Theragnostic Aspects and Radioimmunotherapy in Pediatric Tumors
Abstract
:1. Introduction
2. Theragnostic Tracers in Neuroectodermal Tumors
2.1. Metaiodobenzylguanidine (MIBG)
2.2. Somatostatin Analogs
3. Theragnostic Tracers in Pediatric CNS Tumor
4. Tracers for Radioimmunotherapy
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kelly, J.M.; Amor-Coarasa, A.; Nikolopolou, A.; Kim, D.; Williams, C.J.; Vallabhajosula, S.; Babich, J.W. Assessment of PSMA Targeting Ligands Bearing Novel Chelates with Application to Theranostics: Stability and Complexation Kinetics of 68Ga3+, 111In3+, 177Lu3+ and 225Ac3. Nucl. Med. Biol. 2017, 55, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Baiu, D.C.; Marsh, I.R.; Boruch, A.E.; Shahi, A.; Bhattacharya, S.; Jeffery, J.J.; Zhao, Q.; Hall, L.T.; Weichert, J.P.; Bednarz, B.P.; et al. Targeted Molecular Radiotherapy of Pediatric Solid Tumors Using a Radioiodinated Alkyl-Phospholipid Ether Analog. J. Nucl. Med. 2018, 59, 244–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruis, I.J.; Van Dongen, G.A.M.S.; Veldhuijzen van Zanten, S.E.M. The Added Value of Diagnostic and Theranostic PET Imaging for the Treatment of CNS Tumors. Int. J. Mol. Sci. 2020, 21, 1029. [Google Scholar] [CrossRef] [Green Version]
- Yordanova, A.; Eppard, E.; Kürpig, S.; Bundschuh, R.A.; Schönberger, S.; Gonzalez-Carmona, M.; Feldmann, G.; Ahmadzadehfar, H.; Essler, M. Theranostics in Nuclear Medicine Practice. Onco Targets Ther. 2017, 10, 4821–4828. [Google Scholar] [CrossRef] [Green Version]
- Bernier, J. Immuno-oncology: Allying Forces of Radio- And Immuno-Therapy to Enhance Cancer Cell Killing. Crit. Rev. Oncol. Hematol. 2016, 108, 97–108. [Google Scholar] [CrossRef]
- Rizzieri, D. Zevalin(®) (Ibritumomab Tiuxetan): After More than a Decade of Treatment Experience, What Have We Learned? Crit. Rev. Oncol. Hematol. 2016, 105, 5–17. [Google Scholar] [CrossRef]
- Agrawal, A.; Rangarajan, V.; Shah, S.; Puranik, A.; Purandare, N. MIBG (Metaiodobenzylguanidine) Theranostics in Pediatric and Adult Malignancies. Br. J. Radiol. 2018, 91, 20180103. [Google Scholar] [CrossRef]
- Giammarile, F.; Chiti, A.; Lassmann, M.; Brans, B.; Flux, G. Practice Guideline EANM Procedure Guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) Therapy. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1039–1047. [Google Scholar] [CrossRef]
- Braghirolli, A.M.S.; Waissmann, W.; Batista da Silva, J.; Dos Santos, G.R. Production of iodine-124 and Its Applications in Nuclear Medicine. Appl. Radiat. Isot. 2014, 90, 138–148. [Google Scholar] [CrossRef]
- Kuker, R.; Sztejnberg, M.; Gulec, S. I-124 Imaging and Dosimetry. Mol. Imaging Radionucl. Ther. 2017, 26 (Suppl. 1), 66–73. [Google Scholar] [CrossRef]
- Breeman, W.A.P.; De Blois, E.; Chan, H.S.; Konijnenberg, M.; Kwekkeboom, D.J.; Krenning, E.P. 68Ga-labeled DOTA-peptides and 68Ga-labeled Radiopharmaceuticals for Positron Emission Tomography: Current Status of Research, Clinical Applications, and Future Perspectives. Semin. Nucl. Med. 2011, 41, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Martiniova, L.; De Palatis, L.; Etchebehere, E.; Ravizzini, G. Gallium-68 in Medical Imaging. Curr. Radiopharm. 2016, 9, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Tanzey, S.S.; Thompson, S.; Scott, P.J.H.; Brooks, A.F. Gallium-68: Methodology and Novel Radiotracers for Positron Emission Tomography (2012–2017). Pharm. Pat. Anal. 2018, 7, 193–227. [Google Scholar] [CrossRef]
