Drug-Related Cutaneous Adverse Events in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms: A Literature Review
Abstract
:1. Introduction
2. Ruxolitinib
Cutaneous Adverse Events with Ruxolitinib
3. Hydroxyurea
Cutaneous Adverse Events Associated with Hydroxyurea
4. Interferons
Cutaneous Adverse Events Associated with Interferons
5. Relative Risk of Different Agents
6. Discussion
7. Materials and Methods
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AA | Alopecia areata |
AK | Actinic keratosis |
BCC | Basal cell carcinoma |
BID | Twice a day |
ET | Essential thrombocythemia |
HU | Hydroxyurea |
IFN | Interferon |
ISR | Injection site reactions |
JAK | Janus kinase |
KS | Kaposi sarcoma |
MCC | Merkel cell carcinoma |
MF | Myelofibrosis |
MPN | Myeloproliferative neoplasms |
NMSC | Nonmelanoma skin cancer |
PET-MF | Post–essential thrombocythemia myelofibrosis |
PMF | Primary myelofibrosis; |
PPV-MF | Post–polycythemia vera myelofibrosis; |
PV | Polycythemia vera |
SCC | Squamous cell carcinoma |
STATs | Signal transducers and activators of transcription |
Th | T helper |
Treg | T regulatory cell |
References
- Griesshammer, M.; Gisslinger, H.; Mesa, R. Current and future treatment options for polycythemia vera. Ann. Hematol. 2015, 94, 901–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonca, R.; Gueiros, L.A.; Capellaro, K.; Pinheiro, V.R.; Lopes, M.A. Oral lesions associated with hydroxyurea treatment. Indian J. Dent. Res. 2011, 22, 869–870. [Google Scholar] [CrossRef] [PubMed]
- Springuel, L.; Renauld, J.C.; Knoops, L. JAK kinase targeting in hematologic malignancies: A sinuous pathway from identification of genetic alterations towards clinical indications. Haematologica 2015, 100, 1240–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vannucchi, A.M.; Kiladjian, J.J.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Mesa, R.; et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med. 2015, 372, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Welsch, K.; Holstein, J.; Laurence, A.; Ghoreschi, K. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur. J. Immunol 2017, 47, 1096–1107. [Google Scholar] [CrossRef] [Green Version]
- Damsky, W.; King, B.A. JAK inhibitors in dermatology: The promise of a new drug class. J. Am. Acad. Dermatol. 2017, 76, 736–744. [Google Scholar] [CrossRef]
- Shreberk-Hassidim, R.; Ramot, Y.; Zlotogorski, A. Janus kinase inhibitors in dermatology: A systematic review. J. Am. Acad. Dermatol. 2017, 76, 745–753 e719. [Google Scholar] [CrossRef]
- Elli, E.M.; Barate, C.; Mendicino, F.; Palandri, F.; Palumbo, G.A. Mechanisms Underlying the Anti-inflammatory and Immunosuppressive Activity of Ruxolitinib. Front. Oncol. 2019, 9, 1186. [Google Scholar] [CrossRef] [Green Version]
- Keohane, C.; Kordasti, S.; Seidl, T.; Perez Abellan, P.; Thomas, N.S.; Harrison, C.N.; McLornan, D.P.; Mufti, G.J. JAK inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells. Br. J. Haematol. 2015, 171, 60–73. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, S.; Miyara, M.; Costantino, C.M.; Hafler, D.A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol 2010, 10, 490–500. [Google Scholar] [CrossRef]
- DePry, J.L.; Reed, K.B.; Cook-Norris, R.H.; Brewer, J.D. Iatrogenic immunosuppression and cutaneous malignancy. Clin. Dermatol. 2011, 29, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Facciabene, A.; Motz, G.T.; Coukos, G. T-regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res. 2012, 72, 2162–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, M.L.; Carucci, J.; Colegio, O.R. Skin cancer in transplant recipients: Scientific retreat of the international immunosuppression and transplant skin cancer collaborative and skin care in organ transplant patients-Europe. Clin. Transplant. 2019, 33, e13736. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, S.; Becker, H.; Reinhardt, H.; Engelhardt, M.; Zeiser, R.; von Bubnoff, N.; Wasch, R. Ruxolitinib. Recent. Results Cancer Res. 2018, 212, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Levy, R.S.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.; Miller, C.; Silver, R.T.; et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 2012, 366, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Aboul-Fettouh, N.; Nijhawan, R.I. Aggressive squamous cell carcinoma in a patient on the Janus kinase inhibitor ruxolitinib. JAAD Case Rep. 2018, 4, 455–457. [Google Scholar] [CrossRef]
