Two Chalcone Synthase Isozymes Participate Redundantly in UV-Induced Sakuranetin Synthesis in Rice
Abstract
:1. Introduction
2. Results
2.1. The Rice CHS Family
2.2. Analyses of the Conserved Residues and Motifs in the CHS Family
2.3. Cloning and Heterologous Expression of OsCHSs
2.4. CHS Activity and Kinetic Parameters of the Recombinant OsCHSs
2.5. In Silico and qRT-PCR Analyses of OsCHS Expression
2.6. Sakuranetin Accumulation and OsCHS24 and OsCHS8 Expression in the UV-Irradiated oschs24
3. Discussion
3.1. OsCHS24 and OsCHS8 Encode Functional CHSs in Rice
3.2. OsCHS24 and OsCHS8 Redundantly Contribute to the UV-Induced Accumulation of Sakuranetin in Rice Leaves
4. Materials and Methods
4.1. Plant Growth, UV Treatment, and Materials
4.2. Multiple Sequence Alignment and Phylogenetic Analysis
4.3. Cloning of OsCHSs
4.4. Expression and Purification of Recombinant OsCHSs
4.5. CHS Activity Assay and Steady-State Kinetics
4.6. In Silico and Quantitative Real-Time PCR Analysis of the OsCHS Gene Expression
4.7. Analysis of Sakuranetin Content
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CHS | chalcone synthase |
PKS | polyketide synthase |
OsCHS | rice chalcone synthase |
OsNOMT | rice naringenin O-methyltransferase |
CHI | chalcone isomerase |
STS | stilbene synthase |
MsCHS2 | Medicago sativa chalcone synthase 2 |
CUS | curcuminoid synthase |
ARAS | alkylresorcylic acid synthase |
ORF | open reading frame |
bp | base pair |
IPTG | isopropyl β-D-thiogalactopyranoside |
PBS | phosphate-buffered saline |
qRT-PCR | quantitative real-time polymerase chain reaction |
HPLC | high-performance liquid chromatography |
OsUBQ5 | rice ubiquitin 5 |
References
- Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012, 17, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, D.W.; Langcake, P.; Pryce, R.J.; Leworthy, D.P.; Ride, J.P. Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 1981, 20, 535–537. [Google Scholar] [CrossRef]
- Kodama, O.; Miyakawa, J.; Akatsuka, T.; Kiyosawa, S. Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 1992, 31, 3807–3809. [Google Scholar] [CrossRef]
- Peters, R.J. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 2006, 67, 2307–2317. [Google Scholar] [CrossRef]
- Park, H.L.; Lee, S.W.; Jung, K.H.; Hahn, T.R.; Cho, M.H. Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 2013, 96, 57–71. [Google Scholar] [CrossRef]
- Park, H.L.; Yoo, Y.; Hahn, T.R.; Bhoo, S.H.; Lee, S.W.; Cho, M.H. Antimicrobial activity of UV-induced phenylamides from rice leaves. Molecules 2014, 19, 18139–18151. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.H.; Lee, S.W. Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis. Int. J. Mol. Sci. 2015, 16, 29120–29133. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Lin, F.; Hasegawa, M.; Okada, K.; Nojiri, H.; Yamane, H. Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in biosynthesis of flavonoid phytoalexin sakuranetin in rice. J. Biol. Chem. 2012, 287, 19315–19325. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.B.; Noel, J. The chalcone synthase superfamily of type III polyketide synthase. Nat. Prod. Rep. 2003, 20, 79–110. [Google Scholar] [CrossRef]
- Abe, I.; Morita, H. Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat. Prod. Rep. 2010, 27, 809–838. [Google Scholar] [CrossRef]