- Baum, R.P.; Kulkarni, H.R.; Singh, A.; Kaemmerer, D.; Mueller, D.; Prasad, V.; Hommann, M.; Robiller, F.C.; Niepsch, K.; Franz, H.; et al. Results and Adverse Events of Personalized Peptide Receptor Radionuclide Therapy with 90Yttrium and 177Lutetium in 1048 Patients with Neuroendocrine Neoplasms. Oncotarget 2018, 9, 16932–16950. [Google Scholar] [CrossRef]
- Suh, J.K.; Koh, K.N.; Min, S.Y.; Kim, Y.S.; Kim, H.; Im, H.J.; Namgoong, J.M.; Dae Yeon Kim, D.Y.; Ahn, S.D.; Lee, J.J.; et al. Feasibility and Effectiveness of Treatment Strategy of Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Combination with 131I-MIBG Therapy for High-Risk Neuroblastoma. Pediatr. Transplant. 2020, 24, e13658. [Google Scholar] [CrossRef]
- Kayano, D.; Wakabayashi, H.; Nakajima, K.; Kuroda, R.; Watanabe, S.; Inaki, A.; Toratani, A.; Akatani, N.; Yamase, T.; Kunita, Y.; et al. High-dose 131I-metaiodobenzylguanidine Therapy in Patients with High-Risk Neuroblastoma in Japan. Ann. Nucl. Med. 2020. [Google Scholar] [CrossRef]
- Hasse-Lazar, K.; Krajewska, J.; Paliczka-Cieślik, E.; Jurecka-Lubieniecka, B.; Michalik, B.; Handkiewicz-Junak, D.; Roskosz, J.; Jarzab, B. 131I-MIBG Therapy in the Treatment of Pheochromocytoma in Children—Own Experiences. Endokrynol. Pol. 2008, 59, 235–240. [Google Scholar]
- Gains, J.E.; Bomanji, J.B.; Fersht, N.L.; Sullivan, T.; D’Souza, D.; Sullivan, K.P.; Aldridge, M.; Waddington, W.; Gaze, M.N. 177Lu-DOTATATE Molecular Radiotherapy for Childhood Neuroblastoma. J. Nucl. Med. 2011, 52, 1041–1047. [Google Scholar] [CrossRef] [Green Version]
- Kong, G.; Hofman, M.S.; Murray, W.K.; Wilson, S.; Wood, P.; Downie, P.; Super, L.; Hogg, A.; Eu, P.; Hicks, R.J. Initial Experience with Gallium-68DOTA-Octreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients with Refractory Metastatic Neuroblastoma. J. Pediatr. Hematol. Oncol. 2016, 38, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Menda, Y.; O’Dorisio, M.S.; Kao, S.; Khanna, G.; Michael, S.; Connolly, M.; Babich, J.; O’Dorisio, T.; Bushnell, D.; Madsen, M. Phase I Trial of 90Y-DOTATOC Therapy in Children and Young Adults with Refractory Solid Tumors That Express Somatostatin Receptors. J. Nucl. Med. 2010, 51, 1524–1531. [Google Scholar] [CrossRef] [Green Version]
- Jansen, M.H.; Veldhuijzen van Zanten, S.E.M.; van Vuurden, D.G.; Huisman, M.C.; Vugts, D.J.; Hoekstra, O.S.; van Dongen, G.A.; Kaspers, G.J.L. Molecular Drug Imaging: 89Zr-Bevacizumab PET in Children with Diffuse Intrinsic Pontine Glioma. J. Nucl. Med. 2017, 58, 711–716. [Google Scholar] [CrossRef] [Green Version]
- Veldhuijzen van Zanten, S.E.M.; Sewing, A.C.P.; Van Lingen, A.; Hoekstra, O.S.; Pieter Wesseling, P.; Meel, M.H.; Van Vuurden, D.G.; Gertjan, J.L.; Kaspers, G.J.L.; Hulleman, E.; et al. Multiregional Tumor Drug-Uptake Imaging by PET and Microvascular Morphology in End-Stage Diffuse Intrinsic Pontine Glioma. J. Nucl. Med. 2018, 59, 612–615. [Google Scholar] [CrossRef] [Green Version]
- Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; et al. Convection-enhanced Delivery for Diffuse Intrinsic Pontine Glioma: A Single-Centre, Dose-Escalation, Phase 1 Trial. Lancet Oncol. 2018, 19, 1040–1050. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Li, D.; Niu, G.; Lang, L.; Li, F.; Liu, Y.; Zhu, Z.; Chen, X. 68Ga-NOTA-Aca-BBN(7-14) PET Imaging of GRPR in Children with Optic Pathway Glioma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2152–2162. [Google Scholar] [CrossRef]
