Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age
Abstract
:1. Introduction
2. Developmental Changes in Newborns
- Absorption. When the drug administration is by non-intravenous route, the absorption depends on various patient-related factors, due to functional maturation processes of organs and systems. If the drug is administered orally, its absorption depends on gastric emptying, gastric pH, intestinal motility, intestinal first pass metabolism and permeability [5]. Moreover, the composition of milk (formula, hydrolysate, or human milk) could influence gastric emptying, which is usually slower in neonates than in children [6]. Concomitant medications, such as proton pump inhibitors, may reduce or alter gastric pH [7]. Congenital defects, such as duodenal/ileocolic atresia or stenosis, and bowel diseases, such as necrotizing enterocolitis [8] associated with post-surgery short bowel syndrome, may alter the development of intestinal transporters (i.e., PEPT1) [9], further influencing the variability of drugs absorption.
- Distribution. The body composition is a key factor in drug distribution in individuals. Neonates, in particular preterm neonates, have body fat stores lower and total body water (TBW) higher than children and adults (Figure 1) [10,11]. These characteristics have a deep impact on the distribution volume of both lipophilic (lower distribution volume: e.g., diazepam and propofol) and hydrophilic (higher distribution volume: e.g., aminoglycosides and paracetamol) compounds in neonates. The protein binding of drugs also influences their distribution in the body. Compared to adults, neonates have lower concentrations of most plasma binding proteins (e.g., albumin, α1-acid glycoprotein, or plasma globulins). Furthermore, in newborns, an increase of concentrations of bilirubin and free fatty acids could be observed, and this can result in a competitive binding of the drugs to albumin [12,13].At birth, human serum albumin (HSA) concentrations are close to adult levels (75–80%), while α1-acid glycoprotein (AAG) is initially half the adult concentration: therefore, drug clearance in neonates seems to be higher for AAG-bound drugs (e.g., fentanyl and propranolol) than for HSA-bound drugs (e.g., beta-lactams and morphine) [14]. In particular, the low levels of albumin reduce the fraction of drugs strongly linked to albumin, causing the increase of the free fraction and therefore of the elimination of the drug. The low levels of α-1 acid glycoprotein cause an increase in apparent Vd and/or an increase in toxicity.Therefore, changes in body composition and in the ability to bind drugs with proteins, typical of the individual’s growth and maturation process, modify deeply the distribution of drugs in the body. Although the percentage of TBW does not change significantly after one year of age, a progressive decrease in extracellular water occurs from childhood to young adulthood, having a significant effect on the pharmacokinetics of drugs.
- Metabolism. The rapid maturation process of the neonatal liver affects many biotransformation functions. The enzymes expression varies, from the fetal and postnatal period to one year of age, when it reaches almost complete functional activity [15]. Enzymes responsible for drugs metabolism are divided into Phase I enzymes, which are involved with primary oxidation, reduction and hydrolysis processes, and Phase II enzymes, which are responsible for conjugation of drug compounds to allow excretion [16]. Most important Phase I enzymes belong to the cytochrome (CYP) 450 family (CYP1A2, CYP2D6, CYP2C9, CYP2C19, CYP3A4 and CYP2E1) [10,17]. Phase II enzymes include glucuronidation, sulfation, methylation and acetylation [10]. The hepatic expression of cytochrome enzymes is characterized by dynamic modifications and a marked interindividual difference, affecting the metabolism of many drugs and their efficacy [18].Although the liver is the major site of drug metabolism, the kidneys can also be involved, but data on developmental processes of renal microsomal systems are still lacking [19].
- Excretion. Drug excretion is usually via renal or hepatic routes. Preterm neonates prior to 36 weeks of gestation reveal a still ongoing nephrogenesis, which continues after birth [20]. Neonatal glomerular filtration rate (GFR) is low at birth and increases from 10–20 to 30 mL/min/1.73 m2 after two weeks. Levels of GFR (120 mL/min/1.73 m2) normally observed in adults are reached around two years of age [21]. Serum creatinine levels are elevated at birth (60–70 μmol/L), reflecting maternal values; GFR and the tubular reabsorption of creatinine are still low. Moreover, serum creatinine clearance (CrCl) increases with gestational age, especially in extremely low birth weight (ELBW) infants [22]. The age at which preterm infants reach renal function similar to that of term infant is poorly known. Low GFR delays drugs clearance, prolongs their half-lives and these effects are more pronounced in preterm infants [21]. Similar to renal excretion, the phenotypic variation in drugs hepatic metabolism and excretion also depends on constitutional, disease-related and genetic factors [23].
3. Sampling and Alternative Specimens
4. Drug Monitoring Methods
5. Excipients
6. TDM and Antibiotics
- (1)
- the fraction of time during which the free antibiotic concentration remains above the MIC (%fT > MIC);
- (2)
- the peak concentration of the drug within a well determined range (Cpeak/MIC);
- (3)
- the ratio between the exposure of a given antibiotic (AUC, area under the curve) and the pathogen MIC (AUC/MIC).
7. TDM and Antifungals
8. TDM and Antiepileptic Drugs
9. TDM in Specific Populations
9.1. Neonates under Therapeutic Hypothermia
9.2. Preterm Infants
9.3. Anticancer Drugs
9.4. Extracorporeal Life Support
10. Potential Future Indications
Author Contributions
Funding
Conflicts of Interest
Abbreviations
%fT > MIC | Fraction of time above the MIC |
ADIs | Accepted daily intakes |
AEDs | Antiepileptic drugs |
AG | Aminoglycosides |
AUC | Area under the curve |
BSA | Body surface area |
CATCH-22 | Paradoxical situation (the term was coined by Joseph Heller for his novel Catch-22) |
CBZ | Carbamazepine |
Cl | Clearance |
CMS | Capillary microsampling |
CONS | Coagulase negative staphylococci |
Cpeak | Drug peak concentration |
CrCl | Creatinine clearance |
Ctrough | Trough concentration |
CYP | Cytochrome |
DBS | Dried blood spot |
ELBW | Extremely Low Birth Weight |
ESNEE | European Study of Neonatal Exposure to Excipients |
F | Bioavailability |
GA | Gestational Age |
GFR | Glomerular filtration rate |
GC | Gas chromatography |
HIE | Hypoxic-ischemic encephalopathy |
LBW | Low Birth Weight |
LC | Liquid chromatography |
LC-MS/MS | Mass spectrometry coupled with high performance liquid chromatography |
