The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy
Abstract
:1. Introduction
2. The Phenomenon of Autophagy
2.1. Macroautophagy
2.2. Microautophagy and Endosomal Microautophagy
2.3. Chaperone-Mediated Autophagy (CMA)
2.4. Secretory Granule-Lysosome Fusion (Crinophagy)
2.5. Cytoplasm to Vacuole Targeting (Cvt) Pathway
2.6. The Vacuole Membrane Protein Recycling and Degradation (vRed) Pathway
2.7. Alkaline Phosphatase (ALP) Pathway
2.8. Vacuole Import and Degradation (Vid) Pathway
3. Short Overview of the Ubiquitination System
3.1. Ubiquitin as a Multiple Importance Posttranslational Modification Molecule
3.2. The Opposite Effect of Ubiquitination: The Role of Deubiquitinases
4. The Activity of Deubiquitinating Enzymes in Autophagic Mechanisms
4.1. DUBs in Macroautophagy
4.2. Deubiquitinases in Microautophagy and Endosomal Microautophagy
4.3. The Possible Role of Other DUBs in Autophagy-Like Vesicular Trafficking Mechanisms
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Weckman, A.; Di Ieva, A.; Rotondo, F.; Syro, L.V.; Ortiz, L.D.; Kovacs, K.; Cusimano, M.D. Autophagy in the endocrine glands. J. Mol. Endocrinol. 2014, 52, R151–R163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzella, L.; Ahlberg, J.; Glaumann, H. Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1981, 36, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.T.; Ciechanover, A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem. Sci. 2017, 42, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Yu, H.; Mim, C.; Matouschek, A. Regulated protein turnover: Snapshots of the proteasome in action. Nat. Rev. Mol. Cell Biol. 2014, 15, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Pedro, J.M.B.-S.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; et al. Molecular definitions of autophagy and related processes. EMBO J. 2017, 36, 1811–1836. [Google Scholar] [CrossRef]
- Kudriaeva, A.; Belogurov, A. Proteasome: A Nanomachinery of Creative Destruction. Biochem. (Mosc.) 2019, 84, 159–192. [Google Scholar] [CrossRef]
- Ruocco, N.; Costantini, S.; Costantini, M. Blue-Print Autophagy: Potential for Cancer Treatment. Mar. Drugs 2016, 14, 138. [Google Scholar] [CrossRef]
- Coux, O.; Zieba, B.A.; Meiners, S. The Proteasome System in Health and Disease. Adv. Exp. Med. Biol. 2020, 55–100. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Szabó, Á.; Csizmadia, T.; Laczkó-Dobos, H.; Juhász, G. Understanding the importance of autophagy in human diseases using Drosophila. J. Genet. Genom. 2019, 46, 157–169. [Google Scholar] [CrossRef]
- Lőw, P.; Varga, A.; Pircs, K.; Nagy, P.; Szatmári, Z.; Sass, M.; Juhász, G. Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biol. 2013, 14, 29. [Google Scholar] [CrossRef] [Green Version]
- Dikic, I. Proteasomal and Autophagic Degradation Systems. Annu. Rev. Biochem. 2017, 86, 193–224. [Google Scholar] [CrossRef] [PubMed]
- Swatek, K.N.; Komander, D. Ubiquitin modifications. Cell Res. 2016, 26, 399–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clague, M.J.; Urbe, S. Integration of cellular ubiquitin and membrane traffic systems: Focus on deubiquitylases. FEBS J. 2017, 284, 1753–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, S.V.; Klionsky, D.J. Delivery of proteins and organelles to the vacuole from the cytoplasm. Curr. Opin. Cell Biol. 1998, 10, 523–529. [Google Scholar] [CrossRef]
