pando, M.E.; Valenzuela, M.A. Roles of Semaphorins in Neurodegenerative Diseases. In Neurons—Dendrites and Axons; Hernández-Aguilar, M.E., Aranda-Abreu, G.E., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.R.; Fernández-Martínez, J.L.; Zaal, K.J.M.; Wolff, B.S.; Saligan, L.N. mGluR5 mediates post-radiotherapy fatigue development in cancer patients. Transl. Psychiatry 2018, 8, 110. [Google Scholar] [CrossRef]
- Docagne, F.; Gabriel, C.; Lebeurrier, N.; Lesné, S.; Hommet, Y.; Plawinski, L.; Mackenzie, E.T.; Vivien, D. Sp1 and Smad transcription factors co-operate to mediate TGF-beta-dependent activation of amyloid-beta precursor protein gene transcription. Biochem. J. 2004, 383, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kwon, Y.A.; Ahn, I.S.; Kim, S.; Kim, S.; Jo, S.A.; Kim, D.K. Overexpression of Cell Cycle Proteins of Peripheral Lymphocytes in Patients with Alzheimer’s Disease. Psychiatry Investig. 2016, 13, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sood, S.; Gallagher, I.J.; Lunnon, K.; Rullman, E.; Keohane, A.; Crossland, H.; Phillips, B.E.; Cederholm, T.; Jensen, T.; van Loon, L.J.C.; et al. A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status. Genome Biol. 2015, 16, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilling, L.C.; Harries, L.W.; Hernandez, D.G.; Singleton, A.B.; AKuchel, G.; Ferrucci, L.; Melzer, D. The reported healthy ageing gene expression score: Lack of predictive value in two cohorts. bioRxiv 2015. [Google Scholar] [CrossRef]
- Jacob, L.; Speed, T.P. The healthy ageing gene expression signature for Alzheimer’s disease diagnosis: A random sampling perspective. bioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, J.L.; Fernández-Muñiz, Z.; Tompkins, M.J. On the topography of the cost functional in linear and nonlinear inverse problems. Geophysics 2012, 77, W1–W5. [Google Scholar] [CrossRef]
- Fernández-Martínez, J.L.; Pallero, J.L.G.; Fernández-Muñiz, Z.; Pedruelo-González, L.M. From Bayes to Tarantola: New insights to understand uncertainty in inverse problems. J. Appl. Geophys. 2013, 98, 62–72. [Google Scholar] [CrossRef]
- Fernández-Martínez, J.L.; Fernández-Muñiz, Z. The curse of dimensionality in inverse problems. J. Comput. Appl. Math. 2019, in press. [Google Scholar]
- Fernández-Muñiz, Z.; Khaniani, H.; Fernández-Martínez, J.L. Data kit inversion and uncertainty analysis. J. Appl. Geophys. 2019, 161, 228–238. [Google Scholar] [CrossRef]
- Cernea, A.; Fernández-Martínez, J.L.; deAndrés-Galiana, E.J.; Galvan, J.A.; Garcia-Pravia, C. Analysis of Clinical Prognostic Variables for Triple Negative Breast Cancer Histological Grading and Lymph Node Metastasis. J. Med. Inform. Decis. Mak. 2018, 1, 14. [Google Scholar] [CrossRef]
- DeAndrés-Galiana, E.J.; Bea, G.; Fernández-Martínez, J.L.; Saligan, L.N. Analysis of defective pathways and drug repositioning in Multiple Sclerosis via machine learning approaches. Comput. Biol. Med. 2019, 115, 103492. [Google Scholar] [CrossRef]
- Cernea, A.; Fernández-Martínez, J.L.; deAndrés-Galiana, E.J.; Fernández-Muñiz, Z.; Bermejo-Millo, J.C.; González-Blanco, L.; Solano, J.J.; Abizanda, P.; Coto-Montes, A.; Caballero, B. Prognostic networks for unraveling the biological mechanisms of Sarcopenia. Mech. Ageing Dev. 2019, 182, 111129. [Google Scholar] [CrossRef] [PubMed]
- Eiro, N.; Cid, S.; Fernández, B.; Fraile, M.; Cernea, A.; Sánchez, R.; Andicoechea, A.; deAndrés-Galiana, E.J.; Gónzalez, L.O.; Fernández-Muñiz, Z.; et al. MMP11 expression in intratumoral inflammatory cells in breast cancer. Histopathology 2019, 75, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, J.L.; Álvarez, O.; deAndrés-Galiana, E.J.; de la Viña, J.F.S.; Huergo, L. Robust sampling of altered pathways for drug repositioning reveals promising novel therapeutics for inclusion body Myositis. J. Rare Dis. Res. Treat. 2019, 4, 7–15. [Google Scholar] [CrossRef]