LEV | Levetiracetam |
LID | Lidocaine |
MIC | Minimal inhibitory concentration |
MID | Midazolam |
MRSA | Methicillin Resistant Staphylococcus aureus |
MS | Mass spectrometry |
NICUs | Neonatal intensive care units |
PB | Phenobarbital |
PD | Pharmacodynamics |
PHT | Phenytoin |
PK | Pharmacokinetics |
PMA | Postmenstrual age |
STEP | Safety and toxicity of excipients for paediatrics |
TDM | Therapeutic drug monitoring |
TH | Therapeutic hypothermia |
VAMS | Volumetric absorptive microsampling |
Vd | Volume of distribution |
VISA | Vancomycin-Intermediate Staphylococcus aureus |
References
- Van Donge, T.; Bielicki, J.A.; van den Anker, J.; Pfister, M. Key Components for Antibiotic Dose Optimization of Sepsis in Neonates and Infants. Front Pediatr. 2018, 6, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mian, P.; Flint, R.B.; Tibboel, D.; van den Anker, J.N.; Allegaert, K.; Koch, B. Therapeutic Drug Monitoring in Neonates: What Makes them Unique? Pharm. Des. 2017, 23, 5790–5800. [Google Scholar] [CrossRef] [PubMed]
- Garg, U.; Frazee, C. Therapeutic Drug Monitoring in infants and Children. In Clinical Challenges in Therapeutic Drug Monitoring; Elsevier: Amsterdam, The Netherlands, 2016; pp. 165–184. [Google Scholar]
- Dotta, A.; Chukhlantseva, N. Ontogeny and drug metabolism in newborns. J. Matern. Neonatal Med. 2012, 25, 75–76. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.; Kulo, A.; de N Hoon, J.; Allegaert, K. Pharmacokinetics of Drugs in Neonates: Pattern Recognition Beyond Compound Specific Observations. Curr. Pharm. Des. 2012, 18, 3119–3146. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, M.E.; Di Mauro, A.; Montagna, O.; Fanelli, M.; Capozza, M.; Wampler, J.L.; Cooper, T.; Laforgia, N. Faster Gastric Emptying Is Unrelated to Feeding Success in Preterm Infants: Randomized Controlled Trial. Nutrients 2019, 11, 1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostas, S.E. Acid Suppressant Medications in the Neonatal Intensive Care Unit: Strategies for Appropriate Use. J. Perinat. Neonatal Nurs. 2017, 31, 299–302. [Google Scholar] [CrossRef]
- Severijnen, R.; Bayat, N.; Bakker, H.; Tolboom, J.; Bongaerts, G. Enteral drug absorption in patients with short small bowel: A review. Clin. Pharm. 2004, 43, 951–962. [Google Scholar] [CrossRef]
- Mooij, M.G.; de Koning, B.E.; Lindenbergh-Kortleve, D.J.; Simons-Oosterhuis, Y.; van Groen, B.D.; Tibboel, D.; Samsom, J.N.; de Wildt, S.N. Human intestinal PEPT1 transporter expression and localization in preterm and term infants. Drug Metab. Dispos. 2016, 44, 1014–1019. [Google Scholar] [CrossRef]
- O’Hara, K.; Wright, I.M.R.; Schneider, J.J.; Jones, A.L.; Martin, J.H. Pharmacokinetics in neonatal prescribing: Evidence base, paradigms and the future. Br. J. Clin. Pharm. 2015, 80, 1281–1288. [Google Scholar] [CrossRef] [Green Version]
- Rodieux, F.; Wilbaux, M.; Van den Anker, J.N.; Pfister, M. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin. Pharmacokinet. 2015, 54, 1183–1204. [Google Scholar] [CrossRef] [Green Version]
- Van den Anker, J.; Reed, M.D.; Allegaert, K.; Kearns, G.L. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J. Clin. Pharmacol. 2018, 58, S10–S25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggiero, A.; Ariano, A.; Triarico, S.; Capozza, M.A.; Ferrara, P.; Attinà, G. Neonatal pharmacology and clinical implications. Drugs Context 2019, 14, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristea, S.; Krekels, E.H.J.; Allegaert, K.; Knibbe, C.A.J. The Predictive Value of Glomerular Filtration Rate - Based Scaling of Pediatric Clearance and Doses for Drugs Eliminated by Glomerular Filtration with Varying Protein - Binding Properties. Clin. Pharm. 2020, 1–11. [Google Scholar] [CrossRef]
- Grijalva, J.; Vakili, K. Neonatal liver physiology. Semin. Pediatr. Surg. 2013, 22, 185–189. [Google Scholar] [CrossRef]
- Yaffe, S.J.; Aranda, J.V. Neonatal and Pediatric Pharmacology: Therapeutic Principles in Practice, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Allegaert, K.; Verbesselt, R.; Naulaers, G.; van den Anker, J.N.; Rayyan, M.; Debeer, A.; de Hoon, J. Developmental pharmacology: Neonates are not just small adults. Acta. Clin. Belg. 2008, 63, 16–24. [Google Scholar] [CrossRef]
- Fanni, D.; Ambu, R.; Gerosa, C.; Nemolato, S.; Castagnola, M.; Van Eyken, P.; Faa, G.; Fanos, V. Cytochrome P450 genetic polymorphism in neonatal drug metabolism: Role and practical consequences towards a new drug culture in neonatology. Int. J. Immunopathol. Pharm. 2014, 27, 5–13. [Google Scholar] [CrossRef]
- Allegaert, K.; van den Anker, J.; Naulaers, G.; de Hoon, J. Determinants of Drug Metabolism in Early Neonatal Life. Curr. Clin. Pharmacol. 2008, 2, 23–29. [Google Scholar] [CrossRef]
- Boubred, F.; Vendemmia, M.; Garcia-Meric, P.; Buffat, C.; Millet, V.; Simeoni, U. Effects of maternally administered drugs on the fetal and neonatal kidney. Drug Saf. 2006, 29, 397–419. [Google Scholar] [CrossRef]
- Ligi, I.; Boubred, F.; Grandvuillemin, I.; Simeoni, U. The Neonatal Kidney: Implications for Drug Metabolism and Elimination. Curr. Drug Metab. 2013, 14, 174–177. [Google Scholar]
- Gallini, F.; Maggio, L.; Romagnoli, C.; Marrocco, G.; Tortorolo, G. Progression of renal function in preterm neonates with gestational age ≤32 weeks. Pediatr. Nephrol. 2000, 15, 119–124. [Google Scholar] [CrossRef]
- Allegaert, K.; Van de Velde, M.; Van den Anker, J. Neonatal Clinical Pharmacology. Pediatr. Anaesth. 2014, 24, 1–14. [Google Scholar] [CrossRef]
- De Cock, R.F.W.; Piana, C.; Krekels, E.H.; Danhof, M.; Allegaert, K.; Knibbe, C.A. The role of population PK-PD modelling in paediatric clinical research. Eur. J. Clin. Pharmacol. 2011, 67, S5–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.J.; Wang, L.Y.; Tan, Z.R.; Zhou, H.H.; Zhan, X.; Yin, J.Y. Mass Spectrometry-based Personalized Drug Therapy. Mass Spectrom. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Laverdiere, M.; Bow, E.J.; Rotstein, C.; Autmizguine, J.; Broady, R.; Garber, G.; Haider, S.; Hussaini, T.; Husain, S.; Ovetchkine, P.; et al. Therapeutic drug monitoring for triazoles: A needs assessment review and recommendations from a Canadian perspective. Can. J. Infect. Dis. Med. Microbiol. 2014, 25, 327–344. [Google Scholar] [CrossRef]
- Pauwels, S.; Allegaert, K. Therapeutic drug monitoring in neonates. Arch. Dis. Child. 2016, 101, 377–381. [Google Scholar] [CrossRef]
- European Medicines Agency-Committee for Medicinal Products for Human Use (CHMP) and Paediatric Committee (PDCO). GUIDELINE on the Investigation of Medicinal Products in the Term and Preterm NEONATE. 2009. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-investigation-medicinal-products-term-preterm-neonate-first-version_en.pdf (accessed on 16 July 2020).