- Blechman, A.B.; Cabell, C.E.; Weinberger, C.H.; Duckworth, A.; Leitenberger, J.J.; Zwald, F.O.; Russell, M.A. Aggressive Skin Cancers Occurring in Patients Treated with the Janus Kinase Inhibitor Ruxolitinib. J. Drugs Dermatol. 2017, 16, 508–511. [Google Scholar]
- Chatterjee, B.; Rqieh, U.; Greaves, P.; Piras, D.; Firth, J.; Saja, K. Sweet syndrome as terminal event in ruxolitinib-treated myelofibrosis. Br. J. Haematol. 2015, 169, 307. [Google Scholar] [CrossRef] [Green Version]
- Dasanu, C.A. Erythematous skin lesions with necrotic centers on lower extremities due to the use of ruxolitinib for primary myelofibrosis. J. Oncol. Pharm. Pract. 2019, 25, 990–992. [Google Scholar] [CrossRef]
- Del Rosario, M.; Tsai, H.; Dasanu, C.A. Persistent foot ulcer due to ruxolitinib therapy for primary myelofibrosis. J. Oncol. Pharm. Pract. 2018, 24, 226–228. [Google Scholar] [CrossRef]
- Fabiano, A.; Calzavara-Pinton, P.; Monari, P.; Moggio, E.; Pellacani, G.; Manganoni, A.M.; Gualdi, G. Eruptive squamous cell carcinomas with keratoacanthoma-like features in a patient treated with ruxolitinib. Br. J. Dermatol. 2015, 173, 1098–1099. [Google Scholar] [CrossRef] [PubMed]
- Fournier, J.B.; Cummings, F.; Cannella, J.; Breen, C.; Zhou, L.; Iwamoto, S. Drug-associated skin lesions in a patient with myelofibrosis receiving ruxolitinib. Dermatol. Online J. 2014, 20, 13030/qt2jg3q02x. [Google Scholar] [PubMed]
- Loscocco, G.G.; Vannucchi, M.; Paoli, C.; Franci, A.; Pieri, L.; Annunziato, F.; Massi, D.; Vannucchi, A.M. Kaposi sarcoma in a patient treated with ruxolitinib. Ann. Oncol. 2017, 28, 1670–1671. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.N.; Vannucchi, A.M.; Kiladjian, J.J.; Al-Ali, H.K.; Gisslinger, H.; Knoops, L.; Cervantes, F.; Jones, M.M.; Sun, K.; McQuitty, M.; et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs. best available therapy for myelofibrosis. Leukemia 2016, 30, 1701–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passamonti, F.; Maffioli, M. The role of JAK2 inhibitors in MPNs 7 years after approval. Blood 2018, 131, 2426–2435. [Google Scholar] [CrossRef] [PubMed]
- Vannucchi, A.M. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med. 2015, 372, 1670–1671. [Google Scholar] [CrossRef] [Green Version]
- Verstovsek, S.; Vannucchi, A.M.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Kirito, K.; et al. Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial. Haematologica 2016, 101, 821–829. [Google Scholar] [CrossRef]
- Rastrelli, M.; Ferrazzi, B.; Tropea, S.; Costa, A.; Finotto, S.; Marino, D.; Campana, L.; Del Fiore, P.; Rossi, C.R.; Alaibac, M. Aggressive Merkel Cell Carcinoma After Janus Kinase Inhibitor Ruxolitinib for Polycythemia Vera. In Vivo 2019, 33, 1667–1669. [Google Scholar] [CrossRef] [Green Version]
- Quintas-Cardama, A.; Vaddi, K.; Liu, P.; Manshouri, T.; Li, J.; Scherle, P.A.; Caulder, E.; Wen, X.; Li, Y.; Waeltz, P.; et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: Therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010, 115, 3109–3117. [Google Scholar] [CrossRef]