- Cernea, A.; Fernández-Martínez, J.L.; deAndrés-Galiana, E.J.; Fernández-Ovies, F.J.; Fernández-Muñiz, Z.; Alvarez-Machancoses, Ó.; Saligan, L.; Sonis, S.T. Sampling Defective Pathways in Phenotype Prediction Problems via the Fisher’s Ratio Sampler. In International Conference on Bioinformatics and Biomedical Engineering; Springer: Cham, Switzerland, 2018; Volume 10814, pp. 15–23. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pang, H.; Lin, A.; Holford, M.; Enerson, B.E.; Lu, B.; Lawton, M.P.; Floyd, E.; Zhao, H. Pathway analysis using random forests classification and regression. Bioinformatics 2006, 22, 2028–2036. [Google Scholar] [CrossRef] [Green Version]
- Cernea, A.; Fernández-Martínez, J.L.; deAndrés-Galiana, E.J.; Fernández-Ovies, F.J.; Fernández-Muñiz, Z.; Alvarez-Machancoses, Ó.; Saligan, L.; Sonis, S.T. Comparison of different sampling algorithms for phenotype prediction. In International Conference on Bioinformatics and Biomedical Engineering; Springer: Cham, Switzerland, 2018; Volume 10814, pp. 33–45. [Google Scholar]
- Jiang, X.; Barmada, M.M.; Visweswaran, S. Identifying genetic interactions in genome-wide data using Bayesian networks. Genet. Epidemiol. 2010, 34, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Andrew, A.; Karagas, M.R.; Borsuk, M.E. Using Bayesian networks to discover relations between genes, environment and disease. BioData Min. 2013, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Saligan, L.N.; Fernández-Martínez, J.L.; deAndrés-Galiana, E.J.; Sonis, S.T. Supervised classification by filter methods and recursive feature elimination predicts risk of radiotherapy-related fatigue in patients with prostate cancer. Cancer Inf. 2014, 13, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, J.L.; deAndrés-Galiana, E.J.; Sonis, S.T. Genomic data integration in chronic lymphocytic leukemia. J. Gene Med. 2017, 19, e2936. [Google Scholar] [CrossRef]
- deAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Luaces, O.; Del Coz, J.J.; Fernandez, R.; Solano, J.; Nogués, E.A.; Zanabilli, Y.; Alonso, J.M.; Payer, A.R.; et al. On the prediction of Hodgkin Lymphoma treatment response. Clin. Transl. Oncol. 2015, 17, 612–619. [Google Scholar] [CrossRef]
- deAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Luaces, O.; del Coz, J.J.; Huergo-Zapico, L.; Acebes-Huerta, A.; González, S.; González-Rodríguez, A.P. Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia decision-making problems. J. Biomed. Inform. 2016, 60, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
Gene | Mean-HC | Std-HC | Mean-AD | Std-AD | FC | FR (log) | Accuracy |
---|---|---|---|---|---|---|---|
MRPL51 | 703.3 | 183.20 | 472.4 | 121.55 | 0.57 | 1.29 | 78.71 |
CETN2 | 867.0 | 153.21 | 683.0 | 118.88 | 0.34 | 1.19 | 79.52 |
LOC401206 | 18,073.7 | 5002.52 | 12,083.0 | 4278.87 | 0.58 | 1.17 | 79.12 |
RPL36AL | 7168.5 | 2178.39 | 4527.8 | 1711.00 | 0.66 | 1.16 | 78.71 |
LOC646200 | 3563.2 | 1854.66 | 1760.4 | 1074.05 | 1.02 | 1.09 | 79.12 |
RPS25 | 18,110.8 | 5359.11 | 11,732.2 | 4441.81 | 0.63 | 1.04 | 77.91 |
RPA3 | 450.8 | 111.78 | 332.4 | 80.43 | 0.44 | 0.99 | 77.11 |
RPS27A | 17,344.8 | 3217.71 | 13,010.2 | 3989.02 | 0.41 | 0.96 | 77.11 |
LOC653658 | 1550.3 | 883.60 | 823.9 | 599.03 | 0.91 | 0.93 | 77.11 |
LOC648000 | 2445.1 | 1824.27 | 1119.2 | 1114.32 | 1.13 | 0.92 | 75.90 |
LOC650276 | 5630.2 | 3807.08 | 2744.5 | 2278.71 | 1.04 | 0.90 | 75.10 |
MRPL33 | 401.1 | 80.33 | 328.1 | 56.05 | 0.29 | 0.88 | 74.70 |
RPL17 | 3505.5 | 2669.20 | 1567.4 | 1607.24 | 1.16 | 0.87 | 74.30 |
CALML4 | 542.0 | 125.05 | 411.4 | 87.25 | 0.40 | 0.87 | 74.30 |
RPL36AL | 2909.1 | 975.74 | 1789.1 | 743.33 | 0.70 | 0.86 | 74.70 |
TOMM7 | 3249.9 | 2034.70 | 1607.3 | 1223.54 | 1.02 | 0.85 | 74.30 |
PSMC2 | 815.7 | 229.18 | 610.1 | 179.02 | 0.42 | 0.84 | 78.31 |
COX17 | 1047.2 | 329.17 | 713.6 | 192.86 | 0.55 | 0.83 | 74.30 |
SNRPB2 | 869.3 | 239.44 | 649.1 | 161.49 | 0.42 | 0.83 | 77.51 |
RPL6 | 14,487.9 | 4110.82 | 11,020.4 | 3290.07 | 0.39 | 0.82 | 75.90 |