- Dao, T.T.H.; Linthorst, H.J.M.; Verpoorte, R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 2011, 10, 397–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonekura-Sakakibara, K.; Higashi, Y.; Nakabayashi, R. The origin and evolution of plant flavonoid metabolism. Front. Plant Sci. 2019, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Staunton, J.; Weissman, K.J. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep. 2001, 18, 380–416. [Google Scholar] [CrossRef]
- Ferrer, J.L.; Jez, J.M.; Bowman, M.E.; Dixon, R.A.; Noel, J.P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 1999, 6, 775–784. [Google Scholar] [PubMed]
- Liou, G.; Chiang, Y.C.; Wang, Y.; Weng, J.K. Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants. J. Biol. Chem. 2018, 293, 18601–18612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glagoleva, A.Y.; Ivanisenko, N.V.; Khlestkina, E.K. Organization and evolution of the chalcone synthase gene family in bread wheat and relative species. BMC Genet. 2019, 20, 30. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Ding, T.; Su, B.; Jiang, H. Genome-wide identification, characterization and expression analysis of the chalcone synthase family in maize. Int. J. Mol. Sci. 2016, 17, 161. [Google Scholar] [CrossRef] [Green Version]
- Vadivel, A.K.A.; Krysiak, K.; Tian, G.; Dhaubhadel, S. Genome-wide identification and localization of chalcone synthase family in soybean (Glycin max [L]Merr). BMC Plant Biol. 2018, 18, 325. [Google Scholar]
- Koduri, P.K.H.; Gordon, G.S.; Barker, E.I.; Colpitts, C.C.; Ashton, N.W.; Suh, D.Y. Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens. Plant Mol. Biol. 2010, 72, 247–263. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Q.; Shen, W.; El Mohtar, C.A.; Zhao, X.; Gmitter, F.G., Jr. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC Plant Biol. 2018, 18, 189. [Google Scholar] [CrossRef]
- Matsuzawa, M.; Katsuyama, Y.; Funa, N.; Horinouchi, S. Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa. Phytochemistry 2010, 71, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; He, H.; Zhu, C.; Peng, X.; Fu, J.; He, X.; Chen, X.; Ouyang, L.; Bian, J.; Liu, S. Genome-wide identification and phylogenetic analysis of the chalcone synthase gene family in rice. J. Plant Res. 2017, 130, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Katsuyama, Y.; Matsuzawa, M.; Funa, N.; Horinouchi, S. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J. Biol. Chem. 2007, 282, 37702–37709. [Google Scholar] [CrossRef] [Green Version]
- Morita, H.; Wanibuchi, K.; Nii, H.; Kato, R.; Sugio, S.; Abe, I. Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa. Proc. Natl. Acad. Sci. USA 2010, 107, 19778–19783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.S.; Grienenberger, E.; Lallemand, B.; Colpitts, C.C.; Kim, S.Y.; de Azevedo Souza, C.; Geoffroy, P.; Heintz, D.; Krahn, D.; Kaiser, M.; et al. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α–pyrone synthases required for pollen development and sporopollemin biosynthesis in Arabidopsis thaliana. Plant Cell 2010, 22, 4045–4066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, K.; Yonekura-Sakakibara, K.; Nakabayashi, R.; Higashi, Y.; Yamazaki, M.; Tohge, T.; Fernie, A.R. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiol. Biochem. 2013, 72, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Bashandy, H.; Ainasoja, M.; Kontturi, J.; Pietiäinen, M.; Laitinen, R.A.E.; Albert, V.A.; Valkonen, J.P.T.; Elomaa, P.; Teeri, T.H. Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida. New Phytol. 2014, 201, 1469–1483. [Google Scholar] [CrossRef]