- Kramer, K.; Pandit-Taskar, N.; Humm, J.L.; Zanzonico, P.B.; Haque, S.; Dunkel, I.J.; Wolden, S.L.; Donzelli, M.; Goldman, D.A.; Lewis, J.S.; et al. A Phase II Study of Radioimmunotherapy with Intraventricular 131I-3F8 for Medulloblastoma. Pediatr. Blood Cancer 2018, 65. [Google Scholar] [CrossRef]
- Bailey, K.; Pandit-Taskar, N.; Humm, J.L.; Zanzonico, P.; Gilheeney, S.; Cheung, N.K.V.; Kramer, K. Targeted Radioimmunotherapy for Embryonal Tumor with Multilayered Rosettes. J. Neurooncol. 2019, 143, 101–106. [Google Scholar] [CrossRef]
- Kramer, K.; Pandit-Taskar, N.; Zanzonico, P.; Wolden, S.L.; Humm, J.L.; DeSelm, C.; Souweidane, M.M.; Lewis, J.S.; Cheung, N.K.V. Low Incidence of Radionecrosis in Children Treated with Conventional Radiation Therapy and Intrathecal Radioimmunotherapy. J. Neurooncol. 2015, 123, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Zanzonico, P.; Donzelli, M.; Lyashchenko, S.K.; Haque, S.; Thakur, S.B.; Cheung, N.K.V.; et al. A phase I study of convection-enhanced delivery of 124I-8H9 radio-labeled monoclonal antibody in children with diffuse intrinsic pontine glioma: An update with dose-response assessment. J. Clin. Oncol. 2019, 37 (Suppl. 15), 2008. [Google Scholar] [CrossRef]
- Bander, E.D.; Karima Tizi, K.; Wembacher-Schroeder, E.; Thomson, R.; Donzelli, M.; Vasconcellos, E.; Souweidane, M.M. Deformational Changes after Convection-Enhanced Delivery in the Pediatric Brainstem. Neurosurg Focus 2020, 48, E3. [Google Scholar] [CrossRef] [Green Version]
- Cougnenc, O.; Defachelles, A.S.; Carpentier, P.; Lervat, C.; Clisant, S.; Oudoux, A.; Gauthier, H.K. High-Dose 131i-Mibg Therapies in Children: Feasibility, Patient Dosimetry and Radiation Exposure to Workers and Family Caregivers. Radiat. Prot. Dosim. 2017, 173, 395–404. [Google Scholar] [CrossRef]
- DuBois, S.G.; Susan Groshen, S.; Park, J.R.; Haas-Kogan, D.A.; Yang, X.; Geier, E.; Chen, E.; Giacomini, K.; Weiss, B.; Cohn, S.L.; et al. Phase I Study of Vorinostat as a Radiation Sensitizer with 131I-Metaiodobenzylguanidine (131I-MIBG) for Patients with Relapsed or Refractory Neuroblastoma. Clin. Cancer Res. 2015, 21, 2715–2721. [Google Scholar] [CrossRef] [Green Version]
- Hicks, R.J.; Jackson, P.; Kong, G.; Ware, R.E.; Hofman, M.S.; Pattison, D.A.; Akhurst, T.A.; Drummond, E.; Roselt, P.; Callahan, J.; et al. 64Cu-SARTATE PET Imaging of Patients with Neuroendocrine Tumors Demonstrates High Tumor Uptake and Retention, Potentially Allowing Prospective Dosimetry for Peptide Receptor Radionuclide Therapy. J. Nucl. Med. 2019, 60, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Kortylewicz, Z.P.; Coulter, D.W.; Han, G.; Baranowska-Kortylewicz, J. Radiolabeled (R)-(–)-5-iodo-3′-O-[2-(ε-guanidinohexanoyl)-2-phenylacetyl]-2′-deoxyuridine: A new theranostic for neuroblastoma. J. Labelled Comp. Radiopharm. 2020. [Google Scholar] [CrossRef]
- Yao, L.; Wang, J.; Jiang, Y.; Li, J.; Lin, L.; Ran, W.; Liu, C. Permanent Interstitial 125I Seed Implantation as a Salvage Therapy for Pediatric Recurrent or Metastatic Soft Tissue Sarcoma after Multidisciplinary Treatment. World J. Surg Oncol. 2015, 13, 335. [Google Scholar] [CrossRef] [Green Version]
- Swift, C.C.; Eklund, M.J.; Kraveka, J.M.; Alazraki, A.L. Updates in Diagnosis, Management, and Treatment of Neuroblastoma. Radiographics 2018, 38, 566–580. [Google Scholar] [CrossRef]
- Vik, T.A.; Pfluger, T.; Kadota, R.; Castel, V.; Tulchinsky, M.; Alonso Farto, J.C.; Heiba, S.; Serafini, A.; Tumeh, S.; Khutoryansky, N.; et al. 123I-mIBG Scintigraphy in Patients with Known or Suspected Neuroblastoma: Results from a Prospective Multicenter Trial. Pediatr. Blood Cancer 2009, 52, 784–790. [Google Scholar] [CrossRef]