- Antunes, M.V.; Charão, M.F.; Linden, R. Dried blood spots analysis with mass spectrometry: Potentials and pitfalls in therapeutic drug monitoring. Clin. Biochem. 2016, 49, 1035–1046. [Google Scholar] [CrossRef]
- Barco, S.; Risso, F.M.; Bruschettini, M.; Bandettini, R.; Ramenghi, L.; Tripodi, G.; Castagnola, E.; Cangemi, G. A validated LC–MS/MS method for the quantification of piperacillin tazobactam on dried blood spot. Bioanalysis 2014, 6, 2795–2802. [Google Scholar] [CrossRef]
- Bruschettini, M.; Barco, S.; Romantsik, O.; Risso, F.; Gennai, I.; Chinea, B.; Ramenghi, L.A.; Tripodi, G.; Cangemi, G. DBS-LC-MS/MS assay for caffeine: Validation and neonatal application. Bioanalysis 2016, 8, 1893–1902. [Google Scholar] [CrossRef]
- Patel, P.; Tanna, S.; Mulla, H.; Kairamkonda, V.; Pandya, H.; Lawson, G. Dexamethasone quantification in dried blood spot samples using LC–MS: The potential for application to neonatal pharmacokinetic studies. J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2010, 878, 3277–3282. [Google Scholar] [CrossRef]
- Rower, J.E.; Anderson, D.J.; Sherwin, C.M.; Reilly, C.A.; Ballard, P.L.; McEvoy, C.T.; Wilkins, D.G. Development and validation of an assay for quantifying budesonide in dried blood spots collected from extremely low gestational age neonates. J. Pharm. Biomed. Anal. 2019, 167, 7–14. [Google Scholar] [CrossRef]
- Lawson, A.; Bernstone, L.; Hall, S. Newborn screening blood spot analysis in the UK: Influence of spot size, punch location and haematocrit. J. Med. Screen. 2016, 23, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Velghe, S.; Delahaye, L.; Stove, C.P. Is the hematocrit still an issue in quantitative dried blood spot analysis? Pharm. Biomed. Anal. 2019, 163, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Raje, A.A.; Mahajan, V.; Pathade, V.V.; Joshi, K.; Gavali, A.; Gaur, A.; Kandikere, V. Capillary Microsampling in Mice: Effective Way to Move From Sparse Sampling to Serial Sampling in Pharmacokinetics Profiling. Xenobiotica 2020, 50, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Leuthold, L.A.; Heudi, O.; Déglon, J.; Raccuglia, M.; Augsburger, M.; Picard, F.; Kretz, O.; Thomas, A. New Microfluidic-Based Sampling Procedure for Overcoming the Hematocrit Problem Associated With Dried Blood Spot Analysis. Anal. Chem. 2015, 87, 2068–2071. [Google Scholar] [CrossRef]
- Auriti, C.; Falcone, M.; Ronchetti, M.P.; Goffredo, B.M.; Cairoli, S.; Crisafulli, R.; Piersigilli, F.; Corsetti, T.; Dotta, A.; Pai, M.P. High-Dose Micafungin for Preterm Neonates and Infants with Invasive and Central Nervous System Candidiasis. Antimicrob. Agents Chemother. 2016, 60, 7333–7339. [Google Scholar] [CrossRef] [Green Version]
- Cairoli, S.; Simeoli, R.; Tarchi, M.; Dionisi, M.; Vitale, A.; Perioli, L.; Dionisi-Vici, C.; Goffredo, B.M. A new HPLC-DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed. Chromatogr. 2020, 12, e4880. [Google Scholar] [CrossRef]
- Denniff, P.; Spooner, N. Volumetric Absorptive Microsampling: A Dried Sample Collection Technique for Quantitative Bioanalysis. Anal. Chem. 2014, 86, 8489–8495. [Google Scholar] [CrossRef]
- Velghe, S.; Delahaye, L.; Ogwang, R.; Hotterbeekx, A.; Colebunders, R.; Mandro, M.; Idro, R.; Stove, C.P. Dried Blood Microsampling-Based Therapeutic Drug Monitoring of Antiepileptic Drugs in Children With Nodding Syndrome and Epilepsy in Uganda and the Democratic Republic of the Congo. Ther. Drug Monit. 2020, 42, 481–490. [Google Scholar] [CrossRef]
- Kovač, J.; Panic, G.; Neodo, A.; Meister, I.; Coulibaly, J.T.; Schulz, J.D.; Keiser, J. Evaluation of a novel micro-sampling device, MitraTM, in comparison to dried blood spots, for analysis of praziquantel in Schistosoma haematobium-infected children in rural Côte d’Ivoire. J. Pharm. Biomed. Anal. 2018, 151, 339–346. [Google Scholar] [CrossRef]
- Abu-Rabie, P.; Neupane, B.; Spooner, N.; Rudge, J.; Denniff, P.; Mulla, H.; Pandya, H. Validation of methods for determining pediatric midazolam using wet whole blood and volumetric absorptive microsampling. Bioanalysis 2019, 11, 1737–1754. [Google Scholar] [CrossRef]
- Moorthy, G.S.; Vedar, C.; Zane, N.R.; Downes, K.J.; Prodell, J.L.; DiLiberto, M.A.; Zuppa, A.F. Development and Validation of a Volumetric Absorptive Microsampling- Liquid Chromatography Mass Spectrometry Method for the Analysis of Cefepime in Human Whole Blood: Application to Pediatric Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2020, 179, 113002. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.A.; Ahmed, A.S.; Durand, R.; Tran, S.D. Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofacial Res. 2015, 6, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, L.; Sinclair, M.; Reid, B.; Burnett, K.; Callan, B. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. Br. J. Clin. Pharmacol. 2018, 84, 1089–1108. [Google Scholar] [CrossRef] [PubMed]
- Dobson, N.R.; Liu, X.; Rhein, L.M.; Darnall, R.A.; Corwin, M.J.; McEntire, B.L.; Ward, R.M.; James, L.P.; Sherwin, C.M.; Heeren, T.C.; et al. Salivary caffeine concentrations are comparable to plasma concentrations in preterm infants receiving extended caffeine therapy. Br. J. Clin. Pharmacol. 2016, 82, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Li, R.R.; Sheng, X.Y.; Ma, L.Y.; Yao, H.X.; Cai, L.X.; Chen, C.Y.; Zhu, S.N.; Zhou, Y.; Wu, Y.; Cui, Y.M. Saliva and Plasma Monohydroxycarbamazepine Concentrations in Pediatric Patients With Epilepsy. Ther Drug Monit. 2016, 38, 365–370. [Google Scholar] [CrossRef]
- Dasgupta, A.; Krasowski, M. Therapeutic drug monitoring using alternative specimens. In Therapeutic Drug Monitoring Data; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Avataneo, V.; Avolio, A.D.; Cusato, J.; Cantù, M. LC-MS application for therapeutic drug monitoring in alternative matrices. J. Pharm. Biomed. Anal. 2019, 166, 40–51. [Google Scholar] [CrossRef]
- Baumeister, F.A.M.; Rolinski, B.; Busch, R.; Emmrich, P. Glucose Monitoring with Long-Term Subcutaneous Microdialysis in Neonates. Pediatrics 2001, 108, 1187. [Google Scholar] [CrossRef]