- Singh, A.; Xu, Y.J. The Cell Killing Mechanisms of Hydroxyurea. Genes 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Quattrone, F.; Dini, V.; Barbanera, S.; Zerbinati, N.; Romanelli, M. Cutaneous ulcers associated with hydroxyurea therapy. J. Tissue Viability 2013, 22, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antar, A.; Ishak, R.S.; Otrock, Z.K.; El-Majzoub, N.; Ghosn, S.; Mahfouz, R.; Taher, A.T. Successful treatment of hydroxyurea-associated chronic leg ulcers associated with squamous cell carcinoma. Hematol. Oncol. Stem Cell Ther. 2014, 7, 166–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, U.; Banyai, M.; Boni, R.; Burg, G.; Hafner, J. Leg ulcers in patients with myeloproliferative disorders: Disease- or treatment-related? Dermatology 2000, 200, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Best, P.J.; Daoud, M.S.; Pittelkow, M.R.; Petitt, R.M. Hydroxyurea-induced leg ulceration in 14 patients. Ann. Intern. Med. 1998, 128, 29–32. [Google Scholar] [CrossRef]
- Butler, D.; Nambudiri, V.E.; Nandi, T. Hydroxyurea-associated acral erythema in a patient with polycythemia vera. Am. J. Hematol. 2014, 89, 931–932. [Google Scholar] [CrossRef] [Green Version]
- Callot-Mellot, C.; Bodemer, C.; Chosidow, O.; Frances, C.; Azgui, Z.; Varet, B.; de Prost, Y. Cutaneous carcinoma during long-term hydroxyurea therapy: A report of 5 cases. Arch Dermatol. 1996, 132, 1395–1397. [Google Scholar] [CrossRef]
- Cohen, A.D.; Hallel-Halevy, D.; Hatskelzon, L.; Peretz, E.; Halevy, S. Longitudinal melanonychia associated with hydroxyurea therapy in a patient with essential thrombocytosis. J. Eur. Acad. Dermatol. Venereol. 1999, 13, 137–139. [Google Scholar] [CrossRef]
- Daoud, M.S.; Gibson, L.E.; Pittelkow, M.R. Hydroxyurea dermopathy: A unique lichenoid eruption complicating long-term therapy with hydroxyurea. J. Am. Acad. Dermatol. 1997, 36, 178–182. [Google Scholar] [CrossRef]
- De Benedittis, M.; Petruzzi, M.; Giardina, C.; Lo Muzio, L.; Favia, G.; Serpico, R. Oral squamous cell carcinoma during long-term treatment with hydroxyurea. Clin. Exp. Dermatol. 2004, 29, 605–607. [Google Scholar] [CrossRef]
- Demircay, Z.; Comert, A.; Adiguzel, C. Leg ulcers and hydroxyurea: Report of three cases with essential thrombocythemia. Int. J. Dermatol. 2002, 41, 872–874. [Google Scholar] [CrossRef]
- Esteve, E.; Georgescu, V.; Heitzmann, P.; Martin, L. [Multiple skin and mouth squamous cell carcinomas related to long-term treatment with hydroxyurea]. Ann. Dermatol. Venereol. 2001, 128, 919–921. [Google Scholar] [PubMed]
- Hernandez-Martin, A.; Ros-Forteza, S.; de Unamuno, P. Longitudinal, transverse, and diffuse nail hyperpigmentation induced by hydroxyurea. J. Am. Acad. Dermatol. 1999, 41, 333–334. [Google Scholar] [CrossRef]
- Hirri, H.M.; Green, P.J. Skin lesion caused by hydroxyurea. Eur. J. Haematol. 2001, 67, 328–329. [Google Scholar] [CrossRef] [PubMed]
- Hoff, N.; Akanay-Diesel, S.; Pippirs, U.; Schulte, K.W.; Hanneken, S. Kutane Nebenwirkungen einer Hydroxyurea-Therapie bei Polycythaemia vera. Hautarzt 2009, 60, 783–787. [Google Scholar] [CrossRef]
- Hwang, S.W.; Hong, S.K.; Kim, S.H.; Seo, J.K.; Lee, D.; Sung, H.S. A Hydroxyurea-induced Leg Ulcer. Ann. Dermatol. 2009, 21, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.I.; Bull, R.H.; Marsden, A. Cutaneous manifestations of long-term hydroxyurea therapy. Australas. J. Dermatol. 1994, 35, 61–64. [Google Scholar] [CrossRef]
- Kluger, N.; Naud, M.; Frances, P. Toenails melanonychia induced by hydroxyurea. Presse Med. 2012, 41, 444–445. [Google Scholar] [CrossRef]
- Kwong, Y.L. Hydroxyurea-induced nail pigmentation. J. Am. Acad. Dermatol. 1996, 35, 275–276. [Google Scholar] [CrossRef]
- Simeonovski, V.; Breshkovska, H.; Duma, S.; Dohcheva-Karajovanov, I.; Damevska, K.; Nikolovska, S. Hydroxyurea Associated Cutaneous Lesions: A Case Report. Open Access Maced J. Med. Sci. 2018, 6, 1458–1461. [Google Scholar] [CrossRef] [Green Version]
- Accurso, V.; Santoro, M.; Caputo, V.; Fiorella, S.; Casimiro, P.; Sardo, M.; Marino, C.; Sucato, G.; Siragusa, S. A case of severe dermatitis in a patient with Polycythemia Vera during cytoreductive therapy. Arch. Hematol. Case Rep. Rev. 2019, 4, 20–21. [Google Scholar]