- George, S.L.; Falzone, N.; Chittenden, S.; Kirk, S.J.; Lancaster, D.; Vaidya, S.J.; Mandeville, H.; Saran, F.; Pearson, A.D.J.; Du, Y.; et al. Individualized 131I-mIBG Therapy in the Management of Refractory and Relapsed Neuroblastoma. Nucl. Med. Commun. 2016, 37, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Matthay, K.K.; De Santes, K.; Hasegawa, B.; Huberty, J.; Hattner, R.S.; Ablin, A.; Reynolds, C.P.; Seeger, R.C.; Weinberg, V.K.; Price, D. Phase I Dose Escalation of 131I-metaiodobenzylguanidine with Autologous Bone Marrow Support in Refractory Neuroblastoma. J. Clin. Oncol. 1998, 16, 229–236. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Tornesello, A.; Diociaiuti, L.; Pession, A.; Prete, A.; Rufini, V.; Troncone, L.; Mastrangelo, R. Treatment of Advanced Neuroblastoma: Feasibility and Therapeutic Potential of a Novel Approach Combining 131-I-MIBG and Multiple Drug Chemotherapy. Br. J. Cancer 2001, 84, 460–464. [Google Scholar] [CrossRef] [Green Version]
- Mastrangelo, S.; Rufini, V.; Ruggiero, A.; Di Giannatale, A.; Riccardi, R. Treatment of Advanced Neuroblastoma in Children Over 1 Year of Age: The Critical Role of 131I-metaiodobenzylguanidine Combined with Chemotherapy in a Rapid Induction Regimen. Pediatr. Blood Cancer 2011, 56, 1032–1040. [Google Scholar] [CrossRef]
- Bholah, R.; Bunchman, T.E. Review of Pediatric Pheochromocytoma and Paraganglioma. Front. Pediatr. 2017, 5, 155. [Google Scholar] [CrossRef] [Green Version]
- Filippi, L.; Benedetti Valentini, F.; Gossetti, B.; Gossetti, F.; De Vincentis, G.; Scopinaro, F.; Massa, R. Intraoperative Gamma Probe Detection of Head and Neck Paragangliomas with 111In-pentetreotide: A Pilot Study. Tumori 2005, 91, 173–176. [Google Scholar] [CrossRef]
- Vicha, A.; Musil, Z.; Pacak, K. Genetics of Pheochromocytoma and Paraganglioma Syndromes: New Advances and Future Treatment Options. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Abrams, H.L.; Siegelman, S.S.; Adams, D.F.; Sanders, R.; Finberg, H.J.; Hessel, S.J.; McNeil, B.J. Computed Tomography versus Ultrasound of the Adrenal Gland: A Prospective Study. Radiology 1982, 143, 121–128. [Google Scholar] [CrossRef]
- Pacak, K.; Linehan, W.M.; Eisenhofer, G.; Walther, M.M.; Goldstein, D.S. Recent Advances in Genetics, Diagnosis, Localization, and Treatment of Pheochromocytoma. Ann. Intern. Med. 2001, 134, 315–329. [Google Scholar] [CrossRef]
- Barnett, F. Somatostatin and Somatostatin Receptor Physiology. Endocrine 2003, 20, 255–264. [Google Scholar] [CrossRef]
- Mizutani, G.; Nakanishi, Y.; Watanabe, N.; Honma, T.; Obana, Y.; Seki, T.; Ohni, S.; Nemoto, N. Expression of Somatostatin Receptor (SSTR) Subtypes (SSTR-1, 2A, 3, 4 and 5) in Neuroendocrine Tumors Using Real-time RT-PCR Method and Immunohistochemistry. Acta Histochem. Cytochem. 2012, 45, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, E.; Cleeren, F.; Bormans, G.; Deroose, C.M. Somatostatin receptor PET ligands—The next generation for clinical practice. Am. J. Nucl. Med. Mol. Imaging. 2018, 8, 311–331. [Google Scholar]
- Howell, D.L.; O’Dorisio, M.S. Management of Neuroendocrine Tumors in Children, Adolescents, and Young Adults. J. Pediatr. Hematol. Oncol. 2012, 34 (Suppl. 2), S64–S68. [Google Scholar] [CrossRef]