- Li, M.; Rong, Y.; Chuang, Y.-S.; Peng, D.; Emr, S.D. Ubiquitin-Dependent Lysosomal Membrane Protein Sorting and Degradation. Mol. Cell 2015, 57, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Koshi, T.; Emr, S.D. Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins. J. Cell Biol. 2015, 211, 639–652. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Patel, B.; Koga, H.; Cuervo, A.M.; Jenny, A. Selective endosomal microautophagy is starvation-inducible inDrosophila. Autophagy 2016, 12, 1984–1999. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; He, D.; Yao, Z.; Klionsky, D.J. The machinery of macroautophagy. Cell Res. 2013, 24, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Novikoff, A.B. The Proximal Tubule Cell in Experimental Hydronephrosis. J. Cell Biol. 1959, 6, 136–138. [Google Scholar] [CrossRef]
- Tsukada, M.; Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993, 333, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.; Noda, T.; Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell 2012, 151, 1256–1269. [Google Scholar] [CrossRef] [Green Version]
- Takáts, S.; Nagy, P.; Varga, A.; Pircs, K.; Kárpáti, M.; Varga, K.; Kovács, A.L.; Hegedűs, K.; Juhász, G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 2013, 201, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Takáts, S.; Pircs, K.; Nagy, P.; Varga, A.; Kárpáti, M.; Hegedűs, K.; Krämer, H.; Kovács, A.L.; Sass, M.; Juhász, G. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol. Biol. Cell 2014, 25, 1338–1354. [Google Scholar] [CrossRef]
- Jiang, P.; Nishimura, T.; Sakamaki, Y.; Itakura, E.; Hatta, T.; Natsume, T.; Mizushima, N. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 2014, 25, 1327–1337. [Google Scholar] [CrossRef]
- McEwan, D.G.; Popovic, D.; Gubas, A.; Terawaki, S.; Suzuki, H.; Stadel, D.; Coxon, F.P.; De Stegmann, D.M.; Bhogaraju, S.; Maddi, K.; et al. PLEKHM1 Regulates Autophagosome-Lysosome Fusion through HOPS Complex and LC3/GABARAP Proteins. Mol. Cell 2015, 57, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Hegedűs, K.; Takáts, S.; Boda, A.; Jipa, A.; Nagy, P.; Varga, K.; Kovács, A.L.; Juhász, G. The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol. Biol. Cell 2016, 27, 3132–3142. [Google Scholar] [CrossRef] [Green Version]
- Fujita, N.; Huang, W.; Lin, T.-H.; Groulx, J.-F.; Jean, S.; Nguyen, J.; Kuchitsu, Y.; Koyama-Honda, I.; Mizushima, N.; Fukuda, M.; et al. Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. eLife 2017, 6, 167. [Google Scholar] [CrossRef]
- Lőrincz, P.; Tóth, S.; Benkő, P.; Lakatos, Z.; Boda, A.; Glatz, G.; Zobel, M.; Bisi, S.; Hegedűs, K.; Takáts, S.; et al. Rab2 promotes autophagic and endocytic lysosomal degradation. J. Cell Biol. 2017, 216, 1937–1947. [Google Scholar] [CrossRef] [Green Version]
- Boda, A.; Lőrincz, P.; Takáts, S.; Csizmadia, T.; Tóth, S.; Kovács, A.L.; Juhász, G. Drosophila Arl8 is a general positive regulator of lysosomal fusion events. Biochim. Biophys. Acta (BBA) Bioenerg. 2019, 1866, 533–544. [Google Scholar] [CrossRef]
- Lőrincz, P.; Kenéz, L.A.; Tóth, S.; Kiss, V.; Varga, Á.; Csizmadia, T.; Simon-Vecsei, Z.; Juhász, G. Vps8 overexpression inhibits HOPS-dependent trafficking routes by outcompeting Vps41/Lt. eLife 2019, 8, 8. [Google Scholar] [CrossRef]
- Rong, Y.; McPhee, C.K.; Deng, S.; Huang, L.; Chen, L.; Liu, M.; Tracy, K.M.; Baehrecke, E.H.; Yu, L.; Lenardo, M.J. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl. Acad. Sci. USA 2011, 108, 7826–7831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieńko, K.; Poormassalehgoo, A.; Yamada, K.; Goto-Yamada, S. Microautophagy in Plants: Consideration of Its Molecular Mechanism. Cells 2020, 9, 887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oku, M.; Sakai, Y. Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries. BioEssays 2018, 40. [Google Scholar] [CrossRef]