LOC731365 | 4091.6 | 1437.09 | 2900.3 | 1191.93 | 0.50 | 0.81 | 77.11 |
ATP5J2 | 1179.6 | 251.01 | 961.4 | 170.49 | 0.30 | 0.80 | 78.71 |
LOC646483 | 4230.1 | 1677.96 | 2885.7 | 1243.92 | 0.55 | 0.80 | 76.71 |
Gene | Mean H-C | Mean A-D | FC | FR | Frequency |
---|---|---|---|---|---|
RPL36AL | 7168.47 | 4527.83 | 0.66 | 1.08 | 2.31 |
MRPL51 | 703.29 | 472.42 | 0.57 | 1.01 | 2.29 |
CETN2 | 867.00 | 683.01 | 0.34 | 1.05 | 2.27 |
LOC401206 | 18,073.70 | 12,082.96 | 0.58 | 1.12 | 2.26 |
RPS27A | 17,344.77 | 13,010.21 | 0.41 | 1.07 | 2.18 |
LOC646200 | 3563.18 | 1760.36 | 1.02 | 0.53 | 1.99 |
RPS25 | 18,110.85 | 11,732.22 | 0.63 | 0.98 | 1.92 |
LOC653658 | 1550.32 | 823.92 | 0.91 | 0.61 | 1.83 |
RPA3 | 450.84 | 332.38 | 0.44 | 0.76 | 1.80 |
RPL36AL | 2909.07 | 1789.05 | 0.70 | 0.88 | 1.54 |
LOC648000 | 2445.09 | 1119.19 | 1.13 | 0.42 | 1.44 |
LOC731365 | 4091.55 | 2900.26 | 0.50 | 0.65 | 1.44 |
LOC650276 | 5630.21 | 2744.46 | 1.04 | 0.56 | 1.42 |
COX17 | 1047.23 | 713.58 | 0.55 | 0.62 | 1.37 |
CALML4 | 542.04 | 411.37 | 0.40 | 0.69 | 1.37 |
PSMC2 | 815.75 | 610.09 | 0.42 | 0.68 | 1.33 |
RPL17 | 3505.48 | 1567.42 | 1.16 | 0.42 | 1.30 |
MRPL33 | 401.15 | 328.14 | 0.29 | 0.79 | 1.28 |
ATP5J2 | 1179.56 | 961.40 | 0.30 | 0.72 | 1.25 |
SNRPB2 | 869.31 | 649.12 | 0.42 | 0.63 | 1.24 |
ATP5EP2 | 11,802.46 | 7906.31 | 0.58 | 0.69 | 1.21 |
MRPL33 | 1461.80 | 1115.56 | 0.39 | 0.63 | 1.18 |
ATP5O | 1523.69 | 952.53 | 0.68 | 0.53 | 1.16 |
TOMM7 | 3249.90 | 1607.26 | 1.02 | 0.41 | 1.10 |
LOC646483 | 4230.07 | 2885.69 | 0.55 | 0.59 | 1.08 |
RPS17 | 5544.05 | 3406.53 | 0.70 | 0.63 | 1.03 |
METAP2 | 595.99 | 449.62 | 0.41 | 0.56 | 1.03 |
RPL6 | 14,487.88 | 11,020.43 | 0.39 | 0.74 | 1.02 |
GNL2 | 388.71 | 320.97 | 0.28 | 0.71 | 1.01 |
ING3 | 376.85 | 282.53 | 0.42 | 0.56 | 1.00 |
RPL6 | 6640.20 | 4629.36 | 0.52 | 0.60 | 0.99 |
PSMC6 | 462.83 | 343.36 | 0.43 | 0.52 | 0.97 |
FXR1 | 297.54 | 249.31 | 0.26 | 0.66 | 0.93 |
TINP1 | 1437.50 | 1018.48 | 0.50 | 0.54 | 0.91 |
NDUFA1 | 3597.83 | 1604.43 | 1.17 | 0.32 | 0.84 |
LOC648622 | 2989.30 | 1499.56 | 1.00 | 0.48 | 0.79 |
CCDC90B | 498.24 | 419.10 | 0.25 | 0.69 | 0.76 |
DNAJA1 | 1628.19 | 993.45 | 0.71 | 0.38 | 0.75 |
RPL31 | 1107.21 | 589.02 | 0.91 | 0.28 | 0.74 |
SSBP1 | 922.99 | 754.56 | 0.29 | 0.75 | 0.74 |
LOC285900 | 1831.82 | 1197.38 | 0.61 | 0.41 | 0.71 |
Gene | Mean-HC | Mean-AD | FC | FR | Frequency |
---|---|---|---|---|---|
HSP90AA1 | 2538.09 | 1641.60 | 0.63 | 0.54 | 0.50 |
PSMC6 | 463.77 | 342.41 | 0.44 | 0.55 | 0.49 |
LOC646483 | 4228.56 | 2893.52 | 0.55 | 0.53 | 0.48 |
RPL6 | 6647.43 | 4635.21 | 0.52 | 0.55 | 0.48 |
TMSB10 | 11,572.19 | 9995.74 | 0.21 | 0.53 | 0.48 |
ARPC3 | 5021.07 | 3521.16 | 0.51 | 0.54 | 0.46 |
RPL39 | 5655.35 | 3956.08 | 0.52 | 0.54 | 0.46 |
RAB37 | 862.35 | 1065.21 | −0.30 | 0.56 | 0.45 |
SNRPB2 | 867.06 | 650.20 | 0.42 | 0.55 | 0.44 |
RPS20 | 5026.68 | 3907.36 | 0.36 | 0.57 | 0.44 |
NDUFA4 | 1343.43 | 847.62 | 0.66 | 0.53 | 0.44 |
GNL3 | 272.90 | 234.36 | 0.22 | 0.55 | 0.44 |
TCEAL4 | 430.12 | 363.54 | 0.24 | 0.59 | 0.44 |
ATP5F1 | 1737.34 | 1318.29 | 0.40 | 0.56 | 0.43 |
PCM1 | 524.83 | 453.96 | 0.21 | 0.54 | 0.42 |
PCMT1 | 1268.60 | 1055.06 | 0.27 | 0.57 | 0.41 |
RARS | 580.36 | 501.85 | 0.21 | 0.58 | 0.41 |
BOLA3 | 416.09 | 354.09 | 0.23 | 0.56 | 0.41 |
KIAA0913 | 882.61 | 1035.95 | −0.23 | 0.56 | 0.40 |
IGBP1 | 501.94 | 404.70 | 0.31 | 0.56 | 0.40 |
SCFD1 | 638.10 | 539.69 | 0.24 | 0.58 | 0.40 |
APBB3 | 770.11 | 910.99 | −0.24 | 0.58 | 0.39 |
TRABD | 2274.77 | 2621.10 | −0.20 | 0.58 | 0.38 |
TROVE2 | 312.54 | 351.15 | −0.17 | 0.59 | 0.37 |
NXF1 | 1187.73 | 1373.17 | −0.21 | 0.59 | 0.36 |
TAX1BP1 | 1297.46 | 961.12 | 0.43 | 0.60 | 0.35 |
RPS27 | 17,768.68 | 12,737.75 | 0.48 | 0.58 | 0.35 |
SDCCAG10 | 312.28 | 266.72 | 0.23 | 0.60 | 0.35 |
C11ORF10 | 3247.37 | 2775.15 | 0.23 | 0.57 | 0.35 |
ACAT1 | 392.11 | 314.89 | 0.32 | 0.57 | 0.35 |
LOC729466 | 3578.28 | 2644.66 | 0.44 | 0.59 | 0.35 |
RPS17 | 5544.94 | 3407.06 | 0.70 | 0.60 | 0.35 |
Gene | Mean-HC | Mean-AD | FC | FR | Frequency |