- Latagliata, R.; Spadea, A.; Cedrone, M.; Di Giandomenico, J.; De Muro, M.; Villiva, N.; Breccia, M.; Anaclerico, B.; Porrini, R.; Spirito, F.; et al. Symptomatic mucocutaneous toxicity of hydroxyurea in Philadelphia chromosome-negative myeloproliferative neoplasms: The Mister Hyde face of a safe drug. Cancer 2012, 118, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Najean, Y.; Rain, J.D. Treatment of polycythemia vera: The use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood 1997, 90, 3370–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randi, M.L.; Ruzzon, E.; Tezza, F.; Luzzatto, G.; Fabris, F. Toxicity and side effects of hydroxyurea used for primary thrombocythemia. Platelets 2005, 16, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Ravandi-Kashani, F.; Cortes, J.; Cohen, P.; Talpaz, M.; O’Brien, S.; Markowitz, A.; Kantarjian, H. Cutaneous ulcers associated with hydroxyurea therapy in myeloproliferative disorders. Leuk Lymphoma 1999, 35, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Romanelli, M.; Dini, V.; Romanelli, P. Hydroxyurea-induced leg ulcers treated with a protease-modulating matrix. Arch. Dermatol. 2007, 143, 1310–1313. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Arguelles, G.J.; Ruiz-Delgado, G.J.; Ruiz-Reyes, G.; Chernoff, S.G. Anagrelide-induced relapse of a hydroxyurea-induced leg ulcer in a patient with primary thrombocythemia. Mayo Clin. Proc. 1998, 73, 1125. [Google Scholar] [CrossRef] [PubMed]
- Salmon-Ehr, V.; Leborgne, G.; Vilque, J.P.; Potron, G.; Bernard, P. Effets secondaires cutanes de l’hydroxyuree: Etude prospective de 26 patients consultant dans un service de dermatologie. Rev. Med. Interne 2000, 21, 30–34. [Google Scholar] [CrossRef]
- Senet, P.; Aractingi, S.; Porneuf, M.; Perrin, P.; Duterque, M. Hydroxyurea-induced dermatomyositis-like eruption. Br. J. Dermatol. 1995, 133, 455–459. [Google Scholar] [CrossRef]
- Stone, T.; Berger, A.; Blumberg, S.; O’Neill, D.; Ross, F.; McMeeking, A.; Chen, W.; Pastar, I. A multidisciplinary team approach to hydroxyurea-associated chronic wound with squamous cell carcinoma. Int. Wound J. 2012, 9, 324–329. [Google Scholar] [CrossRef]
- Velez, A.; Garcia-Aranda, J.M.; Moreno, J.C. Hydroxyurea-induced leg ulcers: Is macroerythrocytosis a pathogenic factor? J. Eur. Acad. Dermatol. Venereol. 1999, 12, 243–244. [Google Scholar] [CrossRef]
- Weinlich, G.; Schuler, G.; Greil, R.; Kofler, H.; Fritsch, P. Leg ulcers associated with long-term hydroxyurea therapy. J. Am. Acad. Dermatol. 1998, 39, 372–374. [Google Scholar] [CrossRef]
- Zaccaria, E.; Cozzani, E.; Parodi, A. Secondary cutaneous effects of hydroxyurea: Possible pathogenetic mechanisms. J. Dermatol. Treat. 2006, 17, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, E.; Guglielmelli, P.; Pieri, L.; Finazzi, M.; Rumi, E.; Martinelli, V.; Vianelli, N.; Luigia Randi, M.; Bertozzi, I.; De Stefano, V.; et al. Hydroxyurea-related toxicity in 3,411 patients with Ph’-negative MPN. Am. J. Hematol. 2012, 87, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Williamson, D.; Grey, J.; Harding, K.G.; Cooper, R.A. Healing of an MRSA-colonized, hydroxyurea-induced leg ulcer with honey. J. Dermatol. Treat. 2001, 12, 33–36. [Google Scholar] [CrossRef]
- Ruzzon, E.; Randi, M.L.; Tezza, F.; Luzzatto, G.; Scandellari, R.; Fabris, F. Leg ulcers in elderly on hydroxyurea: A single center experience in Ph- myeloproliferative disorders and review of literature. Aging Clin. Exp. Res. 2006, 18, 187–190. [Google Scholar] [CrossRef]
- Sirieix, M.E.; Debure, C.; Baudot, N.; Dubertret, L.; Roux, M.E.; Morel, P.; Frances, C.; Loubeyres, S.; Beylot, C.; Lambert, D.; et al. Leg ulcers and hydroxyurea: Forty-one cases. Arch. Dermatol. 1999, 135, 818–820. [Google Scholar] [CrossRef] [Green Version]
- Radich, J. When to Consider Allogeneic Transplantation in CML. Clin. Lymph Myeloma Leuk 2016, 16, S93–S95. [Google Scholar] [CrossRef]