- Navalkele, P.; O’Dorisio, M.S.; O’Dorisio, T.M.; Zamba, G.K.D.; Lynch, C.F. Incidence, Survival, and Prevalence of Neuroendocrine Tumors versus Neuroblastoma in Children and Young Adults: Nine Standard SEER Registries, 1975–2006. Pediatr. Blood Cancer 2011, 56, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- And EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Udaka, Y.T.; Packer, R.J. Pediatric Brain Tumors. Neurol. Clin. 2018, 36, 533–556. [Google Scholar] [CrossRef]
- Kilday, J.; Bartels, U.K.; Bouffet, E. Targeted Therapy in Pediatric Low-Grade Glioma. Curr. Neurol. Neurosci. Rep. 2014, 14, 441. [Google Scholar] [CrossRef]
- Braunstein, S.; Raleigh, D.; Bindra, R.; Mueller, S.; Haas-Kogan, D. Pediatric High-Grade Glioma: Current Molecular Landscape and Therapeutic Approaches. J. Neurooncol. 2017, 134, 541–549. [Google Scholar] [CrossRef]
- Chiaravalloti, A.; Filippi, L.; Ricci, M.; Cimini, A.; Schillaci, O. Molecular Imaging in Pediatric Brain Tumors. Cancers 2019, 11, 1853. [Google Scholar] [CrossRef] [Green Version]
- Kaszper, E.; Hanzély, Z.; Szende, B.; Dabasi, G.; Garami, M.; Schuler, D.; Hauser, P. Examination of Somatostatin Receptor Expression in Recurrent Childhood Medulloblastomas. Magy. Onkol. 2008, 52, 351–355. [Google Scholar] [CrossRef]
- Wagner, L.; Turpin, B.; Nagarajan, R.; Weiss, B.; Cripe, T.; Geller, J. Pilot Study of Vincristine, Oral Irinotecan, and Temozolomide (VOIT Regimen) Combined with Bevacizumab in Pediatric Patients with Recurrent Solid Tumors or Brain Tumors. Pediatr. Blood Cancer 2013, 60, 1447–1451. [Google Scholar] [CrossRef]
- Luther, N.; Zhou, Z.; Zanzonico, P.; Nai-Kong Cheung, N.K.; Humm, J.; Edgar, M.A.; Souweidane, M.M. The Potential of Theragnostic 124I-8H9 Convection-Enhanced Delivery in Diffuse Intrinsic Pontine Glioma. Neuro Oncol. 2014, 16, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Rasool, N.; Odel, J.G.; Kazim, M. Optic Pathway Glioma of Childhood. Curr. Opin. Ophthalmol. 2017, 28, 289–295. [Google Scholar] [CrossRef]
- Maina, T.; Nock, B.A.; Kulkarni, H.; Singh, A.; Baum, R.P. Theranostic Prospects of Gastrin-Releasing Peptide Receptor-Radioantagonists in Oncology. PET Clin. 2017, 12, 297–309. [Google Scholar] [CrossRef]
- Tennvall, J.; Fischer, M.; Bischof Delaloye, A.; Bombardieri, E.; Bodei, L.; Giammarile, F.; Lassmann, M.; Oyen, W.; Brans, B. Radio-Immunotherapy for B-cell Lymphoma with 90Y-radiolabelled Ibritumomab Tiuxetan (Zevalin). Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 616–622. [Google Scholar] [CrossRef]
- Dispenzieri, A.; D’Souza, A.; Gertz, M.A.; Laumann, K.; Wiseman, G.; Lacy, M.Q.; LaPlant, B.; Buadi, F.; Hayman, S.R.; Kumar, S.K.; et al. A phase 1 trial of 90Y-Zevalin radioimmunotherapy with autologous stem cell transplant for multiple myeloma. Bone Marrow Transplant. 2017, 52, 1372–1377. [Google Scholar] [CrossRef]
- Treuner, J.; Klingebiel, T.; Feine, U.; Buck, J.; Bruchelt, G.; Dopfer, R.; Girgert, R.; Müller-Schauenburg, W.; Meinke, J.; Kaiser, W. Clinical Experiences in the Treatment of Neuroblastoma with 131I-metaiodobenzylguanidine. Pediatr. Hematol. Oncol. 1986, 3, 205–216. [Google Scholar] [CrossRef]
- Beauregard, J.M.; Hofman, M.S.; Kong, G.; Hicks, R.J. The Tumour Sink Effect on the Biodistribution of 68Ga-DOTA-octreotate: Implications for Peptide Receptor Radionuclide Therapy. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 50–56. [Google Scholar] [CrossRef]
- Imhof, A.; Brunner, P.; Marincek, N.; Briel, M.; Schindler, C.; Rasch, H.; Mäcke, H.R.; Rochlitz, C.; Müller-Brand, J.; Walter, M.A. Response, Survival, and Long-Term Toxicity after Therapy with the Radiolabeled Somatostatin Analogue [90Y-DOTA]-TOC in Metastasized Neuroendocrine Cancers. J. Clin. Oncol. 2011, 29, 2416–2423. [Google Scholar] [CrossRef]