---|---|---|---|---|---|
LOC401206 | 14.08 | 13.48 | 0.06 | 1.17 | 0.25 |
MRPL51 | 9.41 | 8.84 | 0.09 | 1.29 | 0.25 |
CETN2 | 9.74 | 9.40 | 0.05 | 1.19 | 0.24 |
MRPL33 | 10.47 | 10.09 | 0.05 | 0.76 | 0.24 |
RPS27A | 14.06 | 13.60 | 0.05 | 0.96 | 0.24 |
RPL36AL | 11.41 | 10.69 | 0.10 | 0.86 | 0.24 |
RPL32 | 13.43 | 13.12 | 0.03 | 0.70 | 0.23 |
SNTB2 | 9.35 | 9.63 | −0.04 | 0.74 | 0.23 |
RPL36AL | 12.74 | 12.05 | 0.08 | 1.16 | 0.23 |
LOC388720 | 14.19 | 13.74 | 0.05 | 0.67 | 0.23 |
RPS25 | 14.08 | 13.43 | 0.07 | 1.04 | 0.22 |
BOLA2 | 8.08 | 8.32 | −0.04 | 0.71 | 0.21 |
ATP6V1E1 | 10.73 | 10.31 | 0.06 | 0.64 | 0.21 |
PIGF | 8.20 | 8.02 | 0.03 | 0.55 | 0.21 |
SSBP1 | 9.82 | 9.53 | 0.04 | 0.77 | 0.21 |
RPL6 | 13.76 | 13.37 | 0.04 | 0.82 | 0.21 |
NXF1 | 10.19 | 10.41 | −0.03 | 0.35 | 0.21 |
PSMC2 | 9.61 | 9.20 | 0.06 | 0.84 | 0.21 |
SCFD1 | 9.30 | 9.06 | 0.04 | 0.75 | 0.21 |
MRPS17 | 8.11 | 7.91 | 0.03 | 0.63 | 0.21 |
COX17 | 9.96 | 9.43 | 0.08 | 0.83 | 0.21 |
ARPC3 | 12.20 | 11.73 | 0.06 | 0.63 | 0.20 |
RPS27 | 13.96 | 13.48 | 0.05 | 0.44 | 0.20 |
CWF19L2 | 8.12 | 7.91 | 0.04 | 0.56 | 0.20 |
AK2 | 8.87 | 8.69 | 0.03 | 0.47 | 0.20 |
NDUFA4 | 10.11 | 9.54 | 0.08 | 0.61 | 0.20 |
RARS | 9.15 | 8.95 | 0.03 | 0.59 | 0.20 |
BOLA3 | 8.68 | 8.44 | 0.04 | 0.64 | 0.20 |
GNL3 | 8.07 | 7.86 | 0.04 | 0.54 | 0.20 |
CALML4 | 9.05 | 8.66 | 0.06 | 0.87 | 0.20 |
PCM1 | 9.02 | 8.80 | 0.03 | 0.49 | 0.20 |
CDC26 | 9.53 | 9.25 | 0.04 | 0.68 | 0.20 |
DNAJC7 | 8.53 | 8.34 | 0.03 | 0.31 | 0.19 |
SULT1A3 | 8.37 | 8.63 | −0.04 | 0.68 | 0.19 |
SDCCAG10 | 8.27 | 8.05 | 0.04 | 0.54 | 0.19 |
MRFAP1L1 | 9.82 | 9.47 | 0.05 | 0.55 | 0.19 |
Sampler | LOAD vs. Healthy Control |
---|---|
Holdout sampler | Viral mRNA translation, Influenza viral RNA transcription and replication, Gene expression, Mitochondrial translation, rRNA processing in the nucleus and cytosol, Metabolism of proteins, Organelle biogenesis, HIV life cycle, Antigen, TCR signaling |
Fisher’s sampler | Translation, Influenza life cycle, SRP-dependent co-translational protein targeting to membrane, Peptide chain elongation, Infectious disease, Influenza infection, Influenza viral RNA transcription and replication. |
Random Forest | Selenoamino acid metabolism Viral mRNA translation Peptide chain elongation Selenocysteine synthesis Eukaryotic translation termination. |
Gene | Mean-HC | Std-HC | Mean-MCI | StdC-MCI | FC | FR | Accuracy |
---|---|---|---|---|---|---|---|
TAX1BP1 | 1300.3 | 479.32 | 833.5 | 326.66 | 0.64 | 1.47 | 69.02 |
RPS4Y1 | 1388.9 | 1508.67 | 1567.6 | 1416.45 | −0.17 | 1.32 | 69.02 |
LOC401206 | 18,073.7 | 5002.52 | 12,518.9 | 3979.85 | 0.53 | 1.32 | 71.74 |
RPL17 | 3505.5 | 2669.20 | 1222.9 | 1204.77 | 1.52 | 1.24 | 67.93 |
ATP5F1 | 1737.2 | 487.80 | 1187.0 | 358.51 | 0.55 | 1.21 | 69.57 |
SNX2 | 828.8 | 220.12 | 625.0 | 130.12 | 0.41 | 1.20 | 70.65 |
SUB1 | 274.8 | 67.03 | 216.7 | 32.54 | 0.34 | 1.18 | 71.20 |
LOC648622 | 2989.3 | 2024.66 | 1182.5 | 870.25 | 1.34 | 1.14 | 69.57 |
DENND1C | 415.9 | 93.32 | 504.0 | 82.49 | −0.28 | 1.14 | 70.11 |
LOC648000 | 2445.1 | 1824.27 | 882.1 | 741.59 | 1.47 | 1.14 | 70.65 |
VBP1 | 442.5 | 127.57 | 329.6 | 78.39 | 0.42 | 1.14 | 69.02 |
LOC650276 | 5630.2 | 3807.08 | 2312.9 | 2015.90 | 1.28 | 1.12 | 69.57 |
PSMC2 | 815.7 | 229.18 | 584.5 | 161.75 | 0.48 | 1.12 | 69.02 |
VBP1 | 597.2 | 200.94 | 422.0 | 128.84 | 0.50 | 1.12 | 69.02 |
LYPLAL1 | 389.9 | 69.42 | 318.2 | 49.62 | 0.29 | 1.12 | 69.57 |
HIGD1A | 472.3 | 134.84 | 354.7 | 85.62 | 0.41 | 1.11 | 70.11 |
ATP6V1G1 | 1137.9 | 494.51 | 653.5 | 253.77 | 0.80 | 1.10 | 69.57 |
RPL31 | 1107.2 | 801.24 | 440.5 | 334.26 | 1.33 | 1.10 | 68.48 |
PNRC2 | 873.2 | 273.86 | 621.0 | 211.62 | 0.49 | 1.09 | 69.02 |
HSP90AA1 | 2542.9 | 1091.30 | 1496.2 | 747.87 | 0.77 | 1.07 | 70.11 |
RPS3A | 1492.7 | 948.63 | 752.6 | 625.26 | 0.99 | 1.07 | 70.65 |
NDUFA4 | 1342.2 | 772.90 | 645.2 | 291.73 | 1.06 | 1.07 | 70.65 |
MRPL3 | 537.4 | 197.46 | 366.9 | 120.14 | 0.55 | 1.07 | 71.20 |