- Randi, M.L.; Ruzzon, E.; Luzzatto, G.; Tezza, F.; Girolami, A.; Fabris, F. Safety profile of hydroxyurea in the treatment of patients with Philadelphia-negative chronic myeloproliferative disorders. Haematologica 2005, 90, 261–262. [Google Scholar]
- Ros, T.; Gajic, B.; Gajinov, Z. Hydroxyurea and nonmelanoma skin cancers: Report of three cases and review of the literature. Vojnosanit Pregl. Med. Pharm. J. Serbia 2016, 74, 1089–1093. [Google Scholar] [CrossRef]
- Sanchez-Palacios, C.; Guitart, J. Hydroxyurea-associated squamous dysplasia. J. Am. Acad. Dermatol. 2004, 51, 293–300. [Google Scholar] [CrossRef]
- Saraceno, R.; Teoli, M.; Chimenti, S. Hydroxyurea associated with concomitant occurrence of diffuse longitudinal melanonychia and multiple squamous cell carcinomas in an elderly subject. Clin. Ther. 2008, 30, 1324–1329. [Google Scholar] [CrossRef]
- Gomez, M.; Guillem, V.; Pereira, A.; Ferrer-Marin, F.; Alvarez-Larran, A.; Kerguelen, A.; Estrada, N.; Martinez-Lopez, J.; Angona, A.; Amat, P.; et al. Risk factors for non-melanoma skin cancer in patients with essential thrombocythemia and polycythemia vera. Eur. J. Haematol. 2016, 96, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.M.; Weiner, M.; Kelly, K.M. Routine use of PET scans after completion of therapy in pediatric Hodgkin disease results in a high false positive rate. J. Pediatr. Hematol. Oncol. 2006, 28, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Seewann, H.L.; Zikulnig, R.; Gallhofer, G.; Schmid, C. Treatment of thrombocytosis in chronic myeloproliferative disorders with interferon alfa-2b. Eur. J. Cancer 1991, 27 (Suppl. 4), S58–S62; discussion S62–S63. [Google Scholar] [CrossRef]
- Kasparu, H.; Bernhart, M.; Krieger, O.; Lutz, D. Remission may continue after termination of rIFN alpha-2b treatment for essential thrombocythemia. Eur. J. Haematol. 1992, 48, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Radin, A.I.; Kim, H.T.; Grant, B.W.; Bennett, J.M.; Kirkwood, J.M.; Stewart, J.A.; Hahn, R.G.; Dutcher, J.P.; Wiernik, P.H.; Oken, M.M.; et al. Phase II study of alpha2 interferon in the treatment of the chronic myeloproliferative disorders (E5487): A trial of the Eastern Cooperative Oncology Group. Cancer 2003, 98, 100–109. [Google Scholar] [CrossRef]
- Alvarado, Y.; Cortes, J.; Verstovsek, S.; Thomas, D.; Faderl, S.; Estrov, Z.; Kantarjian, H.; Giles, F.J. Pilot study of pegylated interferon-alpha 2b in patients with essential thrombocythemia. Cancer Chemother. Pharmacol. 2003, 51, 81–86. [Google Scholar] [CrossRef]
- Langer, C.; Lengfelder, E.; Thiele, J.; Kvasnicka, H.M.; Pahl, H.L.; Beneke, H.; Schauer, S.; Gisslinger, H.; Griesshammer, M. Pegylated interferon for the treatment of high risk essential thrombocythemia: Results of a phase II study. Haematologica 2005, 90, 1333–1338. [Google Scholar] [CrossRef]
- Samuelsson, J.; Hasselbalch, H.; Bruserud, O.; Temerinac, S.; Brandberg, Y.; Merup, M.; Linder, O.; Bjorkholm, M.; Pahl, H.L.; Birgegard, G.; et al. A phase II trial of pegylated interferon alpha-2b therapy for polycythemia vera and essential thrombocythemia: Feasibility, clinical and biologic effects, and impact on quality of life. Cancer 2006, 106, 2397–2405. [Google Scholar] [CrossRef]
- Jabbour, E.; Kantarjian, H.; Cortes, J.; Thomas, D.; Garcia-Manero, G.; Ferrajoli, A.; Faderl, S.; Richie, M.A.; Beran, M.; Giles, F.; et al. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: Final result of a phase 2 study. Cancer 2007, 110, 2012–2018. [Google Scholar] [CrossRef]