- Menda, Y.; Madsen, M.T.; O’Dorisio, T.M.; Sunderland, J.J.; Leonard Watkins, G.; Dillon, J.S.; Mott, S.L.; Schultz, M.K.; Zamba, G.K.D.; Bushnell, D.L.; et al. 90Y-DOTATOC Dosimetry-Based Personalized Peptide Receptor Radionuclide Therapy. J. Nucl. Med. 2018, 59, 1692–1698. [Google Scholar] [CrossRef] [Green Version]
- Gutfilen, B.; Al Souza, S.; Valentini, G. Copper-64: A Real Theranostic Agent. Drug Des. Devel. Ther. 2018, 12, 3235–3245. [Google Scholar] [CrossRef] [Green Version]
- Marino, R.; Baiu, D.C.; Bhattacharya, S.; Titz, B.; Hebron, E.; Menapace, B.D.; Singhal, S.; Eickhoff, J.C.; Asimakopoulos, F.; Weichert, J.P.; et al. Tumor-selective anti-cancer effects of the synthetic alkyl phosphocholine analog CLR1404 in neuroblastoma. Am. J. Cancer Res. 2015, 5, 3422–3435. [Google Scholar]
- Kramer, K.; Donzelli, M.; Nwora, E.; Pandit-Taskar, N. Assessing Cerebrospinal Fluid Flow Dynamics in Pediatric Patients with Central Nervous System Tumors Treated with Intraventricular Radioimmunotherapy. J. Nucl. Med. 2020. [Google Scholar] [CrossRef]
- Kluiver, T.A.; Alieva, M.; Van Vuurden, D.G.; Wehrens, E.J.; Rios, A.C. Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Front. Oncol. 2020, 10, 92. [Google Scholar] [CrossRef]
- Bredalu, A.L.; Dixit, S.; Chen, C.; Broome, A.M. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma. Curr. Neuropharmacol. 2017, 15, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Aihara, Y.; Aihara, Y.; Chiba, K.; Eguchi, S.; Amano, K.; Kawamata, T. Pediatric Optic Pathway/Hypothalamic Glioma. Neurol. Med. Chir. 2018, 58, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors | Year | Radiopharmaceutical | Setting | Population | Comments |
---|---|---|---|---|---|
[14] Baum R.P. et al. | 2018 | 90Y -based peptide receptor radionuclide therapy (PRRT); 177Lu-based PRRT | PRRT | 1048 adult patients with somatostatin receptor-expressing neuroendocrine neoplasms | PRRT is adequate and overall survival is favorable in patients with neuroendocrine tumors by highly sensitive 68Ga somatostatin receptor positron emission tomography/computed tomography (PET/CT). |
[15] Suh J.K. et al. | 2020 | 131I-Metaiodobenzylguanidin (131I-MIBG) | 131I-MIBG therapy in neuroblastoma | 18 patients with neuroblastoma | Feasibility of 131I MIBG therapy in combination with high dose chemotherapy and autologous stem transplantation. |
[16] Kayano D. et al. | 2020 | 131I-MIBG | 131I-MIBG therapy in neuroblastoma | 20 patients with neuroblastoma | Safety and feasibility of high dose 131I-MIBG therapy in pediatric patients with neuroblastoma. |
[17] Hasse-Lazar K. et al. | 2008 | 131I-MIBG | 131I-MIBG therapy in pheochromocytoma | Three patients with pheochromocytoma | Effectiveness of 131I-MIBG treatment in pediatric patients with pheochromocytoma. |
[18] Gains J.E. et al. | 2011 | 177Lu-[tetraxetan-d-Phe1, Tyr3]-octreotate (177Lu-DOTATATE) | PRRT in neuroblastoma | Eight pediatric patients with high-risk neuroblastoma | 68Ga- DOTATATE can be used to image children with neuroblastoma and identify those suitable for molecular radiotherapy with 177Lu-DOTATATE. Safe and feasible in children with relapsed or primary refractory high-risk neuroblastoma. |
[19] Kong G. et al. | 2016 | 177Lu-DOTATATE; 111In-DOTATATE; 90Y-DOTATATE | PRRT in neuroblastoma | Eight pediatric patients with high-risk neuroblastoma | Safety and feasibility of PRRT in children with refractory neuroblastoma. |