- Hildingsson, U.; Lönnqvist, P.A.; Selldén, H.; Eksborg, S.; Ungerstedt, U.; Marcus, C. Age-dependent variations in white adipose tissue glycerol and lactate production after surgery measured by microdialysis in neonates and children. Paediatr. Anaesth. 2000, 10, 283–289. [Google Scholar] [CrossRef]
- Van der Mast, J.E.; Nijsten, M.W.; Alffenaar, J.C.; Touw, D.J.; Bult, W. In vitro evaluation of an intravenous microdialysis catheter for therapeutic drug monitoring of gentamicin and vancomycin. Pharmacol Res. Perspect. 2019, 7, e00483. [Google Scholar] [CrossRef]
- Brandhorst, G.; Oellerich, M.; Maine, G.; Taylor, P.; Veen, G.; Wallemacq, P. Liquid Chromatography-Tandem Mass Spectrometry or Automated Immunoassays: What Are the Future Trends in Therapeutic Drug Monitoring? Clin. Chem. 2012, 58, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, R. Recent advances in analytical methods for the therapeutic drug monitoring of immunosuppressive drugs. Drug Test. Anal. 2018, 10, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Snozek, C.L.H.; Langman, L.J.; Cotten, S.W. An Introduction to Drug Testing: The Expanding Role of Mass Spectrometry. Methods Mol. Biol. 2019, 1872, 1–10. [Google Scholar] [CrossRef]
- Van Nuland, M.; Rosing, H.; Huitema, A.D.R.; Beijnen, J.H. Predictive Value of Microdose Pharmacokinetics. Clin. Pharmacokinet. 2019, 58, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Oellerich, M.; Dasgupta, A. Limitations of Immunoassays Used for Therapeutic Drug Monitoring of Immunosuppressants. In Personalized Immunosuppression in Transplantation; Elsevier: Amsterdam, The Netherlands, 2016; pp. 29–56. [Google Scholar]
- Shipkova, M.; Christians, U. Improving therapeutic decisions: Pharmacodynamic monitoring as an integral part of Therapeutic Drug Monitoring. Drug Monit. 2019, 41, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Oyaert, M.; Peersman, N.; Kieffer, D.; Deiteren, K.; Smits, A.; Allegaert, K.; Spriet, I.; Van Eldere, J.; Verhaegen, J.; Vermeersch, P.; et al. Novel LC—MS/MS method for plasma vancomycin: Comparison with immunoassays and clinical impact. Clin. Chim. Acta 2015, 441, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jacqz-Aigrain, E. The Importance of Knowing How Vancomycin is Measured When Interpreting Its Pharmacokinetic Results. Ther. Drug Monit. 2013, 35, 416. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Bioanalytical Method Validation. 2012. Available online: https://www.ema.europa.eu/en/bioanalytical-method-validation (accessed on 16 July 2020).
- US Department of Health and Human Services, U.D. of H. and H. Analytical Procedures and Methods Validation for Drugs and Biologics. Food Drug Adm.; 2015. Available online: https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf (accessed on 16 July 2020).
- Nellis, G.; Metsvaht, T.; Varendi, H.; Toompere, K.; Lass, J.; Mesek, I.; Nunn, A.J.; Turner, M.A.; Lutsar, I. ESNEE consortium. Potentially harmful excipients in neonatal medicines: A pan-European observational study. Arch. Dis. Child 2015, 100, 694–699. [Google Scholar] [CrossRef]
- Garcia-Palop, B.; Movilla Polanco, E.; Canete Ramirez, C.; Cabanas Poy, M.J. Harmful excipients in medicines for neonates in Spain. Int. J. Clin. Pharm. 2016, 38, 238–242. [Google Scholar] [CrossRef]
- European Paediatric Formulation Initiative (EuPFI). Step & Toxicity of Excipients for Pediatrics (STEP) Database. 2020. Available online: http://www.eupfi.org/step-database-info/ (accessed on 16 July 2020).
- Nellis, G.; Metsvaht, T.; Varendi, H.; Lass, J.; Duncan, J. Product Substitution as a Way Forward in Avoiding Potentially Harmful Excipients in Neonates. Pediatr. Drugs. 2016, 18, 221–230. [Google Scholar] [CrossRef]
- Pandya, H.C.; Mulla, H.; Hubbard, M.; Cordell, R.L.; Monks, P.S.; Yakkundi, S.; McElnay, J.C.; Nunn, A.J.; Turner, M.A. ESNEE Consortium. Essential medicines containing ethanol elevate blood acetaldehyde concentrations in neonates. Eur. J. Pediatr. 2016, 175, 841–847. [Google Scholar] [CrossRef] [Green Version]
- Esaiassen, E.; Fjalstad, J.W.; Juvet, L.K.; Van den Anker, J.N.; Klingenberg, C. Antibiotic exposure in neonates and early adverse outcomes: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 1858–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Anker, J.; Allegaert, K. Rational Use of Antibiotics in Neonates: Still in Search of Tailored Tools. Healthcare 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesek, I.; Nellis, G.; Lass, J.; Metsvaht, T.; Varendi, H.; Visk, H.; Turner, M.A.; Nunn, A.J.; Duncan, J.; Lutsar, I. Medicines Prescription Patterns in European Neonatal Units. Int. J. Clin. Pharm. 2019, 41, 1578–1591. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Heal. Pharm. 2020, 77, 835–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttner, A.; Harbarth, S.; Hope, W.W.; Lipman, J.; Roberts, J.A. Therapeutic drug monitoring of the β-lactam antibiotics: What is the evidence and which patients should we be using it for? Antimicrob. Chemother. 2015, 70, 3178–3183. [Google Scholar] [CrossRef]
- De Velde, F.; Mouton, J.W.; de Winter, B.C.; van Gelder, T.; Koch, B.C. Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives. Pharmacol. Res. 2018, 134, 280–288. [Google Scholar] [CrossRef]
- Fuchs, A.; Li, G.; van den Anker, J.N.; Bielicki, J. Optimising β-Lactam Dosing in Neonates: A Review of Pharmacokinetics, Drug Exposure and Pathogens. Curr. Pharm. Des. 2017, 23, 5805–5838. [Google Scholar] [CrossRef]
- Padari, H.; Metsvaht, T.; Germovsek, E.; Barker, C.I.; Kipper, K.; Herodes, K.; Standing, J.F.; Oselin, K.; Tasa, T.; Soeorg, H.; et al. Pharmacokinetics of Penicillin G in Preterm and Term. Antimicrob. Agents Chemother. 2018, 62, e02238-17. [Google Scholar] [CrossRef] [Green Version]
- Leroux, S.; Roué, J.M.; Gouyon, J.B.; Biran, V.; Zheng, H.; Zhao, W.; Jacqz-Aigrain, E. A Population and Developmental Pharmacokinetic Analysis To Evaluate and Optimize Cefotaxime Dosing Regimen in Neonates and Young Infants. Antimicrob. Agents Chemother. 2016, 60, 6626–6634. [Google Scholar] [CrossRef] [Green Version]
- FDA. Guidelines on Meropenem for Injection. 2016. Available online: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=8f0c2a90-956a-4430-b26d-00d48169a9b0 (accessed on 16 July 2020).