- Ludwig, H.; Linkesch, W.; Gisslinger, H.; Fritz, E.; Sinzinger, H.; Radaszkiewicz, T.; Chott, A.; Flener, R.; Micksche, M. Interferon-alfa corrects thrombocytosis in patients with myeloproliferative disorders. Cancer Immunol. Immunother. 1987, 25, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Abegg-Werter, M.J.; Raemaekers, J.M.; de Pauw, B.E.; Haanen, C. Recombinant interferon-alpha, but not interferon-gamma is effective therapy for essential thrombocythemia. Blut 1990, 60, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Tichelli, A.; Gratwohl, A.; Berger, C.; Lori, A.; Wursch, A.; Dieterle, A.; Thomssen, C.; Nissen, C.; Holdener, E.; Speck, B. Treatment of thrombocytosis in myeloproliferative disorders with interferon alpha-2a. Blut 1989, 58, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Bentley, M.; Taylor, K.; Grigg, A.; Kronenberg, H.; Gibson, J.; Bunce, I.; Eliadis, P.; Olsen, T.; Wright, S.; Taylor, D.; et al. Long-term interferon-alpha 2A does not induce sustained hematologic remission in younger patients with essential thrombocythemia. Leuk Lymphoma 1999, 36, 123–128. [Google Scholar] [CrossRef]
- Saba, R.; Jabbour, E.; Giles, F.; Cortes, J.; Talpaz, M.; O’Brien, S.; Freireich, E.J.; Garcia-Manero, G.; Kantarjian, H.; Verstovsek, S. Interferon alpha therapy for patients with essential thrombocythemia: Final results of a phase II study initiated in 1986. Cancer 2005, 103, 2551–2557. [Google Scholar] [CrossRef]
- Gilbert, H.S. Long term treatment of myeloproliferative disease with interferon-alpha-2b: Feasibility and efficacy. Cancer 1998, 83, 1205–1213. [Google Scholar] [CrossRef]
- Kiladjian, J.J.; Cassinat, B.; Chevret, S.; Turlure, P.; Cambier, N.; Roussel, M.; Bellucci, S.; Grandchamp, B.; Chomienne, C.; Fenaux, P. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008, 112, 3065–3072. [Google Scholar] [CrossRef]
- Silver, R.T. Long-term effects of the treatment of polycythemia vera with recombinant interferon-alpha. Cancer 2006, 107, 451–458. [Google Scholar] [CrossRef]
- Heis, N.; Rintelen, C.; Gisslinger, B.; Knobl, P.; Lechner, K.; Gisslinger, H. The effect of interferon alpha on myeloproliferation and vascular complications in polycythemia vera. Eur. J. Haematol. 1999, 62, 27–31. [Google Scholar] [CrossRef]
- Gisslinger, H.; Zagrijtschuk, O.; Buxhofer-Ausch, V.; Thaler, J.; Schloegl, E.; Gastl, G.A.; Wolf, D.; Kralovics, R.; Gisslinger, B.; Strecker, K.; et al. Ropeginterferon alfa-2b, a novel IFNalpha-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood 2015, 126, 1762–1769. [Google Scholar] [CrossRef]
- Kikuchi, K.; Arita, K.; Tateishi, Y.; Onozawa, M.; Akiyama, M.; Shimizu, H. Recurrence of hydroxyurea-induced leg ulcer after discontinuation of treatment. Acta Derm. Venereol. 2011, 91, 373–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barosi, G.; Besses, C.; Birgegard, G.; Briere, J.; Cervantes, F.; Finazzi, G.; Gisslinger, H.; Griesshammer, M.; Gugliotta, L.; Harrison, C.; et al. A unified definition of clinical resistance/intolerance to hydroxyurea in essential thrombocythemia: Results of a consensus process by an international working group. Leukemia 2007, 21, 277–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbui, T.; Ghirardi, A.; Masciulli, A.; Carobbio, A.; Palandri, F.; Vianelli, N.; De Stefano, V.; Betti, S.; Di Veroli, A.; Iurlo, A.; et al. Second cancer in Philadelphia negative myeloproliferative neoplasms (MPN-K). A nested case-control study. Leukemia 2019, 33, 1996–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Study Type | Reported Case | Sex | Age | Underlying Disease | Driver Mutation Gene | Ruxolitinib Dose (mg/BID) | Duration of Treatment (months) | Toxicity Type | Site | Biopsy Performed | Ruxolitinib Discontinued | Intervention Type | Previous HU Therapy | Sun Exposure |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aboul-Fettouh, 2018 [16] | Case report | 1 | F | 70 | PPV-MF | JAK2 | 10 | 60 | SCC + BCC | Head and neck | Yes | Yes | Surgical excision | Yes | Yes |
Blechman, 2017 [17] | Case series | 5 | M | *60 (50–73) | PV | JAK2 | *20 (5–25) | *28 (18–50) | 5 SCC, 2 BCC, 1 UPS, 1 LMM | Diffuse | Yes | Yes | Surgical excision/radiotherapy/chemotherapy | Yes | n/r |
Chatterjee, 2015 [18] | Case report | 1 | F | 77 | PET-MF | n/r | n/r | 18 | Sweet syndrome | Diffuse | Yes | Yes | Oral Steroid | n/r | n/r |