[20] Menda Y. et al. | 2010 | 90Y-68Ga-[tetraxetan-d-Phe1, Tyr3]-octreotide (90Y-DOTATOC) | PRRT in neuroblastoma, embryonal and astrocytic brain tumors, paraganglioma, neuroendocrine tumors | 17 pediatric and young adults (age, 2–24 years) patients with refractory solid tumors | Safety of 90Y-DOTATOC therapy in pediatric somatostatin receptor-positive malignancies. |
[21] Jansen M. H. et al. | 2017 | 89Zr- bevacizumab | Pre-therapy distribution assessment in diffuse intrinsic pontine glioma (DIPG) | Seven patients (4 boys; 6–17 years old) with DIPG | Tumor 89Zr-bevacizumab accumulation assessed by PET scanning may help in the selection of patients with the most excellent chance. |
[22] Veldhuijzen van Zanten S. E.M et al. | 2018 | 89Zr-bevacizumab | In vivo and ex vivo measure of metastasis samples | One patient (12 years old) with DIPG | In vivo 89Zr-bevacizumab PET serves to identify heterogeneous uptake between tumor lesions. |
[23] Souweidane M.M. et al. | 2018 | 124I-8H9 | Radioimmunotherapy and pre-therapy distribution assessment in DIPG | 28 pediatric patients (3–21 years old) with DIPG | PET-based dosimetry of the radiolabeled antibody 124I-8H9 validated the principle of using convection-enhanced delivery in the brain to achieve high intra-lesional dosing with negligible systemic exposure. |
[24] Zhang J. et al. | 2019 | 68Ga-NOTA-Aca-BBN(7-14) | Radioimmunotherapy and pre-therapy distribution assessment in optic glioma | Eight pediatric patients (5–14 years old) with suspicion of optic pathway glioma | Gastrin-releasing peptide receptor(GRPR)-targeted PET has the potential to provide imaging guidance. for further GRPR-targeted therapy in patients with Optic pathway glioma |
[25] Kramer K. et al. | 2018 | 131I-labeled 3F8 | Phase II clinical trial for intraventricular compartmental radioimmunotherapy in medulloblastoma | 43 pediatric patients with medulloblastoma | Safety and potential clinical applications of radioimmunotherapy with 131I-3F8 in patients with medulloblastoma. |
[26] Bailey K. et al. | 2019 | 131I-omburtamab (8H9) | Intraventricular compartmental radioimmunotherapy(cRIT) in embryonal tumor with multilayered rosettes | Three pediatric patients with embryonal tumor with multilayered rosettes | 131I-omburtamab appears safe with a favorable dosimetry therapeutic index. |
[27] Kramer K. et al. | 2015 | 131I-3F8; 131I-8H9 | cRIT in brain primary and secondary lesions | 94 pediatric patients with metastatic CNS neuroblastoma and medulloblastoma | Administration of cRIT may safely proceed in patients treated with conventional radiotherapy without appearing to increase the risk of radionecrosis. |
[28] Souweidane M.M. et al. | 2019 | 124I-8H9 | Convection-enhanced delivery (CED) and pre-therapy distribution assessment in pontine glioma | 37 pediatric patients with diffuse intrinsic pontine glioma | CED in the brain stem of children with DIPG who were previously irradiated is a safe therapeutic strategy. |
[29] Bander E.D. et al. | 2020 | CED and treatment-related volumetric alterations | 23 pediatric patients with diffuse intrinsic pontine glioma | CED infusion into the brainstem correlates with immediate but self-limited deformation changes in the pons. | |
[30] Cougnenc O. et al. | 2017 | 131I-MIBG | Theragnostics in neuroblastoma | 15 pediatric patients with neuroblastoma | Under strict radiation protection precautions, this study shows the feasibility of high-activity 131I -MIBG therapy in France. |