- Olsvik, H.; Svenning, S.; Abudu, Y.P.; Brech, A.; Stenmark, H.A.; Johansen, T.; Mejlvang, J. Endosomal microautophagy is an integrated part of the autophagic response to amino acid starvation. Autophagy 2018, 15, 182–183. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, J.A.; Schessner, J.P.; Bircham, P.W.; Tsuji, T.; Funaya, C.; Pajonk, O.; Schaeff, K.; Ruffini, G.; Papagiannidis, D.; Knop, M.; et al. ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast. EMBO J. 2019, 39, e102586. [Google Scholar] [CrossRef]
- Mijaljica, D.; Prescott, M.; Devenish, R.J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy 2011, 7, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Morshed, S.; Sharmin, T.; Ushimaru, T. TORC1 regulates ESCRT-0 complex formation on the vacuolar membrane and microautophagy induction in yeast. Biochem. Biophys. Res. Commun. 2019, 522, 88–94. [Google Scholar] [CrossRef]
- Cuervo, A.M.; Wong, E. Chaperone-mediated autophagy: Roles in disease and aging. Cell Res. 2013, 24, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef]
- Csizmadia, T.; Juhász, G. Crinophagy mechanisms and its potential role in human health and disease. Prog. Mol. Biol. Transl. Sci. 2020. [Google Scholar] [CrossRef]
- Smith, R.E.; Farquhar, M.G. Lysosome Function in the regulation of the Secretory Process in Cells of the Anterior Pituitary Gland. J. Cell Biol. 1966, 31, 319–347. [Google Scholar] [CrossRef]
- Csizmadia, T.; Lőrincz, P.; Hegedűs, K.; Széplaki, S.; Lőw, P.; Juhász, G. Molecular mechanisms of developmentally programmed crinophagy in Drosophila. J. Cell Biol. 2017, 217, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Ahlberg, J.; Beije, B.; Berkenstam, A.; Henell, F.; Glaumann, H. Effects on in vivo and in vitro administration of vinblastine on the perfused rat liver—Identification of crinosomes. Exp. Mol. Pathol. 1987, 47, 309–326. [Google Scholar] [CrossRef]
- Van Acker, G.J.D.; Saluja, A.K.; Bhagat, L.; Singh, V.P.; Song, A.M.; Steer, M.L. Cathepsin B inhibition prevents trypsinogen activation and reduces pancreatitis severity. Am. J. Physiol. Liver Physiol. 2002, 283, G794–G800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halangk, W.; Lerch, M.M.; Brandt-Nedelev, B.; Roth, W.; Ruthenbuerger, M.; Reinheckel, T.; Domschke, W.; Lippert, H.; Peters, C.; Deussing, J.M. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Investig. 2000, 106, 773–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orci, L.; Ravazzola, M.; Amherdt, M.; Yanaihara, C.; Halban, P.; E Renold, A.; Perrelet, A. Insulin, not C-peptide (proinsulin), is present in crinophagic bodies of the pancreatic B-cell. J. Cell Biol. 1984, 98, 222–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, B.J.; Soden, C.; Alarcón, C.; Wicksteed, B.L.; Yaekura, K.; Costin, A.; Morgan, G.P.; Rhodes, C.J. Regulated Autophagy Controls Hormone Content in Secretory-Deficient Pancreatic Endocrine ?-Cells. Mol. Endocrinol. 2007, 21, 2255–2269. [Google Scholar] [CrossRef] [Green Version]
- Harrod, M.; Kastritsis, C. Developmental studies in Drosophila. J. Ultrastruct. Res. 1972, 38, 482–499. [Google Scholar] [CrossRef]