- Tabah, A.; De Waele, J.; Lipman, J.; Zahar, J.R.; Cotta, M.O.; Barton, G.; Timsit, J.F.; Roberts, A. Working Group for Antimicrobial Use in the ICU within the Infection Section of the European Society of Intensive Care Medicine (ESICM). The ADMIN-ICU survey: A survey on antimicrobial dosing and monitoring in ICUs. J. Antimicrob. Chemother. 2015, 70, 2671–2677. [Google Scholar] [CrossRef] [Green Version]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of β-lactam concentration–toxicity relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M. Clinical pharmacokinetics of aminoglycosides in the neonate: A review. Eur. J. Clin. Pharmacol. 2009, 65, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NeoFax Essentials. Micromedex 2.0. Truven; Health Analytics, Inc.: Greenwood Village, CO, USA, 2020; Available online: https://neofax.micromedexsolutions.com/neofax/neofax.php (accessed on 16 July 2020).
- Endo, A.; Nemoto, A.; Hanawa, K.; Maebayashi, Y.; Hasebe, Y.; Kobayashi, M.; Naito, A.; Kobayashi, Y.; Yamamoto, S.; Isobe, K. Relationship between amikacin blood concentration and ototoxicity in low birth weight infants. J. Infect. Chemother. 2019, 25, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcwilliam, S.J.; Antoine, D.J.; Smyth, R.L.; Pirmohamed, M. Aminoglycoside-induced nephrotoxicity in children. Pediatr. Nephrol. 2017, 32, 2015–2025. [Google Scholar] [CrossRef]
- Sundaram, A.; Alshaikh, B.; Dersch-Mills, D.; Dobry, J.; Akierman, A.R.; Yusuf, K. Extended-Interval Dosing of Gentamicin in Premature Neonates Born at 7 Days of age. Clin. Therap. 2017, 1–9. [Google Scholar] [CrossRef]
- Allegaert, K.; Cossey, V.; van den Anker, J.N. Dosing Guidelines of Aminoglycosides in Neonates: A Balance between Physiology and Feasibility. Curr. Pharm. Des. 2015, 21, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nestaas, E.; Bangstad, H.-J.; Sandvik, L.; Wathne, K.-O. Aminoglycoside extended interval dosing in neonates is safe and effective: A meta-analysis. Archives Dis. Child. Fetal Neonatal Ed. 2005, 90, F294–F300. [Google Scholar] [CrossRef] [Green Version]
- Fonzo-Christe, C.; Guignard, B.; Zaugg, C.; Coehlo, A.; Posfay-Barbe, K.M.; Gervaix, A.; Desmeules, J.; Rollason, V.; Combescure, C.; Corbelli, R.; et al. Impact of Clinical Decision Support Guidelines on Therapeutic Drug Monitoring of Gentamicin in Newborns. Ther. Drug Monit. 2014, 36, 652–662. [Google Scholar] [CrossRef]
- Patel, N.; Pai, M.P.; Rodvold, K.A.; Lomaestro, B.; Drusano, G.L.; Lodise, T.P. Vancomycin: We Can’t Get There From Here. Clin. Infect. Dis. 2011, 52, 969–974. [Google Scholar] [CrossRef] [Green Version]
- Allegaert, K.; Flint, R.; Smits, A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: Only one piece of the puzzle. Expert Opin. Drug Metab. Toxicol. 2019, 15, 735–749. [Google Scholar] [CrossRef]
- Bhongsatiern, J.; Stockmann, C.; Roberts, J.K.; Yu, T.; Korgenski, K.E.; Spigarelli, M.G.; Desai, P.B.; Sherwin, C.M. Evaluation of Vancomycin Use in Late-Onset Neonatal Sepsis Using the Area Under the Concentration-Time curve to the Minimum Inhibitory Concentration ≥400 Target. Drug Monit. 2017, 37, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, J.; Loo, A.; Mazur, S.; Walsh, T.J. Therapeutic drug monitoring of systemic antifungal agents: A pragmatic approach for adult and pediatric patients. Expert Opin. Drug Metab. Toxicol. 2019, 15, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Wang, S. Advances in Antifungal Drug Measurement by Liquid Chromatography-Mass Spectrometry. Clin. Chim. Acta 2019, 491, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Brüggemann, R.J.; Aarnoutse, R.E. Fundament and Prerequisites for the Application of an Antifungal TDM Service. Curr. Fungal. Infect. Rep. 2015, 9, 122–129. [Google Scholar] [CrossRef] [Green Version]
- McCreary, E.K.; Bayless, M.; Van, A.P.; Lepak, A.J.; Wiebe, D.A.; Schulz, L.T.; Andes, D.R. Impact of Triazole Therapeutic Drug Monitoring Availability. Antimicrob. Agents Chemother. 2019, 63, e01245-19. [Google Scholar] [CrossRef]
- Neely, M.; Margol, A.; Fu, X.; van Guilder, M.; Bayard, D.; Schumitzky, A.; Orbach, R.; Liu, S.; Louie, S.; Hope, W. Achieving Target Voriconazole Concentrations More Accurately in Children and Adolescents. Antimicrob. Agents. Chemother. 2015, 59, 3090–3097. [Google Scholar] [CrossRef] [Green Version]
- Hope, W.; Johnstone, G.; Cicconi, S.; Felton, T.; Goodwin, J.; Whalley, S.; Santoyo-Castelazo, A.; Ramos-Martin, V.; Lestner, J.; Credidi, L.; et al. Software for Dosage Individualization of Voriconazole: A Prospective Clinical Study. Antimicrob. Agents. Chemother. 2019, 63, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lempers, V.J.; Meuwese, E.; Mavinkurve-Groothuis, A.M.; Henriet, S.; van der Sluis, I.M.; Hanff, L.M.; Warris, A.; Koch, B.; Brüggemann, R.J. Impact of dose adaptations following voriconazole therapeutic drug monitoring in pediatric patients. Med. Mycol. 2019, 57, 937–943. [Google Scholar] [CrossRef]
- Luong, M.L.; Al-Dabbagh, M.; Groll, A.H.; Racil, Z.; Nannya, Y.; Mitsani, D.; Husain, S. Utility of voriconazole therapeutic drug monitoring: A Meta-Analysis. J. Antimicrob. Chemother. 2016, 71, 1786–1799. [Google Scholar] [CrossRef]
- Botero-Calderon, L.; Benjamin, D.K.; Cohen-Wolkowiez, M. Advances in the treatment of invasive neonatal candidiasis. Expert. Opin. Pharm. 2015, 16, 1035–1048. [Google Scholar] [CrossRef]
- Ferreras-Antolìn, L.; Sharland, M.; Warris, A. Management of Invasive Fungal Disease in Neonates and Children. Pediatr. Infect. Dis. J. 2019, 38, 2–6. [Google Scholar] [CrossRef]
- Tsakiri, S.; Aneji, C.; Domonoske, C.; Mazur, L.; Benjamin, D.K., Jr.; Wootton, S.H. Voriconazole Treatment for an Infant with Intractable Candida Glabrata Meningitis. Pediatr. Infect. Dis. J. 2018, 37, 999–1001. [Google Scholar] [CrossRef]