- Sun, W.; Meng, X.; Liang, L.; Jiang, W.; Huang, Y.; He, J.; Hu, H.; Almqvist, J.; Gao, X.; Wang, L. Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthetic pathway. PLoS ONE 2015, 10, e0119054. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dou, Y.; Wang, R.; Guan, X.; Hu, Z.; Zheng, J. Molecular characterization and functional analysis of chalcone synthase from Syringa oblata Lindl. in the flavonoid biosynthetic pathway. Gene 2017, 635, 16–23. [Google Scholar] [CrossRef]
- Wani, T.A.; Pandith, S.S.; Gupta, A.P.; Chandra, S.; Sharma, N.; Lattoo, S.K. Molecular and functional characterization of two isoforms of chalcone synthase and their expression analysis in relation to flavonoid constituents in Grewia asiatica L. PLoS ONE 2017, 12, e0179155. [Google Scholar] [CrossRef] [Green Version]
- Mol, J.N.M.; Robbinst, M.P.; Dixon, R.A.; Veltkamp, E. Spontaneous and enzymic rearrangements of naringenin chalcone to flavanone. Phytochemistry 1985, 24, 2267–2269. [Google Scholar] [CrossRef]
- Okada, Y.; Sano, Y.; Kaneko, T.; Abe, I.; Noguchi, H.; Ito, K. Enzymatic reactions by five chalcone synthase homologs from Hop (Humulus lupulus L.). Biosci. Biotechnol. Biochem. 2004, 68, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.H.; Chu, H.; Tang, L.K.; Sakamoto, W.; Maekawa, M.; Chu, I.K.; Wang, M.; Lo, C. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 2008, 228, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.S.; Lee, S.; Jung, K.H.; Jun, S.H.; Jeong, D.H.; Lee, J.; Kim, C.; Jang, S.; Lee, S.; Yang, K.; et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 2000, 22, 561–570. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Suh, D.Y.; Sitthithaworn, W.; Ishiguro, K.; Kobayashi, Y.; Shibuya, M.; Ebizuka, Y.; Sankawa, U. Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum. Planta 2001, 214, 75–84. [Google Scholar] [CrossRef]
- Shirley, B.W.; Kubasek, W.L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F.M.; Goodman, H.M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 1995, 8, 659–671. [Google Scholar] [CrossRef]
- Morita, H.; Wong, C.P.; Abe, I. How structural subtleties lead to molecular diversity for the type III polyketide synthases. J. Biol. Chem. 2019, 294, 15121–15136. [Google Scholar] [CrossRef] [Green Version]
- Jez, J.M.; Austin, M.B.; Ferrer, J.L.; Bowman, M.E.; Schröder, J.; Noel, J.P. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 2000, 7, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Beuerle, T.; Pichersky, E. Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal. Biochem. 2002, 302, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuurbier, K.W.M.; Fung, S.Y.; Scheffer, J.J.C.; Verpoorte, R. Assay of chalcone synthase activity by high-performance liquid chromatography. Phytochemistry 1993, 34, 1225–1229. [Google Scholar] [CrossRef]
- Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P. Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008, 2008, 420747. [Google Scholar] [CrossRef] [PubMed]
Locus ID. | Name | Gene Description in the RGAP DB | ORF Length | Protein | Theoretical |
---|---|---|---|---|---|
(bp) | Size (aa) | Mass (kDa) | |||
Os01g41834 | OsCHS1 | Chalcone synthase, putative | 1200 | 399 | 41.8 |
Os04g01354 | OsCHS2 | Chalcone synthase, putative | 1182 | 393 | 42.7 |
Os04g23940 | OsCHS3 | Chalcone synthase, putative | 1122 | 373 | 39.9 |
Os05g12180 | OsCHS4 | Chalcone synthase, putative | 1179 | 392 | 42.6 |