- Lynch-Day, M.A.; Klionsky, D.J. The Cvt pathway as a model for selective autophagy. FEBS Lett. 2010, 584, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Harding, T.M.; Morano, K.; Scott, S.V.; Klionsky, D.J. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 1995, 131, 591–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darsow, T.; Katzmann, D.J.; Cowles, C.R.; Emr, S.D. Vps41p Function in the Alkaline Phosphatase Pathway Requires Homo-oligomerization and Interaction with AP-3 through Two Distinct Domains. Mol. Biol. Cell 2001, 12, 37–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klionsky, D.; Emr, S. Membrane protein sorting: Biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J. 1989, 8, 2241–2250. [Google Scholar] [CrossRef] [PubMed]
- Juhász, G.; Hill, J.H.; Yan, Y.; Sass, M.; Baehrecke, E.H.; Backer, J.M.; Neufeld, T.P. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 2008, 181, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Chiang, H.-L.; Schekman, R. Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature 1991, 350, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Gancedo, J.M.; Gancedo, C. Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch. Microbiol. 1971, 76, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Hämmerle, M.; Bauer, J.; Rose, M.; Szallies, A.; Thumm, M.; Düsterhus, S.; Mecke, D.; Entian, K.-D.; Wolf, D.H. Proteins of Newly Isolated Mutants and the Amino-terminal Proline Are Essential for Ubiquitin-Proteasome-catalyzed Catabolite Degradation of Fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273, 25000–25005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santt, O.; Pfirrmann, T.; Braun, B.; Juretschke, J.; Kimmig, P.; Scheel, H.; Hofmann, K.; Thumm, M.; Wolf, D.H. The Yeast GID Complex, a Novel Ubiquitin Ligase (E3) Involved in the Regulation of Carbohydrate Metabolism. Mol. Biol. Cell 2008, 19, 3323–3333. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.R.; Liu, J.; Hung, G.-C.; Carter, D.; Cui, D.; Chiang, H.-L. The Vid Vesicle to Vacuole Trafficking Event Requires Components of the SNARE Membrane Fusion Machinery. J. Biol. Chem. 2003, 278, 25688–25699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershko, A.; Ciechanover, A. The Ubiquitin System. Annu. Rev. Biochem. 1998, 67, 425–479. [Google Scholar] [CrossRef]
- Zheng, N.; Shabek, N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017, 86, 129–157. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.D.; Ritterhoff, T.; Klevit, R.E.; Brzovic, P.S. E2 enzymes: More than just middle men. Cell Res. 2016, 26, 423–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, C.G.; Ikeda, F. Roles of ubiquitin in autophagy and cell death. Semin. Cell Dev. Biol. 2019, 93, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Cappadocia, L.; Lima, C.D. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Chem. Rev. 2017, 118, 889–918. [Google Scholar] [CrossRef] [PubMed]
- Clague, M.J.; Heride, C.; Urbe, S. The demographics of the ubiquitin system. Trends Cell Biol. 2015, 25, 417–426. [Google Scholar] [CrossRef]
- Collins, G.A.; Goldberg, A.L. The Logic of the 26S Proteasome. Cell 2017, 169, 792–806. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, F.; Dikic, I. Atypical ubiquitin chains: New molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ Review Series. EMBO Rep. 2008, 9, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Leznicki, P.; Kulathu, Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J. Cell Sci. 2017, 130, 1997–2006. [Google Scholar] [CrossRef] [Green Version]
- Komander, D.; Clague, M.J.; Urbe, S. Breaking the chains: Structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10, 550–563. [Google Scholar] [CrossRef]