- Roberts, J.K.; Stockmann, C.; Constance, J.E.; Stiers, J.; Spigarelli, M.G.; Ward, R.M.; Sherwin, C.M. Pharmacokinetics and Pharmacodynamics of Antibacterials, Antifungals, and Antivirals Used Most Frequently in Neonates and Infants. Clin. Pharmacokinet. 2014, 53, 581–610. [Google Scholar] [CrossRef] [PubMed]
- Bersani, I.; Piersigilli, F.; Goffredo, B.M.; Santisi, A.; Cairoli, S.; Ronchetti, M.P.; Auriti, C. Antifungal drugs for invasive candida infections (ICI) in neonates: Future perspectives. Front. Pediatr. 2019, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakoso, K.; Minagawa, R.; Echizen, H. Developmental changes of fluconazole clearance in neonates and infants in relation to ontogeny of glomerular filtration rate: Literature review and data analysis. J. Pharm. Health Care Sci. 2018, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Saxén, H.; Hoppu, K.; Pohjavuori, M. Pharmacokinetics of fluconazole in very low birth weight infants during the first two weeks of life. Clin. Pharmacol. Ther. 1993, 54, 269–277. [Google Scholar] [CrossRef]
- Autmizguine, J.; Smith, P.B.; Prather, K.; Bendel, C.; Natarajan, G.; Bidegain, M.; Kaufman, D.A.; Burchfield, D.J.; Ross, A.S.; Pandit, P.; et al. Fluconazole Prophylaxis Study Team. Effect of fluconazole prophylaxis on Candida fluconazole susceptibility in premature infants. J. Antimicrob. Chemother. 2018, 73, 3482–3487. [Google Scholar] [CrossRef]
- Pansieri, C.; Pandolfini, C.; Jacqz-Aigrain, E.; van den Anker, J.; Bonati, M. Fluconazole prophylaxis in neonates. Arch. Dis. Child. 2015, 100, 75–76. [Google Scholar] [CrossRef]
- Che, D.; Zhou, H.; Li, T.; Wu, B. Duration and intensity of fluconazole for prophylaxis in preterm neonates: A meta- analysis of randomized controlled trials. BMC Infect. Dis. 2016, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Lee, J.; Oh, J.; Rhee, S.J.; Shin, S.H.; Yoon, S.H.; Lee, S.; Kim, H.S.; Yu, K.S. Population Pharmacokinetic Study of Prophylactic Fluconazole in Preterm Infants for Prevention of Invasive Candidiasis. Antimicrob. Agents Chemother. 2019, 63, e01960-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsekoura, M.; Ioannidou, M.; Pana, Z.D.; Haidich, A.B.; Antachopoulos, C.; Iosifidis, E.; Kolios, G.; Roilides, E. Efficacy and Safety of Echinocandins for the Treatment of Invasive Candidiasis in Children. Pediatr. Infect. Dis. J. 2019, 38, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, I.; Lai, C.; Tang, H. Echinocandins vs. amphotericin B against invasive candidiasis in children and neonates: A meta-analysis of randomized controlled trials. Int. J. Antimicrob. Agents 2019, 53, 789–794. [Google Scholar] [CrossRef]
- Kim, J.; Nakwa, F.L.; Araujo Motta, F.; Liu, H.; Dorr, M.B.; Anderson, L.J.; Kartsonis, N. A randomized, double-blind trial investigating the efficacy of caspofungin versus amphotericin B deoxycholate in the treatment of invasive candidiasis in neonates and infants younger than 3 months of age. J. Antimicrob. Chemother. 2020, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Dilena, R.; De Liso, P.; Di Capua, M.; Consonni, D.; Capovilla, G.; Pisani, F.; Suppiej, A.; Vitaliti, G.; Falsaperla, R.; Pruna, D. Influence of etiology on treatment choices for neonatal seizures: A survey among pediatric neurologists. Brain Dev. 2019, 41, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Tamer, Z.; Opoku, F.; Forcelli, P.A. Anticonvulsant drug-induced cell death in the developing white matter of the rodent brain. Epilepsia 2016, 57, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, K.A.; Desai, S.J.; Bennett, M.M.; Ahmad, S.F.; Ng, Y.T.; Clark, R.H.; Tolia, V.N. Changing antiepileptic drug use for seizures in US neonatal intensive care units from 2005 to 2014. J. Perinatol. 2017, 37, 296–300. [Google Scholar] [CrossRef]
- Mruk, A.L.; Garlitz, K.L.; Leung, N.R. Levetiracetam in neonatal seizures: A review. J. Pediatr. Pharmacol. Ther. 2015, 20, 76–89. [Google Scholar] [CrossRef]
- Donovan, M.D.; Griffin, B.T.; Kharoshankaya, L.; Cryan, J.F.; Boylan, G.B. Pharmacotherapy for Neonatal Seizures: Current Knowledge and Future Perspectives. Drugs 2016, 76, 647–661. [Google Scholar] [CrossRef]
- Patsalos, P.N.; St Louis, E.K. The Epilepsy Prescriber’s Guide to Antiepileptic Drugs, 3rd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Ahrens, S.; Ream, M.A.; Slaughter, L.A. Status Epilepticus in the Neonate: Updates in Treatment Strategies. Curr. Treat. Options Neurol. 2019, 21, 8. [Google Scholar] [CrossRef]
- Merhar, S.L.; Schibler, K.R.; Sherwin, C.M.; Meinzen-Derr, J.; Shi, J.; Balmakund, T.; Vinks, A.A. Pharmacokinetics of levetiracetam in neonates with seizures. J. Pediatr. 2011, 159, 152–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, A.; Banergee, A. A Review on Pharmacokinetics of Levetiracetam in Neonates. Curr. Drug Metab. 2017, 18, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Shellhaas, R.A. Seizure classification, etiology, and management. Handb. Clin. Neurol. 2019, 162, 347–361. [Google Scholar] [PubMed]
- Nies, R.J.; Müller, C.; Pfister, R.; Binder, P.S.; Nosseir, N.; Nettersheim, F.S.; Kuhr, K.; Wiesen, M.; Kochanek, M.; Michels, G. Monitoring of sedation depth in intensive care unit by therapeutic drug monitoring? A prospective observation study of medical intensive care patients. J. Intensive Care 2018, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Weeke, L.C.; Schalkwijk, S.; Toet, M.C.; van Rooij, L.G.; de Vries, L.S.; van den Broek, M.P. Lidocaine-Associated Cardiac Events in Newborns with Seizures: Incidence, Symptoms and Contributing Factors. Neonatology 2015, 108, 130–136. [Google Scholar] [CrossRef]
- Sands, T.T.; Balestri, M.; Bellini, G.; Mulkey, S.B.; Danhaive, O.; Bakken, E.H.; Taglialatela, M.; Oldham, M.S.; Vigevano, F.; Holmes, G.L.; et al. Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia 2016, 57, 2019–2030. [Google Scholar] [CrossRef] [Green Version]