Os05g12190 | OsCHS5 | Chalcone synthase, putative | 939 | 312 | 333 |
Os05g12210 | OsCHS6 | Chalcone synthase, putative | 1179 | 392 | 42.6 |
Os05g12240 | OsCHS7 | Chalcone synthase, putative | 1179 | 392 | 42.7 |
Os07g11440 | OsCHS8 | Chalcone synthase, putative | 1212 | 403 | 43.9 |
Os07g17010 | OsCHS9 | Chalcone synthase, putative | 1209 | 402 | 43.2 |
Os07g22850 | OsCHS10 | Chalcone and stilbene synthase, putative | 1290 | 429 | 46.5 |
Os07g31750 | OsCHS11 | Chalcone synthase, putative | 1365 | 454 | 49.8 |
Os07g31770 | OsCHS12 | Chalcone synthase, putative | 1218 | 405 | 42.8 |
Os07g34140 | OsCHS13 | Chalcone synthase, putative | 1197 | 398 | 43 |
Os07g34190 | OsCHS14 | Chalcone and stilbene synthase, putative | 1197 | 398 | 42.6 |
Os07g34260 | OsCHS15 | Chalcone and stilbene synthase, putative | 1200 | 399 | 42.4 |
Os10g07040 | OsCHS16 | Chalcone synthase, putative | 1197 | 398 | 43.2 |
Os10g07616 | OsCHS17 | Chalcone synthase, putative | 1197 | 398 | 43.2 |
Os10g08620 | OsCHS18 | Chalcone and stilbene synthase, putative | 1200 | 399 | 43.2 |
Os10g08670 | OsCHS19 | Chalcone synthase, putative | 1032 | 343 | 37.5 |
Os10g08710 | OsCHS20 | Chalcone synthase, putative | 885 | 294 | 31.6 |
Os10g09860 | OsCHS21 | Chalcone synthase, putative | 1092 | 363 | 39.2 |
Os10g34360 | OsCHS22 | Stilbene synthase, putative | 1170 | 389 | 42.2 |
Os11g32620 | OsCHS23 | Chalcone synthase, putative | 1224 | 407 | 42.6 |
Os11g32650 | OsCHS24 | Chalcone synthase, putative | 1197 | 398 | 43.4 |
Os11g35930 | OsCHS25 | Chalcone synthase, putative | 1200 | 399 | 42.9 |
Os03g47000 | OsCHS26 | Chalcone synthase 1, putative | 417 | 138 | 14.6 |
Os05g41645 | OsCHS27 | Chalcone synthase, putative | 438 | 145 | 15.6 |
Os11g32540 | OsCHS28 | Chalcone synthase, putative | 636 | 212 | 22.2 |
Os11g32580 | OsCHS29 | Chalcone synthase | 1242 | 413 | 43.9 |
Os11g32610 | OsCHS30 | Chalcone and stilbene synthases, putative | 1206 | 401 | 42.4 |
Os12g07690 | OsCHS31 | Chalcone synthase, putative | 426 | 142 | 14.9 |
OsCHS | p-Coumaroyl-CoA | Malonyl-CoA | |||
---|---|---|---|---|---|
KM (μM) | Vmax (nmol min−1 mg−1) | kcat (min−1) | kcat/KM (M−1 min−1) | KM (μM) | |
OsCHS8 | 27.64 ± 4.21 | 0.352 ± 0.02 | 0.0149 | 539.81 | 59.38 ± 13.83 |
OsCHS24 | 45.44 ± 2.94 | 1.218 ± 0.05 | 0.0517 | 1137.05 | 47.42 ± 8.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.L.; Yoo, Y.; Bhoo, S.H.; Lee, T.-H.; Lee, S.-W.; Cho, M.-H. Two Chalcone Synthase Isozymes Participate Redundantly in UV-Induced Sakuranetin Synthesis in Rice. Int. J. Mol. Sci. 2020, 21, 3777. https://doi.org/10.3390/ijms21113777
Park HL, Yoo Y, Bhoo SH, Lee T-H, Lee S-W, Cho M-H. Two Chalcone Synthase Isozymes Participate Redundantly in UV-Induced Sakuranetin Synthesis in Rice. International Journal of Molecular Sciences. 2020; 21(11):3777. https://doi.org/10.3390/ijms21113777
Chicago/Turabian StylePark, Hye Lin, Youngchul Yoo, Seong Hee Bhoo, Tae-Hoon Lee, Sang-Won Lee, and Man-Ho Cho. 2020. "Two Chalcone Synthase Isozymes Participate Redundantly in UV-Induced Sakuranetin Synthesis in Rice" International Journal of Molecular Sciences 21, no. 11: 3777. https://doi.org/10.3390/ijms21113777
APA StylePark, H. L., Yoo, Y., Bhoo, S. H., Lee, T. -H., Lee, S. -W., & Cho, M. -H. (2020). Two Chalcone Synthase Isozymes Participate Redundantly in UV-Induced Sakuranetin Synthesis in Rice. International Journal of Molecular Sciences, 21(11), 3777. https://doi.org/10.3390/ijms21113777