Dasanu, 2018 [19] | Case report | 1 | M | 73 | PMF | JAK2 | 20 | 2 | Erythematous skin lesion | Knee | Yes | No | Topical steroid | No | No |
Del Rosario, 2015 [20] | Case report | 1 | M | 79 | PMF | JAK2 | 15 | 7 | Ulcer | Leg | Yes | No | Cephalexin | No | n/r |
Fabiano, 2015 [21] | Case report | 1 | F | 74 | PMF | n/r | n/r | 2 | SCC-keratoacanthoma type | Head and neck | Yes | Yes | Surgical excision | No | Yes |
Fournier, 2011 [22] | Case report | 1 | M | 61 | PPV-MF | n/r | 20 | 1 | Morbilliform lesion (Interstitial granulomatous drug reaction) | Diffuse | Yes | Yes | Topical steroid | n/r | n/r |
Loscocco, 2017 [23] | Case report | 1 | M | 56 | ET | CALR | n/r | 84 | BCC + Kaposi Sarcoma | Diffuse | Yes | Yes | Spontaneous regression | Yes | n/r |
Study | Study Type | Reported Case | Sex | Age | Underlying Disease | Driver Mutation Gene | HU Dose (g/daily) | Duration of Treatment (months) | Toxicity Type | Site | Biopsy Performed | HU Discontinued | Intervention Type | Vascular Insufficiency | Sun Exposure |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antar, 2014 [32] | Case report | 1 | F | 60 | ET | JAK2 | n/r | 60 | SSC | Leg | Yes | Yes | Surgical excision | n/r | n/r |
Bader, 2000 [33] | Case series | 3 | 1 F, 3 M | 84.6 | 2 PV, 1ET, | n/r | 0.66 (0.5–1) | 18–96 | Ulcers | Leg | Yes (2) | Yes (2) | Oral steroid and skin split graft (1) | 3 | n/r |
Best, 1998 [34] | Case series | 10 | 5 F, 4 M | 64.1 | 5 PV, 2ET, 2 MF, 1 u-MPN | n/r | 1.5 (1–2) | 84 (3–15) | Ulcers | Diffuse | Yes | n/r | n/r | n/r | n/r |
Butler, 2014 [35] | Case report | 1 | M | 64 | PV | JAK2 | 1.5 | 36 | Acral erythema | Hand/foot | No | n/r | n/r | n/r | n/r |
Callot-Mellot, 1996 [36] | Case series | 5 | 3 F, 2 M | 71 (64–76) | 2 PV, 3 ET | n/r | n/r | 78 (24–120) | 2 SCC, 3 BCC, actinic keratosis (5) | n/r | Yes | Yes | n/r | n/r | n/r |
Cohen, 1999 [37] | Case report | 1 | F | 70 | PV | n/r | 2–4 | 48 | Melanonychia | Fingernails and toenails | No | Yes | n/r | n/r | n/r |
Daoud, 1997 [38] | Case series | 3 | n/v | 56-69 | 1 PV, 2 ET | n/r | n/v | 61 (55–79) | 3 ulcers, 1 poikilodermatous eruption | Palms, toes, dorsal feet, ankles | Yes | Yes | n/r | n/r | n/r |
De Benedettis, 2004 [39] | Case report | 1 | M | 66 | PV | n/r | 1 | 204 | Ulcers, SCC | Leg, oral SCC | Yes | Yes | Surgical excision | n/r | n/r |
Demicray, 2002 [40] | Case series | 3 | 3 F | 61.6 (56–65) | 3 ET | n/r | 1 | 50 (6–84) | Ulcers | Leg | Yes (2) | Yes (1/3) | Oral steroids | 2/3 | n/r |
Esteve, 2001 [41] | Case report | 1 | F | 83 | PV | n/r | n/r | 156 | Actinic keratosis, SCC | Hands | Yes | Yes | Surgical excision | n/r | n/r |
Hernandez-Martin, 1999 [42] | Case report | 1 | M | 78 | ET | n/r | 1 | 5 | Melanonychia | Fingernails and toenails | No | No | None | n/r | n/r |
Hirri, 2001 [43] | Case Report | 1 | M | 66 | u-MPN | n/r | 1.5 | 8 | Ulcers | Leg | No | Yes | None | n/r | n/r |
Hoff, 2009 [44] | Case report | 1 | F | 68 | PV | n/r | n/r | 96 | Ulcers, actinic keratosis, SCC | Leg, head | Yes | Yes | Surgical excision, cryotherapy | No | n/r |
Hwang, 2009 [45] | Case report | 1 | M | 75 | ET | n/r | 2 | 48 | Ulcers, melanonychia | Leg, fingernails and toenails | Yes | Yes | None | n/r | n/r |
Kelly, 1994 [46] | Case report | 1 | M | 61 | PV | n/r | 1.5–2 | 72 | Actinic keratosis, BCC | Diffuse | Yes | No | Surgical excision, topical steroids | n/r | Yes |
Kluger, 2011 [47] | Case report | 1 | F | 74 | ET | n/r | 0.6 | 36 | Melanonychia | Toenails | No | No | None | n/r | n/r |
Kwong, 1996 [48] | Case report | 1 | F | 69 | ET | n/r | 2–3 | 6 | Melanonychia | Fingernails and Toenails | No | n/r | None | n/r | n/r |
Simeonovski, 2018 [49] | Case report | 1 | M | 52 | ET | n/r | 1.5 | >120 | Perimalleolar and nummular lesions, actinic keratosis, BCC | Less, arms, nose | Yes | Yes | Surgical excision, cryotherapy | n/r | n/r |