- Heride, C.; Urbe, S.; Clague, M.J. Ubiquitin code assembly and disassembly. Curr. Biol. 2014, 24, R215–R220. [Google Scholar] [CrossRef] [Green Version]
- Clague, M.J.; Urbe, S.; Komander, D. Breaking the chains: Deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 2019, 20, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Grumati, P.; Dikic, I. Ubiquitin signaling and autophagy. J. Biol. Chem. 2017, 293, 5404–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacomin, A.-C.; Taillebourg, E.; Fauvarque, M.-O. Deubiquitinating Enzymes Related to Autophagy: New Therapeutic Opportunities? Cells 2018, 7, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, R.; Bonifacino, J.S. Negative regulation of autophagy by UBA6-BIRC6-mediated ubiquitination of LC3. eLife 2019, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Nibe, Y.; Oshima, S.; Kobayashi, M.; Maeyashiki, C.; Matsuzawa, Y.; Otsubo, K.; Matsuda, H.; Aonuma, E.; Nemoto, Y.; Nagaishi, T.; et al. Novel polyubiquitin imaging system, PolyUb-FC, reveals that K33-linked polyubiquitin is recruited by SQSTM1/p62. Autophagy 2018, 14, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Geisler, S.; Jäger, L.; Golombek, S.; Nakanishi, E.; Hans, F.; Casadei, N.; Terradas, A.L.; Linnemann, C.; Kahle, P.J. Ubiquitin-specific protease USP36 knockdown impairs Parkin-dependent mitophagy via downregulation of Beclin-1-associated autophagy-related ATG14L. Exp. Cell Res. 2019, 384, 111641. [Google Scholar] [CrossRef]
- Khaminets, A.; Behl, C.; Dikic, I. Ubiquitin-Dependent and Independent Signals In Selective Autophagy. Trends Cell Biol. 2016, 26, 6–16. [Google Scholar] [CrossRef]
- Cunningham, C.N.; Baughman, J.M.; Phu, L.; Tea, J.S.; Yu, C.; Coons, M.; Kirkpatrick, D.S.; Bingol, B.; Corn, J.E. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 2015, 17, 160–169. [Google Scholar] [CrossRef]
- Liang, J.R.; Martinez, A.; Lane, J.D.; Mayor, U.; Clague, M.J.; Urbe, S. USP 30 deubiquitylates mitochondrial P arkin substrates and restricts apoptotic cell death. Embo Rep. 2015, 16, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Bingol, B.; Tea, J.S.; Phu, L.; Reichelt, M.; Bakalarski, C.; Song, Q.; Foreman, O.; Kirkpatrick, D.S.; Sheng, M. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nat. Cell Biol. 2014, 510, 370–375. [Google Scholar] [CrossRef]
- Kraft, C.; Deplazes, A.; Sohrmann, M.; Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 2008, 10, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Park, S.; Lee, J.H.; Mun, J.Y.; Choi, W.H.; Yun, Y.; Lee, J.; Kim, J.H.; Kang, M.-J.; Lee, M.J. Dual Function of USP14 Deubiquitinase in Cellular Proteasomal Activity and Autophagic Flux. Cell Rep. 2018, 24, 732–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kast, D.J.; Domínguez, R. The Cytoskeleton-Autophagy Connection. Curr. Biol. 2017, 27, R318–R326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lőrincz, P.; Lakatos, Z.; Maruzs, T.; Szatmári, Z.; Kis, V.; Sass, M. Atg6/UVRAG/Vps34-Containing Lipid Kinase Complex Is Required for Receptor Downregulation through Endolysosomal Degradation and Epithelial Polarity duringDrosophilaWing Development. Biomed Res. Int. 2014, 2014, 1–19. [Google Scholar] [CrossRef]
- Nakamura, N.; Matsuura, A.; Wada, Y.; Ohsumi, Y. Acidification of Vacuoles Is Required for Autophagic Degradation in the Yeast, Saccharomyces cerevisiae. J. Biochem. 1997, 121, 338–344. [Google Scholar] [CrossRef]