RPA3 | 450.8 | 111.78 | 323.4 | 65.80 | 0.48 | 1.06 | 70.11 |
MRPL33 | 401.1 | 80.33 | 315.2 | 53.04 | 0.35 | 1.06 | 68.48 |
LOC647340 | 1228.3 | 530.94 | 754.3 | 349.22 | 0.70 | 1.06 | 68.48 |
VAMP7 | 544.7 | 134.08 | 420.3 | 89.05 | 0.37 | 1.05 | 67.93 |
PSMC6 | 462.8 | 179.02 | 313.5 | 116.15 | 0.56 | 1.04 | 67.93 |
ANAPC13 | 1056.1 | 248.28 | 773.8 | 178.28 | 0.45 | 1.03 | 67.93 |
RPS25 | 18,110.8 | 5359.11 | 12,048.6 | 3951.72 | 0.59 | 1.03 | 67.39 |
VPS29 | 987.2 | 340.14 | 668.5 | 209.15 | 0.56 | 1.03 | 67.93 |
ACAT1 | 392.9 | 104.10 | 299.3 | 65.65 | 0.39 | 1.03 | 67.93 |
RPS3A | 1050.6 | 618.94 | 581.0 | 402.60 | 0.85 | 1.02 | 67.93 |
CRBN | 468.9 | 127.79 | 352.1 | 92.43 | 0.41 | 1.02 | 69.57 |
HINT1 | 1849.4 | 1022.09 | 1046.0 | 741.48 | 0.82 | 1.00 | 71.74 |
RPS27 | 1562.3 | 1128.84 | 651.8 | 471.56 | 1.26 | 1.00 | 71.20 |
Gene | Mean-HC | Mean-MCI | FC | FR | Frequency |
---|---|---|---|---|---|
DENND1C | 415.91 | 503.99 | −0.28 | 1.02 | 0.41 |
LOC648622 | 2989.30 | 1182.47 | 1.34 | 0.68 | 0.41 |
LOC401206 | 18,073.70 | 12,518.85 | 0.53 | 1.22 | 0.41 |
SULT1A3 | 337.68 | 413.27 | −0.29 | 0.93 | 0.41 |
ATP5F1 | 1737.25 | 1186.98 | 0.55 | 1.04 | 0.41 |
SNX2 | 828.84 | 624.98 | 0.41 | 1.05 | 0.40 |
HSP90AA1 | 2542.86 | 1496.21 | 0.77 | 0.79 | 0.40 |
LOC650276 | 5630.21 | 2312.93 | 1.28 | 0.65 | 0.40 |
LYPLAL1 | 389.93 | 318.16 | 0.29 | 0.94 | 0.40 |
TAX1BP1 | 1300.26 | 833.54 | 0.64 | 1.29 | 0.40 |
NDUFA4 | 1342.20 | 645.23 | 1.06 | 0.73 | 0.40 |
PSMC2 | 815.75 | 584.52 | 0.48 | 0.88 | 0.40 |
ANAPC13 | 1056.07 | 773.77 | 0.45 | 0.96 | 0.40 |
RPS3A | 1492.70 | 752.64 | 0.99 | 0.62 | 0.39 |
TINP1 | 1437.50 | 951.69 | 0.59 | 0.73 | 0.39 |
VAMP7 | 544.66 | 420.27 | 0.37 | 1.04 | 0.39 |
RPS3A | 1050.62 | 581.04 | 0.85 | 0.61 | 0.39 |
RPS27 | 1562.31 | 651.80 | 1.26 | 0.45 | 0.39 |
HIGD1A | 472.27 | 354.74 | 0.41 | 0.93 | 0.38 |
MITD1 | 429.65 | 343.49 | 0.32 | 0.90 | 0.38 |
MRPL3 | 537.40 | 366.90 | 0.55 | 0.77 | 0.38 |
RPA3 | 450.84 | 323.39 | 0.48 | 0.83 | 0.38 |
IGBP1 | 503.89 | 384.59 | 0.39 | 0.85 | 0.38 |
LOC648000 | 2445.09 | 882.14 | 1.47 | 0.53 | 0.38 |
SLC35A1 | 559.43 | 431.56 | 0.37 | 0.84 | 0.38 |
PSMC6 | 462.83 | 313.50 | 0.56 | 0.74 | 0.38 |
RARS | 579.64 | 476.57 | 0.28 | 0.88 | 0.38 |
UBE2E1 | 932.67 | 641.56 | 0.54 | 0.73 | 0.38 |
TMEM126B | 448.51 | 336.73 | 0.41 | 0.76 | 0.38 |
Gene | Mean-MCI | Std-MCI | Mean-AD | StdC-AD | FC | FR | Accuracy |
---|---|---|---|---|---|---|---|
RPS4Y1 | 1567.6 | 1416.45 | 1065.8 | 1351.05 | 0.56 | 1.45 | 62.22 |
HLA-DRB1 | 923.5 | 830.82 | 699.0 | 686.50 | 0.40 | 1.08 | 63.11 |
JARID1D | 281.4 | 112.52 | 243.9 | 109.28 | 0.21 | 0.83 | 62.22 |
HS.546019 | 229.1 | 63.27 | 258.8 | 74.76 | −0.18 | 0.56 | 62.22 |
FYB | 2356.8 | 737.83 | 2861.7 | 823.29 | −0.28 | 0.50 | 64.00 |
XIST | 265.0 | 87.63 | 324.2 | 140.46 | −0.29 | 0.44 | 61.78 |
ZFX | 215.7 | 19.00 | 228.8 | 20.44 | −0.09 | 0.37 | 64.44 |
CCDC32 | 226.1 | 17.09 | 236.4 | 20.15 | −0.06 | 0.36 | 62.67 |
SP3 | 345.7 | 102.33 | 417.9 | 141.78 | −0.27 | 0.36 | 64.89 |
CREB5 | 977.0 | 380.80 | 1243.8 | 457.64 | −0.35 | 0.34 | 67.11 |
STK17B | 357.1 | 71.26 | 402.5 | 97.13 | −0.17 | 0.33 | 65.78 |
LOC653855 | 182.4 | 7.36 | 178.7 | 7.71 | 0.03 | 0.32 | 67.56 |
ADAM10 | 235.2 | 28.78 | 253.8 | 35.35 | −0.11 | 0.32 | 66.67 |
ACSL4 | 370.0 | 107.89 | 451.5 | 158.92 | −0.29 | 0.31 | 64.89 |
RNF13 | 476.8 | 113.40 | 558.3 | 151.25 | −0.23 | 0.30 | 64.00 |
FAM96A | 612.2 | 160.47 | 703.0 | 209.88 | −0.20 | 0.29 | 64.89 |
GNG10 | 501.8 | 157.68 | 643.7 | 277.03 | −0.36 | 0.29 | 64.44 |
FBXO11 | 872.8 | 212.75 | 990.0 | 224.71 | −0.18 | 0.29 | 64.89 |
HS.538581 | 182.3 | 8.11 | 178.1 | 7.04 | 0.03 | 0.29 | 65.78 |
WDR5 | 325.9 | 26.74 | 312.1 | 29.54 | 0.06 | 0.28 | 66.22 |
HS.537004 | 331.4 | 62.88 | 371.1 | 81.60 | −0.16 | 0.27 | 66.67 |
CBFB | 389.1 | 83.57 | 433.8 | 89.55 | −0.16 | 0.27 | 66.22 |
CENTB2 | 390.9 | 79.87 | 437.6 | 93.86 | −0.16 | 0.27 | 65.33 |