[31] DuBois S.G. et al. | 2015 | 131I-MIBG | Theragnostic and vorinostat combination in neuroblastoma | 27 children and Young adults | Vorinostat at 180 mg/m(2)/dose is tolerable with 18 mCi/kg MIBG. |
[32] Hicks R.J. et al. | 2019 | 64Cu-MeCOSar-Tyr3-octreotate (64Cu-SARTATE) | Somatostatin receptor imaging in neuroendocrine tumors | Ten patients with neuroendocrine tumors | Safety and effectiveness of 64Cu-SARTATE PET/CT imaging in patients with neuroendocrine tumors. Potential applications for 67Cu-SARTATE therapy. |
[33] Kortylewicz Z.P. et al. | 2020 | (R)-(-)-5-[125I]iodo-3’-O-[2-(ε-guanidinohexanoyl)-2-phenylacetyl]-2’-deoxyuridine (9, GPAID) | Theragnosticsin neuroblastoma in vivo and in vitro assessment in mice models | Mice models | The chemical structure accommodates therapeutic, as well as diagnostic radionuclides. Biological properties of GPAID suggest its significant potential as a novel theragnostic tracer for the management of neuroblastoma |
[34] Yao L. et al. | 2015 | 125I | Interstitial 125 Iseed-implantation in sarcoma | Ten patients with soft tissue sarcoma | Potential use and feasibility of interstitial 125I seed implantation therapy in pediatric patients with metastatic or recurrent sarcoma. |
Radiopharmaceutical | Molecular Target | Nuclear Medicine Applications |
---|---|---|
123I/131I MIBG | Norepinephrine transporters | Theragnostic applications in children with neuroblastoma. |
Radiolabeled somatostatin analogs | Somatostatin receptors | Theragnostic applications in children with neuroblastoma and brain tumors (especially medulloblastoma). |
89Zr-bevacizumab | Vascular endothelial growth factor (VEGF) | In pediatric patients with DIPG, 89Zr-bevacizumab PET may select patients with possible benefit from antiangiogenetic therapy. |
124I/131I-8H9 | B7-H3 | Theragnostic and radioimmunotherapy applications in children with brain tumors. |
131I-3F8 | GD2 | Radioimmunotherapy in pediatric patients with medulloblastoma. |
68Ga-NOTA-Aca-BBN | Gastrin-releasing peptide receptor (GRPR) | In children with optic pathway glioma, 68Ga-NOTA-Aca-BBN PET may select patients with possible benefit from GRPR targeted therapy. |
64Cu/67Cu-SARTATE | Somatostatin receptors | In children with neuroblastoma, it is providing the opportunity for personalized dosimetry. |
90Y-ibritumomab tiuxetan | CD20 | This radiolabeled antibody allows radioimmunotherapy applications in patients with low-grade Non-Hodgkin’s lymphoma (relapsed or refractory). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimini, A.; Ricci, M.; Chiaravalloti, A.; Filippi, L.; Schillaci, O. Theragnostic Aspects and Radioimmunotherapy in Pediatric Tumors. Int. J. Mol. Sci. 2020, 21, 3849. https://doi.org/10.3390/ijms21113849
Cimini A, Ricci M, Chiaravalloti A, Filippi L, Schillaci O. Theragnostic Aspects and Radioimmunotherapy in Pediatric Tumors. International Journal of Molecular Sciences. 2020; 21(11):3849. https://doi.org/10.3390/ijms21113849
Chicago/Turabian StyleCimini, Andrea, Maria Ricci, Agostino Chiaravalloti, Luca Filippi, and Orazio Schillaci. 2020. "Theragnostic Aspects and Radioimmunotherapy in Pediatric Tumors" International Journal of Molecular Sciences 21, no. 11: 3849. https://doi.org/10.3390/ijms21113849
APA StyleCimini, A., Ricci, M., Chiaravalloti, A., Filippi, L., & Schillaci, O. (2020). Theragnostic Aspects and Radioimmunotherapy in Pediatric Tumors. International Journal of Molecular Sciences, 21(11), 3849. https://doi.org/10.3390/ijms21113849