- Mrschtik, M.; Ryan, K.M. Lysosomal proteins in cell death and autophagy. Febs J. 2015, 282, 1858–1870. [Google Scholar] [CrossRef]
- Mao, Z.; Sang, M.-M.; Chen, C.; Zhu, W.-T.; Gong, Y.-S.; Pei, D. CSN6 Promotes the Migration and Invasion of Cervical Cancer Cells by Inhibiting Autophagic Degradation of Cathepsin L. Int. J. Biol. Sci. 2019, 15, 1310–1324. [Google Scholar] [CrossRef]
- Balut, C.M.; Loch, C.M.; Devor, D.C. Role of ubiquitylation and USP8-dependent deubiquitylation in the endocytosis and lysosomal targeting of plasma membrane KCa3.1. FASEB J. 2011, 25, 3938–3948. [Google Scholar] [CrossRef] [Green Version]
- Berruti, G.; Ripolone, M.; Ceriani, M. USP8, a Regulator of Endosomal Sorting, Is Involved in Mouse Acrosome Biogenesis Through Interaction with the Spermatid ESCRT-0 Complex and Microtubules. Biol. Reprod. 2010, 82, 930–939. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, E.; Kobayashi, K.; Yamamoto, A.; Kitamura, N.; Komada, M. A Deubiquitinating Enzyme UBPY Regulates the Level of Protein Ubiquitination on Endosomes. Traffic 2006, 7, 1017–1031. [Google Scholar] [CrossRef]
- Wright, M.H.; Berlin, I.; Nash, P.D. Regulation of Endocytic Sorting by ESCRT–DUB-Mediated Deubiquitination. Cell Biophys. 2011, 60, 39–46. [Google Scholar] [CrossRef] [PubMed]
- McCullough, J.; Clague, M.J.; Urbe, S. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 2004, 166, 487–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyttinen, J.M.; Niittykoski, M.; Salminen, A.; Kaarniranta, K. Maturation of autophagosomes and endosomes: A key role for Rab7. Biochim. Biophys. Acta (BBA) Bioenerg. 2013, 1833, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapmaz, A.; Berlin, I.; Bos, E.; Wijdeven, R.H.; Janssen, H.; Konietzny, R.; Akkermans, J.; Erson-Bensan, A.E.; Koning, R.I.; Kessler, B.M.; et al. USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nat. Commun. 2019, 10, 1454. [Google Scholar] [CrossRef] [Green Version]
- Wolters, N.; Amerik, A.Y. Inactivation of the VID27 gene prevents suppression of the doa4 degradation defect in doa4Δ did3Δ double mutant. Biochem. Biophys. Res. Commun. 2017, 482, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Winters, C.M.; Hong-Brown, L.Q.; Chiang, H.-L. The Shape of Vesicle-Containing Organelles Is Critical for Their Functions in Vesicle Endocytosis. DNA Cell Biol. 2017, 36, 909–921. [Google Scholar] [CrossRef]
- Gao, J.; Huo, L.; Sun, X.; Liu, M.; Li, D.; Dong, J.-T.; Zhou, J. The Tumor Suppressor CYLD Regulates Microtubule Dynamics and Plays a Role in Cell Migration. J. Biol. Chem. 2008, 283, 8802–8809. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ferrería, M.A.; Bashkurov, M.; Mullin, M.; Gingras, A.-C.; Pelletier, L. CEP192 interacts physically and functionally with the K63-deubiquitinase CYLD to promote mitotic spindle assembly. Cell Cycle 2012, 11, 3555–3558. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhou, J. CYLD—A deubiquitylase that acts to fine-tune microtubule properties and functions. J. Cell Sci. 2016, 129, 2289–2295. [Google Scholar] [CrossRef] [Green Version]
- Douanne, T.; André-Grégoire, G.; Thys, A.; Trillet, K.; Gavard, J.; Bidère, N. CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1. Cell Rep. 2019, 27, 1657–1665.e4. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.-H.; Chen, Y.-H.; Huang, T.-Y. Ubiquitin-mediated regulation of autophagy. J. Biomed. Sci. 2019, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Harrigan, J.A.; Jacq, X.; Martin, N.M.; Jackson, S.P. Deubiquitylating enzymes and drug discovery: Emerging opportunities. Nat. Rev. Drug Discov. 2017, 17, 57–78. [Google Scholar] [CrossRef] [PubMed]