EML3 | 1472.5 | 261.47 | 1333.6 | 277.31 | 0.14 | 0.27 | 64.89 |
HS.460758 | 169.5 | 6.21 | 174.0 | 7.99 | −0.04 | 0.27 | 65.78 |
HS.566890 | 207.3 | 12.17 | 202.4 | 12.36 | 0.03 | 0.26 | 67.11 |
ACD | 395.8 | 48.72 | 369.8 | 51.79 | 0.10 | 0.26 | 65.33 |
DDX3X | 1225.7 | 390.46 | 1497.1 | 501.69 | −0.29 | 0.26 | 66.22 |
BAP1 | 333.0 | 39.25 | 317.3 | 39.28 | 0.07 | 0.26 | 65.78 |
AZIN1 | 601.1 | 121.81 | 679.0 | 160.32 | −0.18 | 0.26 | 64.89 |
HS.130036 | 284.1 | 55.50 | 318.8 | 67.07 | −0.17 | 0.26 | 65.33 |
DDX46 | 284.7 | 34.04 | 300.7 | 35.77 | −0.08 | 0.26 | 66.67 |
RCBTB2 | 204.5 | 16.37 | 211.9 | 16.37 | −0.05 | 0.26 | 66.22 |
AMD1 | 544.7 | 142.10 | 613.1 | 166.94 | −0.17 | 0.26 | 65.78 |
Gene | Mean-LOAD | Mean-MCI | FC | FR | Frequency |
---|---|---|---|---|---|
HLA-DRB1 | 699.02 | 923.49 | −0.4 | 0.39 | 2.04 |
FYB | 2861.74 | 2356.84 | 0.28 | 0.45 | 1.91 |
HS.546019 | 258.81 | 229.12 | 0.18 | 0.44 | 1.87 |
CCDC32 | 236.43 | 226.06 | 0.06 | 0.35 | 1.81 |
SP3 | 417.86 | 345.68 | 0.27 | 0.26 | 1.7 |
RPS4Y1 | 1065.75 | 1567.62 | −0.56 | 0.72 | 1.68 |
ZFX | 228.76 | 215.66 | 0.09 | 0.36 | 1.62 |
XIST | 324.24 | 265 | 0.29 | 0.27 | 1.46 |
CREB5 | 1243.82 | 976.99 | 0.35 | 0.27 | 1.41 |
ACSL4 | 451.53 | 370.02 | 0.29 | 0.22 | 1.33 |
LOC653855 | 178.65 | 182.43 | −0.03 | 0.31 | 1.25 |
ADAM10 | 253.83 | 235.2 | 0.11 | 0.3 | 1.19 |
JARID1D | 243.87 | 281.42 | −0.21 | 0.59 | 1.14 |
RNF13 | 558.32 | 476.84 | 0.23 | 0.26 | 1.14 |
CBFB | 433.83 | 389.13 | 0.16 | 0.26 | 1.06 |
STK17B | 402.48 | 357.12 | 0.17 | 0.29 | 1.04 |
FBXO11 | 990.02 | 872.76 | 0.18 | 0.27 | 1.02 |
PRKY | 231.85 | 260.04 | −0.17 | 0.16 | 0.94 |
HS.130036 | 318.83 | 284.09 | 0.17 | 0.22 | 0.94 |
HS.537004 | 371.06 | 331.41 | 0.16 | 0.25 | 0.83 |
ACD | 369.76 | 395.81 | −0.1 | 0.27 | 0.73 |
GNG10 | 643.73 | 501.82 | 0.36 | 0.17 | 0.71 |
DDX3X | 1497.14 | 1225.72 | 0.29 | 0.24 | 0.71 |
FAM96A | 703.02 | 612.23 | 0.2 | 0.2 | 0.69 |
CENTB2 | 437.57 | 390.9 | 0.16 | 0.27 | 0.69 |
HS.538581 | 178.06 | 182.28 | −0.03 | 0.28 | 0.69 |
WDR5 | 312.12 | 325.87 | −0.06 | 0.28 | 0.64 |
SNORA25 | 340.48 | 319.2 | 0.09 | 0.2 | 0.62 |
BAP1 | 317.32 | 333 | −0.07 | 0.25 | 0.62 |
HS.460758 | 174.03 | 169.52 | 0.04 | 0.27 | 0.58 |
B2M | 11,415.82 | 9954.21 | 0.2 | 0.19 | 0.56 |
Gene | Mean HC | Std HC | Mean MCI-AD | Std MCI-AD | FC | FR | Accuracy |
---|---|---|---|---|---|---|---|
LOC401206 | 18,073.7 | 5002.52 | 12,237.9 | 4171.3 | 0.56 | 1.22 | 73.86 |
MRPL51 | 703.3 | 183.2 | 480.2 | 121.31 | 0.55 | 1.19 | 76.9 |
TAX1BP1 | 1300.3 | 479.32 | 915.3 | 368.37 | 0.51 | 1.04 | 76.29 |
RPS25 | 18,110.8 | 5359.11 | 11,844.7 | 4267.77 | 0.61 | 1.04 | 76.6 |
LOC650276 | 5630.2 | 3807.08 | 2591 | 2194.12 | 1.12 | 1.02 | 75.68 |
RPL36AL | 7168.5 | 2178.39 | 4716.9 | 1728.29 | 0.6 | 1.02 | 74.47 |
RPA3 | 450.8 | 111.78 | 329.2 | 75.53 | 0.45 | 1.01 | 75.99 |
LOC646200 | 3563.2 | 1854.66 | 1764.9 | 1008.41 | 1.01 | 1.01 | 75.08 |
LOC648000 | 2445.1 | 1824.27 | 1034.9 | 1002.56 | 1.24 | 1.00 | 75.08 |
RPL17 | 3505.5 | 2669.2 | 1444.9 | 1483.19 | 1.28 | 1.00 | 75.68 |
MRPL33 | 401.1 | 80.33 | 323.5 | 55.23 | 0.31 | 0.91 | 75.38 |
LOC653658 | 1550.3 | 883.6 | 801.8 | 531.34 | 0.95 | 0.91 | 75.99 |
CETN2 | 867 | 153.21 | 700.3 | 121.75 | 0.31 | 0.91 | 76.29 |
CALML4 | 542 | 125.05 | 410 | 83.48 | 0.4 | 0.89 | 76.6 |
PSMC2 | 815.7 | 229.18 | 601 | 173.15 | 0.44 | 0.89 | 76.9 |
RPS27A | 17,344.8 | 3217.71 | 13,249.4 | 3883.87 | 0.39 | 0.88 | 74.77 |
TOMM7 | 3249.9 | 2034.7 | 1547.5 | 1174.84 | 1.07 | 0.87 | 74.77 |
RPS17 | 5544.1 | 2933.07 | 3241.9 | 2085.19 | 0.77 | 0.87 | 75.99 |
SNX2 | 828.8 | 220.12 | 651.9 | 168.48 | 0.35 | 0.87 | 75.68 |
PSMC6 | 462.8 | 179.02 | 332.7 | 132.18 | 0.48 | 0.87 | 76.6 |
ATP5F1 | 1737.2 | 487.8 | 1272.6 | 411.82 | 0.45 | 0.87 | 76.9 |
TINP1 | 1437.5 | 490.98 | 994.7 | 405.24 | 0.53 | 0.86 | 75.99 |
SNRPB2 | 869.3 | 239.44 | 641.7 | 151.97 | 0.44 | 0.85 | 77.2 |
LYPLAL1 | 389.9 | 69.42 | 330.2 | 57.48 | 0.24 | 0.85 | 75.38 |
RPL31 | 1107.2 | 801.24 | 536.2 | 491.17 | 1.05 | 0.84 | 75.38 |