- Mathew, E.M.; Moorkoth, S.; Lewis, L.; Rao, P. Biomarker profiling of vitamin responsive seizures: A potential tool to detect pediatric seizures of unknown aetiology. Bioanalysis 2020, 12, 111–124. [Google Scholar] [CrossRef]
- Wildschut, E.D.; van Saet, A.; Pokorna, P.; Ahsman, M.J.; Van den Anker, J.N.; Tibboel, D. The Impact of Extracorporeal Life Support and Hypothermia on Drug Disposition in Critically Ill Infants and Children. Pediatr. Clin. N. Am. 2012, 59, 1183–1204. [Google Scholar] [CrossRef] [Green Version]
- El-Dib, M.; Soul, J.S. The use of phenobarbital and other anti-seizure drugs in newborns. Semin. Fetal Neonatal Med. 2017, 22, 321–327. [Google Scholar] [CrossRef]
- Filippi, L.; la Marca, G.; Cavallaro, G.; Fiorini, P.; Favelli, F.; Malvagia, S.; Donzelli, G.; Guerrini, R. Phenobarbital for neonatal seizures in hypoxic ischemic encephalopathy: A pharmacokinetic study during whole body hypothermia. Epilepsia 2011, 52, 794–801. [Google Scholar] [CrossRef]
- Van Den Broek, M.P.H.; Groenendaal, F.; Toet, M.C.; van Straaten, H.L.; van Hasselt, J.G.; Huitema, A.D.; de Vries, L.S.; Egberts, A.C.; Rademaker, C.M. Pharmacokinetics and clinical efficacy of phenobarbital in asphyxiated newborns treated with hypothermia: A thermopharmacological approach. Clin. Pharmacokinet. 2012, 51, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Cristea, S.; Smits, A.; Kulo, A.; Knibbe, C.; van Weissenbruch, M.; Krekels, E.; Allegaert, K. Amikacin pharmacokinetics to optimize dosing in neonates with perinatal asphyxia treated with hypothermia. Antimicrob. Agents Chemother. 2017, 61, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, D.W.; Park, J.H.; Lee, S.Y.; An, S.H. Effect of hypothermia treatment on gentamicin pharmacokinetics in neonates with hypoxic-ischaemic encephalopathy: A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2018, 43, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Fugarolas, K.N.; Moore, W.S.; Mason, R.W.; Menkiti, O.R. Population Pharmacokinetics and Pharmacodynamic Target Attainment of Ampicillin in Neonates with Hypoxemic-Ischemic Encephalopathy in the Setting of Controlled Hypothermia. Pharmacotherapy 2017, 37, 456–463. [Google Scholar] [CrossRef]
- Dyson, A.; Kent, A.L. The effect of preterm birth on renal development and renal health outcome. Neoreviews 2019, 20, e725–e736. [Google Scholar] [CrossRef]
- Van Donge, T.; Pfister, M.; Bielicki, J.; Csajka, C.; Rodieux, F.; van den Anker, J.; Fuchs, A. Quantitative Analysis of Gentamicin Exposure in Neonates and Infants Calls into Question Its Current Dosing Recommendations. Antimicrob. Agents Chemother. 2018, 62, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Girardi, A.; Raschi, E.; Galletti, S.; Allegaert, K.; Poluzzi, E.; De Ponti, F. Drug-induced renal injury in neonates: Challenges in clinical practice and perspectives in drug development. Expert Opin. Drug Metab. Toxicol. 2017, 13, 555–565. [Google Scholar] [CrossRef]
- Allegaert, K.; Anderson, B.J.; Van Den Anker, J.N.; Vanhaesebrouck, S.; de Zegher, F. Renal Drug Clearance in Preterm Neonates: Relation to Prenatal Growth. Ther. Drug Monit. 2007, 29, 284–291. [Google Scholar] [CrossRef]
- Van den Anker, J.N.; Hop, W.C.; de Groot, R.; van der Heijden, B.J.; Broerse, H.M.; Lindemans, J.; Sauer, P.J. Effects of Prenatal Exposure to Betamethasone and Indomethacin on the Glomerular Filtration Rate in the Preterm Infant. Pediatr. Res. 1994, 36, 578–581. [Google Scholar] [CrossRef]
- Pacifici, G.M. Clinical Pharmacology of Phenobarbital in Neonates: Effects, Metabolism and Pharmacokinetics. Curr. Pediatr. Rev. 2016, 12, 48–54. [Google Scholar] [CrossRef]
- Jasani, B.; Weisz, D.E.; McNamara, P.J. Evidence-based use of acetaminophen for hemodynamically significant ductus arteriosus in preterm infants. Semin. Perinatal. 2018, 42, 243–252. [Google Scholar] [CrossRef]
- Hope, W.W.; Mickiene, D.; Petraitis, V.; Petraitiene, R.; Kelaher, A.M.; Hughes, J.E.; Cotton, M.P.; Bacher, J.; Keirns, J.J.; Buell, D.; et al. The Pharmacokinetics and Pharmacodynamics of Micafungin in Experimental Hematogenous Candida Meningoencephalitis: Implications for Echinocandin Therapy in Neonates. J. Infect. Dis. 2008, 197, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; van den Anker, J. Neonatal Drug Therapy: The First Frontier of Therapeutics for Children. Clin. Pharmacol. Ther. 2015, 98, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.M.; Tammara, B.; Sullivan, S.E.; Stewart, D.L.; Rath, N.; Meng, X.; Maguire, M.K.; Comer, G.M. Single-dose, multiple-dose, and population pharmacokinetics of pantoprazole in neonates and preterm infants with a clinical diagnosis of gastroesophageal reflux disease (GERD). Eur. J. Clin. Pharmacol. 2010, 66, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Moschino, L.; Zivanovic, S.; Hartley, C.; Trevisanuto, D.; Baraldi, E.; Roehr, C.C. Caffeine in preterm infants: Where are we in 2020? ERJ Open Res. 2020, 6, 00330–02019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alur, P.; Bollampalli, V.; Bell, T.; Hussain, N.; Liss, J. Serum caffeine concentrations and short-term outcomes in premature infants of ≤29 weeks of gestation. J. Perinatol. 2015, 35, 434–438. [Google Scholar] [CrossRef]
- McPherson, C.; Neil, J.J.; Tjoeng, T.H.; Pineda, R.; Inder, T.E. A pilot randomized trial of high-dose caffeine therapy in preterm infants. Pediatr. Res. 2015, 78, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Balis, F.M.; Womer, R.B.; Berg, S.; Winick, N.; Adamson, P.C.; Fox, E. Children’s Oncology Group Chemotherapy Standardization Task Force. Dosing anticancer drugs in infants: Current approach and recommendations from the Children’s Oncology Group’s Chemotherapy Standardization Task Force. Pediatr. Blood Cancer 2017, 64, 3–7. [Google Scholar] [CrossRef]