Deubiquitinase | Autophagy Type | Targets | Effects | References |
---|---|---|---|---|
AMSH | Microautophagy and endosomal microautophagy | ESCRT-0 | Stabilization of ESCRT proteins, MVE formation | [91,92] |
CSN6 | Lysosomal degradation | Cathepsin-L (CTSL) | Positive transcriptional regulation of CTSL | [87] |
Cyld | Autolysosome and crinosome formation, MVE-lysosome fusion, vRed, Cvt, ALP, Vid pathways | α- and β-tubulin | Microtubule assembly and maintaining microtubule dynamics | Data available about the regulation of microtubules [83,97,98,99,100] |
Doa4 | vRed and Vid pathways | Ypq1, Cot1, Zrt3, Vid27? | Opposite effect of Rsp5/Tul1 mediated degradation of Ypq1, Cot1, Zrt3, possible binding partner of Vid27 | [15,16,95] |
Otub1 | Macroautophagy | DEPTOR | Stabilizes DEPTOR which inhibits mTOR, macroautophagy induction | [73] |
Ubp3 | Macroribophagy | 60S ribosomes | Positive regulation of 60S ribosome macroautophagic degradation by its deubiquitination | [81] |
Usp8/Ubp5 | Microautophagy and endosomal microautophagy, macromitophagy | ESCRT-0, Parkin | Stabilization of ESCRT proteins, MVE formation, Parkin stabilization | Usp8 data only available [73,88,89,90,91] |
Usp10 | Macroautophagy | Atg6/Beclin1 | Activation and stabilization of Atg6/Beclin1, positive regulation of autophagosome formation | [73] |
Usp13 | Macroautophagy | Atg6/Beclin1 | Activation and stabilization of Atg6/Beclin1, positive regulation of autophagosome formation | [73] |
Usp14 | Macroautophagy | Atg6/Beclin1, MAPT, UVRAG | Destabilizes Atg6/Beclin1, rescues MAPT and UVRAG from proteasomal degradation | [73,82] |
Usp20 | Macroautophagy | Atg1/Ulk1 | Positive effect on macroautophagy by stabilization of Atg1/Ulk1 | [73] |
Usp30 | Macromitophagy | Mitochondrial surface proteins | Opposite effect of Parkin mediated macromitophagy | [78,79,80] |
Usp32/Ubp12 | Autolysosome and crinosome formation, MVE-lysosome fusion, vRed, Cvt, ALP, Vid pathways | Rab7/Ypt7 | Positive regulation of Rab7/Ypt7 recycling and recruitment to the membrane of late endosomal compartment | Usp32 data about late endosomal effect only available [94] |
Usp33 | Macroautophagy | RALB | Stabilizes RALB, the Atg6/Beclin1 interacting protein, positively regulates autophagosome formation | [73] |
Usp36 | Macroautophagy, macromitophagy | direct effect on H2B, indirect effect on Atg6/Beclin1 and Atg14L | Positive transcriptional regulation of Atg6/Beclin and Atg14L | [76] |
? | Macroautophagy | LC3/Atg8 | LC3/Atg8 stabilization, opposite effect of Ubp6 and Birc6 | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csizmadia, T.; Lőw, P. The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. Int. J. Mol. Sci. 2020, 21, 4196. https://doi.org/10.3390/ijms21124196
Csizmadia T, Lőw P. The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. International Journal of Molecular Sciences. 2020; 21(12):4196. https://doi.org/10.3390/ijms21124196
Chicago/Turabian StyleCsizmadia, Tamás, and Péter Lőw. 2020. "The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy" International Journal of Molecular Sciences 21, no. 12: 4196. https://doi.org/10.3390/ijms21124196
APA StyleCsizmadia, T., & Lőw, P. (2020). The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. International Journal of Molecular Sciences, 21(12), 4196. https://doi.org/10.3390/ijms21124196