RPL36AL | 2909.1 | 975.74 | 1803.5 | 691.87 | 0.69 | 0.83 | 75.08 |
RPL6 | 14,487.9 | 4110.82 | 10,956.5 | 3335.45 | 0.4 | 0.83 | 75.68 |
LOC648622 | 2989.3 | 2024.66 | 1386.8 | 1104.76 | 1.11 | 0.83 | 75.38 |
ATP5O | 1523.7 | 602.04 | 939 | 420.63 | 0.7 | 0.83 | 75.38 |
SULT1A3 | 337.7 | 65.75 | 406.1 | 64.14 | −0.27 | 0.82 | 75.99 |
GNL2 | 388.7 | 72.09 | 319.2 | 46.16 | 0.28 | 0.82 | 75.68 |
LOC646483 | 4230.1 | 1677.96 | 2869.1 | 1207.02 | 0.56 | 0.82 | 75.99 |
ACAT1 | 392.9 | 104.1 | 309.3 | 70.1 | 0.35 | 0.82 | 75.68 |
MRPL33 | 1461.8 | 356.33 | 1113.6 | 260.92 | 0.39 | 0.82 | 75.68 |
LOC388532 | 902.7 | 532.22 | 499.6 | 301.65 | 0.85 | 0.81 | 75.68 |
COX17 | 1047.2 | 329.17 | 719.8 | 183.95 | 0.54 | 0.81 | 75.99 |
SSBP1 | 923 | 180.74 | 750.8 | 148.85 | 0.3 | 0.81 | 76.29 |
Gene | Mean HC | Mean MCI-AD | FC | FR | Freq. |
---|---|---|---|---|---|
LOC653658 | 1550.32 | 761.68 | 1.03 | 0.68 | 0.37 |
LOC648622 | 2989.3 | 1182.47 | 1.34 | 0.68 | 0.37 |
PPP2R3C | 726.33 | 561.48 | 0.37 | 0.8 | 0.37 |
LOC648000 | 2445.09 | 882.14 | 1.47 | 0.53 | 0.37 |
SULT1A3 | 337.68 | 413.27 | −0.29 | 0.93 | 0.37 |
MITD1 | 429.65 | 343.49 | 0.32 | 0.9 | 0.37 |
LOC650276 | 5630.21 | 2312.93 | 1.28 | 0.65 | 0.37 |
VAMP7 | 544.66 | 420.27 | 0.37 | 1.04 | 0.37 |
SNX2 | 828.84 | 624.98 | 0.41 | 1.05 | 0.37 |
MRPL3 | 537.4 | 366.9 | 0.55 | 0.77 | 0.37 |
ATP5F1 | 1737.25 | 1186.98 | 0.55 | 1.04 | 0.37 |
EIF2A | 414.86 | 328.84 | 0.34 | 0.82 | 0.37 |
NDUFA4 | 1342.2 | 645.23 | 1.06 | 0.73 | 0.37 |
DENND1C | 415.91 | 503.99 | −0.28 | 1.02 | 0.37 |
PSMC2 | 815.75 | 584.52 | 0.48 | 0.88 | 0.37 |
LOC401206 | 18,073.7 | 12,518.85 | 0.53 | 1.22 | 0.37 |
TAX1BP1 | 1300.26 | 833.54 | 0.64 | 1.29 | 0.37 |
ANAPC13 | 1056.07 | 773.77 | 0.45 | 0.96 | 0.37 |
SSBP1 | 922.99 | 743.88 | 0.31 | 0.92 | 0.37 |
RPS3A | 1492.7 | 752.64 | 0.99 | 0.62 | 0.37 |
LYPLAL1 | 389.93 | 318.16 | 0.29 | 0.94 | 0.37 |
PNRC2 | 873.24 | 620.99 | 0.49 | 0.93 | 0.37 |
CRBN | 468.9 | 352.14 | 0.41 | 0.86 | 0.37 |
HSP90AA1 | 2542.86 | 1496.21 | 0.77 | 0.79 | 0.37 |
PSMC6 | 462.83 | 313.5 | 0.56 | 0.74 | 0.36 |
RPL17 | 3505.48 | 1222.94 | 1.52 | 0.56 | 0.36 |
HIGD1A | 472.27 | 354.74 | 0.41 | 0.93 | 0.36 |
DYNLT3 | 260.74 | 216.35 | 0.27 | 0.74 | 0.36 |
RPS27 | 1562.31 | 651.8 | 1.26 | 0.45 | 0.36 |
GPBP1 | 610.75 | 470.14 | 0.38 | 0.79 | 0.36 |
IGBP1 | 503.89 | 384.59 | 0.39 | 0.85 | 0.36 |
MRPL33 | 401.15 | 315.19 | 0.35 | 0.96 | 0.36 |
INPPL1 | 780.71 | 958.41 | −0.3 | 0.86 | 0.36 |
SLC35A1 | 559.43 | 431.56 | 0.37 | 0.84 | 0.36 |
UBE2E1 | 932.67 | 641.56 | 0.54 | 0.73 | 0.36 |
Item | LOAD vs. HC | MCI vs. HC | LOAD vs. MCI |
---|---|---|---|
Most Predictive Genetic Signature | MRPL51, CETN2, LOC401206, RPA3, PSMC2, ATP5J2, LOC648622, SNTB2, LSM, EIF3E, DNAJA1, RPAP3, RPS17, ERCC5, LOC401397, RPS3A, SNRPD2, CCDC34, LOC440567, ATP5H, ANXA1. | TAX1BP1, LOC401206, RPL17, ATP5F1, LOC648622, VBP1, LOC650276, VBP1, ATP6V1G1, VAMP7, RPS25, RPS3A, LOC646483. | RPS4Y1, FAM96A, HS.460758, CLEC2A, SNORA25, SMCHD1, GIMAP2, MAP2K2 |
Predictive Accuracy | 84% | 81.5% | 74% |
Pathways (High score matches) | Viral MRNA Translation, Influenza Viral RNA Transcription and Replication, Gene Expression, Mitochondrial translation, RRNA Processing in the nucleus and cytosol, Metabolism, Metabolism of proteins, Organelle Biogenesis, HIV Life Cycle, Antigen, TCR signaling. | Viral MRNA Translation, Gene Expression, Influenza Viral RNA Transcription and Replication, Metabolism of proteins, RRNA Processing in the Nucleus and cytosol, Ubiquitin-Proteasome Proteolysis, Antigen Processing, Cell cycle checkpoints, Metabolism, HIV Life Cycle, Mitotic Metaphase and Anaphase, CLEC7A (Dectin-1 signaling), Cellular Senescence, TCR signaling,... | Regulation of Activated PAK-2p34 By Proteasome Mediated Degradation, G-protein Signaling Regulation of P38 and JNK Signaling Mediated By G-proteins |