- Veal, G.J.; Errington, J.; Sastry, J.; Chisholm, J.; Brock, P.; Morgenstern, D.; Pritchard-Jones, K.; Chowdhury, T. Adaptive dosing of anticancer drugs in neonates: Facilitating evidence-based dosing regimens. Cancer Chemother. Pharmacol 2016, 77, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Thomas, F.; Veal, G.J.; El Balkhi, S.; Lafont, T.; Picard, N.; Brugières, L.; Chatelut, E.; Piguet, C. Therapeutic drug monitoring and dose adaptation of cisplatin in a newborn with hepatoblastoma: A case report. Cancer Chemother. Pharmacol. 2018, 82, 361–365. [Google Scholar] [CrossRef]
- Veal, G.J.; Errington, J.; Hayden, J.; Hobin, D.; Murphy, D.; Dommett, R.M.; Tweddle, D.A.; Jenkinson, H.; Picton, S. Carboplatin therapeutic monitoring in preterm and full-term neonates. Eur. J. Cancer. 2015, 51, 2022–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Yu, R.; Yin, N.; Zhou, J. Combination of extracorporeal membrane oxygenation and continuous renal replacement therapy in critically ill patients: A systematic review. Crit. Care 2014, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Nardo, M.; Wildschut, E.D. Drugs pharmacokinetics during veno-venous extracorporeal membrane oxygenation in pediatrics. J. Thorac. Dis. 2018, 10, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Moore, W.S.; Miller, K.; Small, C.; Carella, D.; Conley, S.; Parker, J.; Shea, P.; Chopra, A. Therapeutic Drug Monitoring of Continuous-Infusion Acylovir for Disseminated Herpes Simplex Virus Infection in a Neonate Receiving Concurrent Extracorporeal Life Support and Continuous Renal Replacement Therapy. Pharmacotherapy 2015, 35, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Raffaeli, G.; Pokorna, P.; Allegaert, K.; Mosca, F.; Cavallaro, G.; Wildschut, E.D.; Tibboel, D. Drug Disposition and Pharmacotherapy in Neonatal ECMO: From Fragmented Data to Integrated Knowledge. Front. Pediatr. 2019, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.H.; Tsai, H.T.; Lin, W.L.; Chen, Y.C.; Chou, C.; Lin, H.W. Predicting the serum digoxin concentrations of infants in the neonatal intensive care unit through an artificial neural network. BMC Pediatr. 2019, 19, 1–11. [Google Scholar] [CrossRef]
Antibiotics | Mechanism of Action | Dose | Metabolism | Excretion | Fraction Unbound (%) | Half-Life (h) |
---|---|---|---|---|---|---|
Vancomycin | Glycopeptide: inhibits proper cell wall synthesis in Gram-positive bacteria | 10-20 mg/kg/dose intermittent iv infusion with a different 8–48 h interval according PMA or 50 mg/kg/day continuous iv infusion according to serum creatinine and corrected GA | Excreted unchanged | Renal (>90%) | 70–90 | 2–10 |
Gentamicin | Aminoglycoside: binds 30S subunit of the bacterial ribosome | 4–5 mg/kg/dose with a different 24–48 h interval according GA/PMA | No metabolism | Renal (90%) | 90 | 7–14 (if GA ≤ 30 w); 4–7 (if term) |
Amikacin | Aminoglycoside: binds 30S subunit of the bacterial ribosome | 15–18 mg/kg/dose with a different 24–48 h interval according PMA | No metabolism | Renal (90%) | 90 | 7–14 (if GA ≤ 30 w); 4–7 (if term) |
Antifungals | Mechanism of Action | Dose | Metabolism | Excretion | Fraction Unbound (%) | Half-Life (h) |
---|---|---|---|---|---|---|
Micafungin | Echinocandin: inhibition of beta-1,3-glucan | 4–15 mg/kg/day iv (in a hour) | Hepatic | Hepatic (bile) (77%), renal (12%) | 1 | 8 |
Fluconazole | Triazole: inhibition of lanosterol 14α-demethylase | 12 mg/kg/day (for therapy); 3–6 mg/kg/day 2 or 3 times in a week (for prophylaxis) | Hepatic (minimal) | Renal (80%) | 89 | 15–25 (in preterms < 29 weeks: 73.6 h after 24 h and 46.6 h at 12 days) |
Liposomal Amphotericin B | Polyene: binding with sterols in the fungal cell membrane | 3–7 mg/kg/day | Unknown | Unknown | 5 | 7 |
Antiepileptic Drug | Mechanism of Action | Loading Dose | Maintenance Dose | Metabolism | Excretion | Fraction Unbound (%) | Half-Life (h) |
---|---|---|---|---|---|---|---|
Phenobarbital | GABA-A agonist | 20 mg/kg in 20 min iv | 5 mg/kg/day | Hepatic | Renal (of whom 25–50% unchanged) | 57–64 | 73.9–154.5 |
Phenytoin | Blockade of voltage-gated sodium channels | 20 mg/kg in 30 min iv | 5 mg/kg/day | Hepatic | Renal (of whom up to 5% unchanged) | 17.2–22.4 | Week 1: 9.1–32.3 Week 2–4: 4.1–11.1 |
Levetiracetam | Binding to neuronal SV2a receptor | 10–50 mg/kg iv | 10–80 mg/kg/day | Minimal hepatic | Renal (of whom up to 66% unchanged) | ~100 | Day 1: 11.4–25.6 Day 7: 7–11 |
Midazolam | GABA-A agonist | 0.05 mg/kg in 10 min iv | 0.15 mg/kg/h | Hepatic | Renal (~70%), Feces (~30%) | 3.1 | 6.5–12 |
Lidocaine | Blockade of fast voltage-gated sodium channels | 2 mg/kg iv | 5–7 mg/kg/h for 4 h; 2.5–3.5 mg/kg/h for 6–12 h;1.25–1.75 g/kg/h for 12 h (to reduce during hypothermia) | Hepatic | Renal | 20–40 | 5.2–5.4 |
Carbamazepine | Blockade of voltage-gated sodium channels | Available only enteral form (oral bioavailability 75–85%) | 10 mg/kg/day | Hepatic | Renal (~70%), Feces (~30%) | 25 | 10–13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rose, D.U.; Cairoli, S.; Dionisi, M.; Santisi, A.; Massenzi, L.; Goffredo, B.M.; Dionisi-Vici, C.; Dotta, A.; Auriti, C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. Int. J. Mol. Sci. 2020, 21, 5898. https://doi.org/10.3390/ijms21165898
De Rose DU, Cairoli S, Dionisi M, Santisi A, Massenzi L, Goffredo BM, Dionisi-Vici C, Dotta A, Auriti C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. International Journal of Molecular Sciences. 2020; 21(16):5898. https://doi.org/10.3390/ijms21165898
Chicago/Turabian StyleDe Rose, Domenico Umberto, Sara Cairoli, Marco Dionisi, Alessandra Santisi, Luca Massenzi, Bianca Maria Goffredo, Carlo Dionisi-Vici, Andrea Dotta, and Cinzia Auriti. 2020. "Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age" International Journal of Molecular Sciences 21, no. 16: 5898. https://doi.org/10.3390/ijms21165898
APA StyleDe Rose, D. U., Cairoli, S., Dionisi, M., Santisi, A., Massenzi, L., Goffredo, B. M., Dionisi-Vici, C., Dotta, A., & Auriti, C. (2020). Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. International Journal of Molecular Sciences, 21(16), 5898. https://doi.org/10.3390/ijms21165898