Accurso, 2019 [50] | Case report | 1 | F | 72 | MPN | JAK2 | n/r | ≈84 | Desquamative dermatitis | Diffuse facial | No | Yes | Topical and systemic steroids | n/r | n/r |
Study | No. of Patients | Sex | Age | Underlying Disease | IFN Type | IFN Dose | Duration of Treatment (Months) | Reported Cases | Type of Toxicity | Site | IFN Discontinued |
---|---|---|---|---|---|---|---|---|---|---|---|
Seewann, 1991 [74] | 36 | 18 F, 18 M | 60 (26–73) | 19 ET, 6 PV, 6 CML, 5 CMGM | α2b | 5-3 MU/daily | n/r | 17 | 14 Alopecia, 3 pruritus | n/r | n/r |
Kasparu, 1992 [75] | 14 | 8 F, 6 M | 65 (36–65) | 14 ET | α2b | 5 MU/daily | 1 | alopecia | n/r | n/r | |
Radin, 2003 [76] | 60 | 33 F, 27 M | 17 ET, 12 PV, 31 MF | n/r | 5-2 MU/daily | 6 | 20 | n/r | n/r | n/r | |
Alvarado, 2003 [77] | 11 | 9 F, 2 M | 55 (26–69) | 11 ET | PEG-α2b | 4.5 mg/kg/week | 25 (0–84) | 8 | 5 ISR, 3 alopecia | n/r | |
Langer, 2005 [78] | 36 | 20 F/16 M | 54 (24–72) | ET | PEG-α2b | 50 mcg/weekly | 23 (3–39) | 20 | 7 hair loss, 13 skin dryness | Diffuse | 2 females for alopecia |
Sammuelsson, 2006 [79] | 42 | 20 F, 22 M | 53 (29–77) | 21 ET, 21 PV | PEG-α2b | 0.5 mcg/kg | 24 | 36 | 27 ISR1, 8 alopecia, 1 erythema | 1 alopecia, 1 erythema | |
Jabbour, 2007 [80] | 40 | n/r | 54 (28–81) | 13 ET, 4 PV, 11 PMF, 10 others | PEG-α2b | 2–3 mcg/kg weekly | 27 (4–42) | 8 | n/r | n/r | n/r |
Ludwing, 1987 [81] | 15 | 11 F, 4 M | 66 (54–80) | 5 ET, 7 PV, 3 CML | α2c | 5–10 MU/3-7 times a week | 2 | 3 | 3 alopecia | n/r | |
Abegg-Werter, 1990 [82] | 8 | 5 F, 3 M | 42 (29–63) | 8 PV | α2c | 0.5 mg/weekly | n/r | 3 | 1 alopecia, 2itching | n/r | |
Tichelli, 1989 [83] | 13 | 6 F, 7 M | 57(21–78) | 3 ET, 4 PV, 6 others | α2a | 9 MU/daily | n/r | 10 dry scaly skin, 2 extended erythematous plaques, 4 alopecia, 1 ISR | n/r | ||
Bentley, 1999 [84] | 34 | 41 (14–68) | ET | α2a | 3 MU/daily | 24 | 7 | 2 alopecia, 2 skin rash, 2 pruritus, 1 infected injection site | n/r | ||
Saba, 2005 [85] | 23 | 14 F, 9 M | 41 (20–63) | 23 ET | α2a | 5 MU/m2/daily | 174 (9–202) | Alopecia (number not reported) | n/r | ||
Gilbert, 1998 [86] | 54 | 21 F, 33 M | 18–85 | 3 ET, 8 PV, 14 MF, 25 Smf, 4 Umpn | α2b | 5 MU/daily | 30 (1–97) | >5% Alopecia, ISR | n/r | ||
Kiladjan, 2008 [87] | 37 | 21 F, 16 M | 49 (42–53) | 37 PV | PEG-α2a | 90–135 mcg/weekly | 31.4 (26.4–35.1) | 6 | n/r | n/r | 1 |
Silver, 2006 [88] | 61 | 27 F, 28 M | 51 (24–80) | 61 PV | α2b/α2a | 3 MU/m2/3 week | 1 | 1 skin rash | n/r | n/r | |
Heis, 1999 [89] | 32 | 17 F, 15 M | 60.5 (31/81) | 32 PV | ALPHA | n/r | 14 (2–126) | 1 | 1 alopecia | n/r | |
Gisslinger, 2015 [90] | 51 | 20 F, 31 M | 56 (35-82) | 51 PV | Ropegalfa-2b | n/r | n/r | >10% | >10% Alopecia, ISR | Alopecia, ISR | |
Total | 567 | 131 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malato, A.; Rossi, E.; Palumbo, G.A.; Guglielmelli, P.; Pugliese, N. Drug-Related Cutaneous Adverse Events in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms: A Literature Review. Int. J. Mol. Sci. 2020, 21, 3900. https://doi.org/10.3390/ijms21113900
Malato A, Rossi E, Palumbo GA, Guglielmelli P, Pugliese N. Drug-Related Cutaneous Adverse Events in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms: A Literature Review. International Journal of Molecular Sciences. 2020; 21(11):3900. https://doi.org/10.3390/ijms21113900
Chicago/Turabian StyleMalato, Alessandra, Elena Rossi, Giuseppe Alberto Palumbo, Paola Guglielmelli, and Novella Pugliese. 2020. "Drug-Related Cutaneous Adverse Events in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms: A Literature Review" International Journal of Molecular Sciences 21, no. 11: 3900. https://doi.org/10.3390/ijms21113900
APA StyleMalato, A., Rossi, E., Palumbo, G. A., Guglielmelli, P., & Pugliese, N. (2020). Drug-Related Cutaneous Adverse Events in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms: A Literature Review. International Journal of Molecular Sciences, 21(11), 3900. https://doi.org/10.3390/ijms21113900