Biological Processes (High score matches) | Translation, Nuclear-transcribed MRNA Catabolic Process, SRP-dependent Cotranslational Protein Targeting to Membrane, Proton Transport, Translation initiation, Viral Transcription, ATP synthesis, Mitochondrial Translation Termination and Elongation, ATP Biosynthetic Process, RRNA Processing,... | Translation, Nuclear-transcribed MRNA Catabolic Process, Translation initiation, termination and elongation, SRP-dependent Cotranslational Protein Targeting to Membrane, Viral Transcription, NIK/NF-KappaB Signaling, Regulation of MRNA Stability, | Positive Regulation of G1/S Transition of Mitotic Cell Cycle, Regulation of MRNA Stability. |
Molecular Functions (High score matches) | Structural Constituent of Ribosome, Poly(A) RNA Binding, ATPase Activity, RNA binding, Protein Binding, ATP Synthase Activity. | Poly(A) RNA Binding, Protein Binding, RNA binding, Structural Constituent of Ribosome, ATP Activity. | Protein Binding, Translation Initiation Factor Binding. |
Drugs | Cell Line | Dose | Pathways |
---|---|---|---|
Cephaeline | MCF7 | 1 × 10−7 | Increased Expression TRAIL signaling/Regulation of necroptotic cell death/Regulated Necrosis/RIP-regulated Necrosis/Interleukin-19,20,22 Decreased Expression Cellular Senescence/TP53 regulates transcription of genes involved in G1 cell cycle arrest/Cellular responses to stress |
Tanespimycin | MCF7 | 1 × 10−6 | Increased Expression Cellular response to heat stress/Regulation of HSF1 heat shock response/Unfolded protein response. Decreased Expression Apoptotic Execution/Processing of intronless pre-mRNAs/Signaling by TGF-beta receptor complex. |
Wortmannin | MCF7- | 1 × 10−8 | Increased Expression Toxicity of botulinum toxin type D/IRS activation/Estrogen biosynthesis/Collagen biosynthesis/Growth hormone receptor signaling Decreased Expression RNA modification in the nucleus/Regulation of TP53 activity through methylation/Fatty acyl-CoA biosynthesis/Galactose catabolism |
Biperiden | MCF7 | 1.15 × 10−5 | Increased Expression Nuclear Pore Complex disassembly/Intraflagellar Transport/HIV life cycle Decreased Expression Secretin family receptors/Hemostasis/Adaptive immune system |
Trichostatin A | PC3 | 1 × 10−7/1 × 10−6 | Increased Expression Glutamate neurotransmitter release/Antigen activates B-cell receptor/CRMPs in Sema3A signaling Decreased Expression SMAD2/SMAD3:SMAD4 regulates transcription/G1 phase/Cyclin D associated events in G1/Transcriptional activation of mitochondrial biogenesis |
LY-294002 | MCF7 | 1 × 10−7/1 × 10−5 | Increased Expression RNA polymerase I promoter opening/DNA methylation/Adaptive immune system/GPCR downstream signaling Decreased Expression Nucleotide-like (purinergic) receptors/P2Y receptors/Adaptive immune system |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Martínez, J.L.; Álvarez-Machancoses, Ó.; deAndrés-Galiana, E.J.; Bea, G.; Kloczkowski, A. Robust Sampling of Defective Pathways in Alzheimer’s Disease. Implications in Drug Repositioning. Int. J. Mol. Sci. 2020, 21, 3594. https://doi.org/10.3390/ijms21103594
Fernández-Martínez JL, Álvarez-Machancoses Ó, deAndrés-Galiana EJ, Bea G, Kloczkowski A. Robust Sampling of Defective Pathways in Alzheimer’s Disease. Implications in Drug Repositioning. International Journal of Molecular Sciences. 2020; 21(10):3594. https://doi.org/10.3390/ijms21103594
Chicago/Turabian StyleFernández-Martínez, Juan Luis, Óscar Álvarez-Machancoses, Enrique J. deAndrés-Galiana, Guillermina Bea, and Andrzej Kloczkowski. 2020. "Robust Sampling of Defective Pathways in Alzheimer’s Disease. Implications in Drug Repositioning" International Journal of Molecular Sciences 21, no. 10: 3594. https://doi.org/10.3390/ijms21103594
APA StyleFernández-Martínez, J. L., Álvarez-Machancoses, Ó., deAndrés-Galiana, E. J., Bea, G., & Kloczkowski, A. (2020). Robust Sampling of Defective Pathways in Alzheimer’s Disease. Implications in Drug Repositioning. International Journal of Molecular Sciences, 21(10), 3594. https://doi.org/10.3390/ijms21103594